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Highlights:

What are the main findings?

• Variations in the form of trends and abrupt changes are distinguished.

What is the implication of the main finding?

• Using the single-test method produced large uncertainty. Trend tests were performed separately
from abrupt change tests to assess the long-term changes in rainfall erosivity series, which
would result in the wrong conclusion.

Abstract: Rainfall erosivity is commonly used to estimate the probability of soil erosion caused by
rainfall. The accurate detection of temporal changes in rainfall erosivity and the identification of
abrupt changes and trends are important for understanding the physical causes of variation. In
this study, a detection framework is introduced to identify temporal changes in rainfall erosivity
time series as follows: (i) The significance of time series variation of rainfall erosivity is assessed
based on the Hurst coefficient and divided into three levels: None, medium, and high. (ii) The
detection of abrupt changes (Mann–Kendall, Moving T, and Bayesian tests) and trends (Spearman
and Kendall rank correlation tests) of variate series and the correlation coefficient between the
variation component and the original series is calculated. (iii) The modified series is obtained by
preferentially eliminating the variation component (trend or change point) with larger correlation
coefficients. (iv) We substituted the modified series into steps i to iii until the correlation coefficient
was not significant. This framework is used to analyze the variation of rainfall erosivity in the Three
Gorges Reservoir, China. The results showed that by using traditional methods, both an increasing
trend and an upward change point were observed in Zigui station. However, after the upward
change point was deducted from the annual rainfall erosivity series R(t), the resultant Rm(t) showed
no statistically significant trend. Trend analysis should be performed considering the existence of an
abrupt change to assess the long-term changes in rainfall erosivity series; otherwise, it would result in
the wrong conclusion. In addition, the change points detected in the Rm(t) varied with the methods.
Compared with the single-test method, the proposed framework can effectively reduce uncertainty.

Keywords: soil erosion; USLE; rainfall erosivity; temporal variation; Three Gorges Reservoir

1. Introduction

Global warming and intensive human activities have exacerbated and triggered ex-
treme rainfall events, increasing the risk of water and soil loss and environmental deterio-
ration [1–3]. Rainfall erosivity (R factor), in the Universal Soil Loss Equation (USLE) [4]
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and the Revised USLE (RUSLE) [5], is used worldwide to assess and predict the potential
of rainfall to cause erosion [6]. Understanding the variation of rainfall erosivity is criti-
cal for sediment yield modeling and land use management. After the construction and
operation of the Three Gorges Dam, the seasonal distribution of precipitation changed,
and non-stationary changes such as the change point and trend have been found on the
watershed scale [7,8]. Thus, determining how to diagnose the physical causes of variation
and evaluate the significance levels of complex variability in rainfall erosivity series are
important issues in the Three Gorges Reservoir (TGR) area.

Temporal variations in rainfall erosivity have been extensively studied by scholars,
both on basin and region scales. A number of test methods have been used to detect
the abrupt changes or trends of rainfall erosivity. For the trend cases, Nunes et al. [9]
investigated the precipitation and erosivity in southern Portugal by using Spearman’s
rank correlation and found increasing trends in precipitation erosivity during autumn and
summer. Fenta et al. [10] complemented the least-squares regression with the Kendall’ tau
test in rainfall erosivity trends analysis. By adopting the Mann–Kendall test and Theil and
Sen’s method, Wang et al. [11] found that rainfall erosivity in the source region of the Three
rivers showed an upward trend. For the abrupt change cases, the non-parametric Mann–
Kendall test was employed to test abrupt changes in rainfall erosivity [12,13]. Traditional
statistical methods such as the moving T/F test [14,15], the rank sum test [16], Bayesian
analysis [17], and the Pettitt test method [18] are regularly used for abrupt change detection.
Regarding the nonlinear and nonstationary rainfall erosivity, Lü et al. [19] used the heuristic
segmentation method in abrupt change detection.

In detecting the trends and abrupt changes in rainfall erosivity series, accurate detec-
tion is very essential to soil erosion prediction, sediment management, and conservation
planning. Although there are many methods for detecting temporal variations in rainfall
erosivity, as discussed above, each method has its advantages and weaknesses, and they
may not be able to reasonably identify the variations [20–22]. For example, the Bayesian
analysis method is applicable when the data follow the exponential family distribution [23].
Gocic and Trajkovic [24] reported that the Mann–Kendall test is not suitable for time series
with multiple abrupt changes. The parametric tests, such as moving T and F tests, would
result in unreliable results when the observed data do not meet the assumptions [25,26].
Non-parametric tests, such as the Kendall test [27] and Spearman test [28], are usually
proposed to detect trends but cannot quantify the statistical significance. Generally, the
application of a single method to describe the temporal variation is reasonably difficult to
identify, and results are highly influenced by the methods used [22]. Previous research stud-
ies have focused on spatial-temporal variation in rainfall erosivity, but few have studied
whether these changes really exist.

