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Abstract: Socio-ecological dynamics affect the ecosystem services supply and are relevant to generate
effective water management strategies; this condition is considered to evaluate under a holistic
approach, the water ecosystem services (WES) in an Andean supply basin (ASB) in Colombia. This
analysis focus on the connection of biophysical and sociocultural components for the multi-purpose
use of water based on The Soil and Water Assessment Tool (SWAT) modelling for Las Piedras River
Basin (LPRB). The generated Hydrological Response Units (HRUs), allows to estimate the capacity
of the basin for supplying water (quantity) in adequate conditions (quality) for local populations in
rural and urban areas, as well as WES zoning. The model was calibrated and validated to generate a
baseline scenario, which was complemented with social cartography and participative workshops.
The results indicate a low concentration of nitrogen and phosphorus, boosted by specific agro-
ecological strategies developed by local communities; however, there are health risks for populations
downstream and those that are supplied with water directly from the source. Additionally, Land
Use and Land Cover (LULC) affects water availability, which demands restoration and conservation
strategies to maintain WES supply for socioeconomic and cultural purposes, since different views on
the available WES converge in the basin.

Keywords: ecosystem services supply; planning tool; water pollution; water supply; socioecological
conflicts

1. Introduction

The use and ownership of natural resources to meet human needs and reach social
wellbeing are concentrated in basins, which guarantee access to water as the enabling
component for life, settlements, and economic-productive activities, such as agriculture.
However, the interaction between LULC dynamics with climate variability influence the
basin’s capacity to supply continuous water in adequate quality for urban and rural com-
munities. This transformation is relevant due to the socioecological conflicts that emerge
when inequality and inequity for the availability of water (for drinking and household),
widen the socio-economic gap, making water management strategies unpredictable and
difficult to control.

In the Andean basins, this transformation comes mainly from productive activities
that respond to raw materials’ demand based on an economic growth model (capitalism),
with known environmental liabilities. In the case of Colombia, livestock and agriculture
are concentrated in Andean regions (Cauca and Magdalena basins), which in turn support
more than 77% of the national population trough water supply and food production [1–4].

In the Upper Cauca River Basin (UCRB) in the Department of Cauca, the agriculture
is characterized by small and medium scale crops, that extend toward the páramo (An-
dean moorland), affecting water sources, native vegetation, and soils, whose effects are
intensified due to the uncertainty of climate change and local climate variability [5–8].
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Agriculture practices in the UCRB includes deforestation, slash, burn, and the overuse
of agrochemical inputs, that affects WES supply, limiting the water availability for local
communities [9–11]. These conditions are represented in LPRB, a water supply basin in the
southwest of Colombia, which provides multipurpose water for rural communities and
drinking water for urban areas where socioecological conflicts around water management
are presented.

These affectations to WES supply are related to productive activities, local climate vari-
ability and water demands, which have been studied from the biophysical and hydrological
valuation approach independently, making analyses to estimate the effects on water supply,
runoff dynamics, baseflow, flood events and peak discharges in basins, trough the LULC
changes and water quality analysis, but not considering its socioecological integration for
management and planning purposes [12,13], as is focused in this research.

Under these approaches, the main tools for analyzing WES are models that simu-
late the hydrological regulation dynamics based on LULC patterns, for this purpose the
SWAT model has been worldwide used for assessing hydrological dynamics [14,15], to
analyze freshwater supply and base flow conditions focused on the HRUs as well as the
identification and zoning of WES based on hydrological response scenarios [16]. SWAT
is also used for studying erosion processes [17], pollution by nutrients [18], basins man-
agement strategies [19,20], the monitoring of converting intensive agricultural practices to
sustainable practices [21], or in the implementation of payment schemes for environmental
services [22].

However, in Colombia, studies that include an integral analysis from a socioecological
approach of WES with the SWAT model are not widely used, limiting the opportunities to
generate planning tools for local governments.

One of these studies analyzed the climate change, LULC dynamics, and its effects on
water yield and carbon sequestration in two Andean watersheds [23]; other research as-
sessed the impacts of changing intensive tillage (IT) for conservation tillage (CT) in a potato
crop. A study of the sediment yield, surface runoff and nutrient (nitrogen, phosphorus)
losses in surface water runoff [24] was also used to evaluate the water yield in an Andean
basin, where the SWAT model was used under different LULC and climate scenarios for
water management [19], and in addition to evaluate the impact of LULC on the availability
of water resources in conservation areas [25].

Although there are studies for SWAT model implementation at different scales in the
country, just a few are developed in the ASB and less in the UPCR, where zoning of WES
based on the hydrological dynamics, the relation with productive activities and climate
variability are relevant, due to the socioecological dynamics that conditions the water
supply for rural communities, increasing their vulnerability.

In this context, this study objective is to produce knowledge of ecosystem services
based on hydrological dynamics in ASB, the socioecological conflicts related to WES supply,
and the identification of zones for water management, using an integral methodology
where participatory workshops and social cartography complements and validate the
results of SWAT modeling.

The paper is organized as follows: First, we present an overview of the hydrological
model and its application, the dataset and study area, the collection and processing of
information. Second, we present the proposed tool for ecosystem services mapping in
Andean basins, the results and analysis of applying the tool, and finally, we draw the
corresponding conclusions and future developments.