This paper proposes a framework using Hurst and correlation coefficients as indicators
to improve detection accuracy and perform significance grading. The proposed framework
is applied to analyze the variation of rainfall erosivity in the Three Gorges Reservoir, China.
The aim of this study is to (1) analyze the spatial distribution of annual precipitation/rainfall
erosivity in the TGR area and (2) provide a scientific basis for accurate analysis of rainfall
erosivity.

2. Methods
2.1. Methodological Framework

A detection framework is introduced to identify the temporal changes of rainfall
erosivity (in Figure 1). Firstly, as shown in Table 1, the Hurst coefficient (H) is used to
quantitatively characterize the long-term correlation of the time series [29,30], which is
evaluated for rainfall erosivity time series, and the significance levels of H value are graded
into three levels: None, medium, and high. Secondly, the abrupt changes and trends are
detected for variate series. The correlation coefficient method is employed to confirm the
effectiveness of the correlation coefficient index. The significance levels of abrupt changes
and trends of rainfall erosivity series are also divided into three ranks: None, medium, and
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high. Thirdly, according to the principle of the maximum correlation coefficient, the change
point or trend with the largest correlation coefficient is selected for its best interpretation
of the impacts of changes. Finally, we removed the variation component (change point or
trend) and larger correlation coefficients and substitute the modified series into steps one
to three until the correlation coefficient is not significant.
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Table 1. Hurst coefficient H of significance level classification for temporal variations in rainfall
erosivity time series.

Correlation Coefficient r(t) Hurst Coefficient H Significance Level

0 ≤ r(t) < r95% 0.5 ≤ H <0.673 None
r95% ≤ r(t) < r99% 0.673 ≤ H <0.717 Medium
r99% ≤ r(t) ≤ 1.0 0.717 ≤ H ≤ 1.0 High

2.2. The Correlation Coefficient Method for Trend Detection

In the trend detection procedure, supposing that the rainfall erosivity series
{Rt, t = 1, 2, · · ·, n} has a significant trend, the original series is given as follows:

Rt = a + bt + ηt (t = 1, 2, · · · , n) (1)

where a and b are parameters, ηt is the residual term, and R and t are the average values of
Rt and t. Then, the correlation coefficient rt between the rainfall erosivity series Rt and t is
estimated by:

rt =

n
∑

i=1

(
Ri − R

)(
t− t

)
n
∑

i=1

(
Ri − R

)2 n
∑

i=1

(
t− t

)2
(2)
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If the rt value is positive, it indicates that the R factor has an increasing trend and vice
versa. In this study, r values at 95% and 99% confidence levels are taken as the thresholds,
and the significance levels of trend changes are divided into three levels: None, medium,
and high (Table 2).

Table 2. Correlation coefficient r of significance level classification for trends in rainfall erosivity
time series.

Correlation Coefficient r Significance Level

0≤ |r| <r95% None trend
r95% ≤ |r| < r99% Medium trend
r99% ≤ |r| ≤ 1.0 High trend

2.3. The Correlation Coefficient Method for Abrupt Changes Detection

In order to obtain the correlation coefficient between the abrupt change component
and the original series Rt, we divided Rt into two parts, Ra and Rb, according to the position
of the change point τi, and the corresponding average values are given as follows:

Ra = (R1 + R2 + · · · Rτi)/τi (3)

Rb = (Rτi+1 + Rτi+2 + · · · Rn)/(n− τi) (4)

R = (R1 + R2 + · · · Rn)/n (5)

where Ra, Rb, and R are the average values of Ra, Rb, and Rt with the size of τi, n-τi, and n,
respectively. A new series Ct is generated as follows:

Ct =

{
Ra t = 1, 2, · · ·, τi
Rb t = τi + 1, τi + 2, · · ·, n

(6)

where Ct reflects the change point component in Rt. The average values of Ct are given as
follows:

C = (C1 + C2 + ...,+Cn)/n (7)

The correlation coefficient ri between Rt and Ct is given by [31]:

ri = ±

√√√√√√√√
(

n
∑

t=1
RtCt − nRC)

2

(
n
∑

t=1
R2

t − nR2
)(

n
∑

t=1
C2

t − nC2
)

(8)

Let τ1, τ2, · · ·, τm be the change points obtained by the selected methods, the correlation
coefficients of which are r1, r2, · · ·, rm, respectively. For the purpose of detecting abrupt
changes in rainfall erosivity, correlation coefficients r are calculated by Equation (8), and
we analyzed which significance levels (Table 3) they belonged to and chose the position τ
with the maximum correlation coefficient rmax as the jump-point.

Table 3. Coefficient r of significance level classification for abrupt changes in rainfall erosivity
time series.

Correlation Coefficient r Significance Level

0 ≤ |r| < r95% No abrupt change
r95% ≤ |r| < r99% Medium abrupt change
r99% ≤ |r| ≤ 1.0 High abrupt change

In this study, the moving T (MMT), Mann–Kendall (MKT), and Bayesian (BYS) tests are
selected for abrupt change detection. Spearman rank correlation coefficients and Kendall
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correlation tests are employed to detect trends. The correlation coefficient and Hurst
coefficient values at 95% and 99% confidence levels are taken as the thresholds.

3. Detection of Trends and Abrupt Changes in Rainfall Erosivity
3.1. Study Area and Data Source

The Three Gorges Reservoir (TGR) area is located between 106◦16′ E–111◦28′ E and
28◦56′ N–31◦44′ N and covers an area of approximately 5.8 × 104 km2 (Figure 2). This
region has a complex geomorphic type with elevation varying from 43 to 2724 m. Three
water levels, namely, a power generation and navigation level (November–February), irri-
gation and navigation level (March–May), and flood control level (June–September), could
be classified from winter to monsoon season [32]. The weather in TGR is a subtropical mon-
soonal climate, with average annual precipitation ranging from 1000 to 1800 mm. Purple
soil is the dominant type of soil, including rapidly weathered Jurassic rocks characterized
by high erosion. The land cover primarily consists of secondary vegetation and agricultural
fields [33].
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Daily precipitation data from 1961 to 2014 at 22 national meteorological stations
in/surrounding the TGR were gathered and are listed in Table 4. Eleven meteorological
stations were in the TGR area and eleven meteorological stations were surrounding the
TGR area for spatial interpolation of precipitation and rainfall erosivity, with the principle
that stations were from Hubei province or Chongqing city and the maximum distance
from the stations to the TGR area was not more than 80 km. All the selected data were
gathered from the National Meteorological Information Center of China and had been
through quality control, with the criteria that the missing data were less than 5% and both
normality and homogeneity of the data were testified. The 22 selected meteorological
stations had not lost data since the 1960s.
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Table 4. The information on the meteorological stations in/surrounding the TGR.

Station E P R Station E P R

Shapingba a 259.6 1056.9 5146.0 Hechuan b 231.2 1089.9 5454.3
Jiangjin a 256.3 986.6 4266.1 Jinfoushan b 1905.9 1021.7 4256.5
Fengdu a 290.4 1001.3 4200.5 Wanyuan b 674.0 1215.1 8758.5

Liangping a 454.5 1237.1 5783.6 Zhenping b 995.8 972.4 4157.9
Lichuan a 1074.1 1237.1 5783.6 Fangxian b 426.9 785.1 2728.9
Fengjie a 299.8 1069.9 5517.7 Jingzhou b 31.8 1026.3 5534.8
Jianshi a 609.2 1359.4 8331.9 Wufeng b 619.9 1300.6 7220.7
Badong a 334.0 1030.9 5121.3 Enshi b 457.1 1383.2 8067.7

Xingshan a 336.8 932.6 4075.6 Laifeng b 502.8 1286.4 6892.8
Zigui a 295.5 1038.7 4962.5 Qianjiang b 786.9 1138.3 5323.7

Yicang a 256.5 1086.4 5749.8 Youyang b 826.5 1298.2 6876.9
Mean a 406.1 1094.2 5358.1

Standard deviation a 234.1 123.1 1120.8

E is the elevation (m), P is the annual average precipitation (mm), R is the annual average rainfall erosivity
(MJ mm hm−2 h−2 a−1), a Stations in the TGR, b Stations surrounding the TGR.

3.2. Rainfall Erosivity Estimation Method

Rainfall erosivity was calculated for the 54-year daily rainfall data provided by 22 me-
teorological stations using the equation put out by Zhang et al. [34]. This equation was
derived from the model originally proposed by Richardson et al. [35]. This equation was
applied to the First National Water Conservancy Survey of China and worked well in
humid climate areas. The mean annual precipitation for all 11 stations in the TGR during
1961–2014 was 1128.44 mm. The model can be applied in the TGR area, and the equations
for the calculation are as follows:

Ri = λ
m

∑
j=1

(
Dj
)µ (9)

µ = 0.8363 +
18.144

Pd12
+

24.455
Py12

(10)

λ = 21.586µ−7.1891 (11)

where Ri is the rainfall erosivity of i-th half of the months in the year, MJ mm hm−2 h−1.
Dj is the erosive rainfall on day j, and the threshold value of erosive precipitation is larger
than 12 mm [36]. λ and µ are empirical parameters. Pd12 and Py12 are the mean values of
daily and annual rainfall (≥12 mm).

3.3. Variations in Precipitation and Erosivity

The mean annual precipitation for the 11 meteorological stations in the TGR was
1094.2 mm (Table 4). The maximum value was 1359.3 mm in Jianshi in the south-central
TGR, while the lowest value was 932.6 mm in Xingshan in the northeastern TGR. The
distribution of mean annual rainfall erosivity presented a pattern of low ends and a high
middle from the northeast to southwest TGR (Figure 3), and the maximum value was
found in Jianshi (8331.9 MJ mm hm−2 h−1 a−1) in the south-central TGR, followed by three
stations having values over 5700 MJ mm hm−2 h−1 a−1 (Liangping, Lichuan, and Yicang).
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The average value of the Hurst coefficient at all 11 stations in the TGR was 0.628 and
the standard deviation was 0.10. The spatial distribution of the Hurst coefficient is shown
in Figure 3b. According to the thresholds of the Hurst coefficient H, 63.6% of all 11
stations were categorized as having no variation in annual rainfall erosivity (H < 0.673).
Lichuan (H = 0.702) and Jianshi (H = 0.681) were classified as having weak variation
(0.673 ≤ H < 0.717). Strong variation (H ≥ 0.717) in annual rainfall erosivity was found in
Zigui (H = 0.786) and Fengjie (H = 0.721). A similar variation distribution was observed in
precipitation (Figure 3a). The H value of precipitation varied between 0.425 and 0.817 with
an average of 0.613. Nine stations (9/11, 81.8%) showed no variation, with two (Zigui and
Fengjie) statistically significant at the 99% confidence level. The median Hurst coefficient
of precipitation was 0.624 larger than the median H for rainfall erosivity (0.596). The data
distribution (the ‘cloud’), raw data (the ‘rain’), and box-plots for the H value of precipitation
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and rainfall erosivity are shown in Figure 4. A unimodal distribution was observed in the
H values of both precipitation and rainfall erosivity.
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3.4. Five Quintiles in Erosive Rainfall

In order to analyze the causes of changes in rainfall erosivity, all precipitation
(≥12 mm) in flood (May–September) and non-flood seasons (January–April, October–
December) for all 11 stations in the TGR were divided into quintiles, with five groups
(Q1: Zero to twenty percent, Q2: Twenty to forty percent, Q3: Forty to sixty percent, Q4:
Sixty to eighty percent, and Q5: Eighty to a hundred percent). According to the 24-h
precipitation classification criteria of the China Meteorological Administration, for the
flood season, all moderate precipitation (10–25 mm) was in Q1, Q2, and Q3, and all heavy
precipitation (25–50 mm) and torrential precipitation (50–100 mm) were in Q4 and Q5. For
the no-flood season, all the moderate precipitation (10–25 mm) was in Q1, Q2, Q3, and Q4,
and all the heavy precipitation (25–50 mm) and torrential precipitation (50–100 mm) were
in Q5 (Table 5).

Table 5. Median standard deviation of erosive rainfall for five quintiles, and the maximum values of
flood and no-flood seasons at Zuigui station.

Flood Season (mm) No-Flood Season (mm)

Statistics 20% 40% 60% 80% Max 20% 40% 60% 80% Max

Median of each criteria 15.1 19.2 25.3 41.0 192.3 13.5 15.7 19.2 24.9 93.3
Standard deviation of each criteria 0.2 0.5 1.1 2.7 34.6 0.4 0.5 0.9 0.8 16.5

The median values of five quintiles in erosive rainfall were similar at different stations
in the same season but varied widely from flood season to no-flood season. The median
H values of five quintiles in flood season ranged from 0.591 to 0.637, showing an order of
Q2 > Q1 > Q4 > Q5 > Q3 (Figure 5a). In addition, approximately 45% of all 11 stations
for Q1, 27% for Q2, 9% for Q3, 18% for Q4, and 27% for Q5 were categorized as having



Sustainability 2023, 15, 2062 9 of 15

significant variations in erosive rainfall (H ≥ 0.673). The H values of Q3 and Q4 showed
a unimodal distribution, and the distributions of the other quintiles were relatively flat.
During no-flood season, the median H value varied between 0.603 and 0.676, with an
average of 0.642. The median for Q1 was 1.01–1.12 times larger than the other quintiles.
The H values of Q5 and Q3 showed a unimodal distribution, and the distributions of the
other three quintiles were relatively flat (Figure 5b).
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3.5. Trends and Abrupt Changes Analysis for Zigui Station

According to the results of the Hurst test, the maximum value of H was 0.786 in Zigui
station (the head area of TGR), which was categorized as having a strong variation in
annual rainfall erosivity. Therefore, Zigui station was chosen to perform trends and change
points research for annual rainfall erosivity during the period of 1961-2014. The results
are presented in Table 6. Both the Spearman rank correlation coefficient and the Kendall
correlation test showed an upward trend in rainfall erosivity. The correlation coefficient
rt between the rainfall erosivity series and trend components was estimated by Equation
(2). rt (0.317) showed a weak significance level. MTT, MKT, and BYS found the same
upward change point in 1997. The correlation coefficient ra between rainfall erosivity series
and abrupt change components was estimated by Equation (8). The ra value was 0.470,
1.48 times larger than the correlation coefficient of trends. According to the principle of
the maximum correlation coefficient, the change point in 1997 was selected as the best
interpretation of the impacts of changes in the rainfall erosivity series. The mean value of
the annual rainfall erosivity series R(t) before and after 1997 were 4266.2 and 6478.1 MJ mm
hm−2 h−1 a−1, respectively (Figure 6). The expression of change point components C(t)
was generated as follows:

C(t) =
{

0 t ≤ 1997
2211.8 t > 1997

(12)
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Table 6. Abrupt change and trend detection for the annual rainfall erosivity series R(t) of Zuigui.

Time Series Detection of
Temporal Variations Methods Results Hurst/Correlation

Coefficient
Comprehensive

Results
Classification of

Temporal Variations

R(t)

Preliminary test Hurst coefficient + 0.785 + High

Trend change Spearman +
0.317 + Weak trend change

Kendall +

Abrupt change
Moving t test 1997 (+)

0.470 1997 (+) ↑ High abrupt changeMann-kendall 1997 (+)
Bayesian 1997 (+)

Note: + represent significance at 0.05 significant levels; ↑ represents abrupt change is the upward change point.
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Thus, the modified rainfall erosivity series Rm(t) was given as follows:

Rm(t) =
{

R(t) t ≤ 1997
R(t)− 2211.8 t > 1997

(13)

In order to find out all the variation components of the original series, we used the
proposed framework (Steps 2–4) to test change points and trends of the modified rainfall
erosivity series Rm(t). The results in Table 7 indicated that no significant trends in Rm(t) have
been detected. The correlation coefficient between Rm(t) and its abrupt change components
showed an order of MTT (0.228) = BYS (0.228) > MKT (0.091). Rm(t) did not exhibit a
significant change point. Hence, there were no trend changes in Zigui station during the
period 1961–2014, but an upward change point in 1997 was found.

Table 7. Temporal variation detection for the modified rainfall erosivity series.

Time Series Detection of
Temporal Variations Methods Results Hurst/Correlation

Coefficient
Comprehensive

Results
Classification of

Temporal Variations

Rm(t)

Trend change Spearman - - - Not significant
Kendall -

Abrupt change
Moving t test 1963 (−) 0.228

Not significantMann-kendall 1978 (−) 0.091 -
Bayesian 1963 (−) 0.228

Note: − represents no statistical significance.
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4. Discussion
4.1. Performance of the Detection Framework

Variations in the form of trends and abrupt changes are hard to distinguish in statistical
tests [37,38]. This study presented a four-step framework for detecting trends and abrupt
changes based on Hurst and correlation coefficients. The detection of trends and change
points suggested that the annual rainfall erosivity in Zigui has a weak increasing trend
and a strong upward change point (Table 6). This result was in agreement with previous
studies that rainfall erosivity increased in humid areas [11,39]. Generally, trend tests were
performed separately from abrupt change tests to assess the long-term variations in time
series [13]. However, after the upward change point was deducted from R(t), the resultant
Rm(t) showed no statistically significant trend (Table 7). Similar studies were reported by
Wang et al. [11] using the relative trend index (RT) and annual rainfall erosivity data in
Qingshuihe station in the SRTR during the period of 1961–2012, and no significant trends
were observed. Instead, when considering abrupt changes, an increasing trend was found
in Qingshuihe station for the latest period of 1993–2012, generating new explanations of
variations in rainfall erosivity. Interpretations of rainfall erosivity series are sensitive to
the selection of statistical methods or models. Thus, a clear distinction between trends
and abrupt changes is important to understand the physical causes or the variation in
rainfall erosivity. In addition, the abrupt changes detected in the Rm(t) series varied with
the methods. As shown in Table 7, both MTT and BYS found the same change point in
1963, while the change point obtained from MKT was in 1978. It is difficult to reasonably
identify the change points with a single-test method [22] (Xie et al., 2019). Through this
framework, the most reliable variation components can be extracted, which is an effective
method to reduce uncertainty.

4.2. Possible Causes for The Rainfall Erosivity Changes

Temporal characteristics in rainfall erosivity are directly affected by changes in erosive
rainfall events [40,41]. Yigzaw et al. [42] reported that a 4%−1 increase in extreme precipita-
tion was found after the dam construction. An increase in precipitation was also observed
in the TGR areas [19,43]. During the operation of the Three Gorges Dam, the waterway of
TGR reached 660 km, with a water area of 1084 km2. Significant changes in land use and
evaporation will lead to regional weather patterns change [44]. Hossain et al. [45] showed
that dam construction can improve the convective effective potential energy, which may
increase the chance of precipitation.

In addition, influenced by climate warming, the amount of precipitation and the
number of extreme precipitation events showed an increasing trend in most areas [1].
During 1959–2013, the amount of extreme precipitation (daily rainfall amount > 95th
percentile) in TGR increased by 6.48% per 1 ◦C [19]. Generally, precipitation intensity is
related to raindrop kinetic energy, which has a great influence on potential erosivity [46].
At Zigui station, which is near the TGD, a significant linear relationship between rainfall
erosivity and Q5 was found in both flood (R2 = 0.81) and no-flood (R2 = 0.67) seasons
(Figure 7). Therefore, the possible causes for the variation in rainfall erosivity are attributed
to an increase in rainfall intensity and duration.
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5. Conclusions

In this study, we proposed a detection framework for trends and abrupt changes in
rainfall erosivity based on Hurst and correlation coefficients. Firstly, the Hurst coefficient
was applied to detect the variations in rainfall erosivity at three ranks: None, medium, and
high. Secondly, the correlation coefficient between variations (trends or abrupt changes)
and the original series was estimated at three levels: None, medium, and high. Thirdly,
the variation component of the maximum correlation coefficient was removed to obtain a
modified series. Fourthly, we substituted the modified series into steps one to three until
the correlation coefficient was not significant. This framework was used to analyze the
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variation of rainfall erosivity in the Three Gorges Reservoir, China. Conclusions are drawn
as follows:

1. The distribution of average annual rainfall erosivity showed a pattern of low ends
and a high middle from the northeast to southwest TGR. The values of the Hurst
coefficient showed no significant variation in annual rainfall erosivity time series for
7 stations, 63.6% of all 11 stations in the TGR, with 2 stations (Lichuan and Jianshi)
having weak variation and 2 stations (Zigui and Fengjie) having strong variation.

2. An increasing trend and an upward change point in rainfall erosivity were observed
in Zigui using traditional methods. However, after the upward change point was
deducted from the annual rainfall erosivity series R(t), the resultant Rm(t) showed no
statistically significant trend. This finding revealed that trend tests were performed
separately from abrupt change tests to assess the long-term changes in rainfall erosivity
series, which may lead to the wrong conclusion. In addition, the abrupt changes
detected in the Rm(t) series varied with the methods.

3. At Zigui station, a significant linear relationship between rainfall erosivity and Q5
was found in both flood and no-flood seasons. The increase in heavy precipitation
with a high intensity and long duration led to variations in rainfall erosivity.

Further research should analyze the impact of extreme rainfall events on erosion, and
more research should aim for the quantitative description and classification of the changes
in rainfall erosivity, especially the impact of hydrological periodical fluctuation.
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P.; et al. Rainfall erosivity in Europe. Sci. Total. Environ. 2015, 511, 801–814. [CrossRef] [PubMed]
41. Shin, J.-Y.; Kim, T.; Heo, J.-H.; Lee, J.-H. Spatial and temporal variations in rainfall erosivity and erosivity density in South Korea.

Catena 2019, 176, 125–144. [CrossRef]

http://doi.org/10.1016/j.catena.2016.07.006
http://doi.org/10.1002/hyp.11087
http://doi.org/10.1029/2010JD014966
http://doi.org/10.1007/s11269-014-0760-6
http://doi.org/10.1061/(ASCE)HE.1943-5584.0002075
http://doi.org/10.1002/hyp.8206
http://doi.org/10.3390/atmos9010024
http://doi.org/10.1016/j.jhydrol.2014.04.036
http://doi.org/10.1038/nature18645
http://doi.org/10.1016/j.jhydrol.2019.123973
http://doi.org/10.1016/j.jhydrol.2016.03.065
http://doi.org/10.1016/j.gloplacha.2012.10.014
http://doi.org/10.1198/0003130031441
http://doi.org/10.1061/TACEAT.0006518
http://doi.org/10.1016/j.scitotenv.2019.02.036
http://www.ncbi.nlm.nih.gov/pubmed/30769308
http://doi.org/10.1890/1540-9295(2004)002[0241:TTGDAE]2.0.CO;2
http://doi.org/10.13031/2013.33893
http://doi.org/10.13031/2013.11435
http://doi.org/10.1623/hysj.49.1.99.53998
http://doi.org/10.1016/j.agwat.2020.106557
http://doi.org/10.1016/j.scitotenv.2015.01.008
http://www.ncbi.nlm.nih.gov/pubmed/25622150
http://doi.org/10.1016/j.catena.2019.01.005


Sustainability 2023, 15, 2062 15 of 15

42. Yigzaw, W.; Hossain, F.; Kalyanapu, A. Impact of Artificial Reservoir Size and Land Use/Land Cover Patterns on Probable
Maximum Precipitation and Flood: Case of Folsom Dam on the American River. J. Hydrol. Eng. 2013, 18, 1180–1190. [CrossRef]

43. Wu, L.; Zhang, Q.; Jiang, Z. Three Gorges Dam affects regional precipitation. Geophys. Res. Lett. 2006, 331, 338–345. [CrossRef]
44. Niyogi, D.; Kishtawal, C.; Tripathi, S.; Govindaraju, R. Observational evidence that agricultural intensification and land use

change may be reducing the Indian summer monsoon rainfall. Water Resour. Res. 2010, 46, 91–103. [CrossRef]
45. Hossain, F.; Jeyachandran, I.; Pielke, R. Have Large Dams Altered Extreme Precipitation Patterns? Eos 2009, 90, 453–454.

[CrossRef]
46. Ziadat, F.M.; Taimeh, A.Y. Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid

environment. Land Degrad. Develop. 2013, 24, 582–590. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1061/(ASCE)HE.1943-5584.0000722
http://doi.org/10.1029/2006GL026780
http://doi.org/10.1029/2008WR007082
http://doi.org/10.1029/2009EO480001
http://doi.org/10.1002/ldr.2239

	Introduction 
	Methods 
	Methodological Framework 
	The Correlation Coefficient Method for Trend Detection 
	The Correlation Coefficient Method for Abrupt Changes Detection 

	Detection of Trends and Abrupt Changes in Rainfall Erosivity 
	Study Area and Data Source 
	Rainfall Erosivity Estimation Method 
	Variations in Precipitation and Erosivity 
	Five Quintiles in Erosive Rainfall 
	Trends and Abrupt Changes Analysis for Zigui Station 

	Discussion 
	Performance of the Detection Framework 
	Possible Causes for The Rainfall Erosivity Changes 

	Conclusions 
	References