2. Study Area

Las Piedras River basin (LPRB) is located within the municipalities of Popayán and
Totoró in the UPCR in southwest of Colombia. It is at 76◦31′10” E and 2◦21′45” N. The basin
is composed by two corregimientos (townships): Quintana and Las Piedras, where small
peasants and indigenous communities (Puracé and Quintana councils) are located [26].
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Figure 1 shows the study area, the river network, the weather stations, and land cover in
the basin.
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Figure 1. Study area, Las Piedras river basin (LPRB), Cauca, Colombia. In the figure the black
framework corresponds to San Andres Island in the Colombian territory and the red framework
extend indicator for department of Cauca.

3. Materials and Methods

The study was developed using the Method for Ecosystem Services Mapping (MESM)
described in Figure 2. A proposed methodology based on mixed methods research which
included (i) implementation of the SWAT hydrological model, based on updated carto-
graphic inputs (ii) evaluation of ecosystem services (ES) supply complemented with social
cartography to locate WES, and the (iii) analysis of ES distribution, to understand the
socio-ecological conflicts that limit the availability of WES for the LPR communities.
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3.1. Implementation of the SWAT Model

SWAT is a dynamic and continuous model based on mathematical descriptions of
physical, hydro-chemical, and bio-geo-chemical processes that combines elements of phys-
ical conditions and vegetation growth processes trough spatial disaggregation or HRUs.
This model was developed by the Blackland Research Center in Texas in 1999 for the United
States Department of Agriculture (USDA) [27]. SWAT models the basin and its dynamics
based on different scenarios, using a semi-distributed deterministic model. It is useful for
planning purposes due to the connection of different components of the territory, such as
LULC, reforestation activities, population centers and catchment. The model is based on
the water balance equation (shown in Equation (1)) to determine the input, output, and
storage flows of water in the basin, as well as its hydric response.

SWt = SW0 + ∑ Rday −Qsur f − Ea −Wseep −Qgw (1)

where SWt is the final soil water content (mm); SW0 is the moisture content in one day
i (mm); t is the time (days); Rday is the daily precipitation of day i (mm); Qsur f is the
surface run-off produced of day i (mm); Ea is the evaporation of day i (mm); Wseep is the
content entering the vadose zone of the soil during day i (mm); Qgw is the flow produced
or returned of day i (mm).

The database was created according to the objective of the study and the specific
inputs requirements of SWAT model:

3.1.1. Inputs

• Digital elevation model (DEM): for topography, the study used a DEM with 12.5 m
accuracy (cell size 12.5 × 12.5), obtained from the Alaska Satellite Facility website; the
LPRB has an altitudinal gradient from 1980 to 3820 m.a.s.l.

• Land use map: the map contains information of the areas and landcover types present
in LPRB. It was generated for April 2017 (low percentage of clouds) using images
of the Sentinel 2A satellite platform, with 10 m precision, considering the Corine
Land Cover methodology, adapted in Colombia and the algorithm developed by WP4
RICCLISA [28], identifying 14 landcover types from levels 1, 2, and 3. Field visits and
key stakeholders’ workshops validated this information (social cartography).

• Weather database: the database was generated from information available of daily
precipitation data from nearby weather stations, for the period from 1 January 1999
to 31 December 2017. The statistical weather data required by the SWAT model are
the multi-annual averages of maximum and minimum temperature and precipitation,
standard deviation for each month, bias coefficient for daily precipitation, number of
days of precipitation, probabilities of a humid day after a dry-humid day. These were
calculated through the mathematical expressions suggested in the SWAT manual [27].

• Soil type map: contains information of the physical and chemical properties of the
LPRB (scale 1:25.000), obtained from information on the study of soils by the planning
and management document for LPRB [29].

3.1.2. Model Set Up

• Delineating the basin and sub-basins: The flow direction and the accumulation of water
within the sub-basins was simulated with the inputs: DEM, mask of the study area,
and the river network, as well as the definition of slope’s range and the maximum and
minimum elevations. Outlets were selected considering the main drains of the LPRB.

• Creation and definition of the hydrologic response units (HRUs): The HRUs map was
based on the superposition of the shapefiles soil types (22 units), land use (12 types),
and the specific slopes range (four ranges). From this output, a minimum percentage
of aggregation was chosen by expert criteria, considering representative land use,
soils, and slopes of the zone, allowing the prioritization of the HRUs, using 1% for
LULC, 6% as minimum value for types of soils, and 10% for range of slope, with the
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lowest loss of information over an area of the basin and the best distribution in the
sub-basins [27].

• Weather generator and tables of meteorological data: Information was included based
on the weather station identifiers and location of Arrayanales (ARR) and Diviso (DIV)
stations daily precipitation database (mm) and its statistical data. Due to the lack of
information in the study area, SWAT model was used to simulate and complete input
values of solar radiation, relative humidity, and wind speed.

3.1.3. Calibration and Validation

The calibration of SWAT model for LPRB, was carried out through the SWAT—CUP
(SWAT Calibration and Uncertainty Procedures) software with the SUFI2 algorithm [30],
which operates through trial and error by randomly changing the values of parameters of
interest, such as initial SCS CN II value (Cn2), base flow alpha factor (Alpha_Bf), Ground-
water delay (Gw delay), threshold water depth in the shallow aquifer for flow (GWQMN),
average slope steepness (slope), saturated hydraulic conductivity (Sol_K), among others.
This is done until obtained a reasonable coincidence (R2 ≥ 0.6) between the simulation and
the values observed.

The model was calibrated and validated with the daily precipitation data (1999–2017)
from ARR and DIV weather stations and the monthly streamflow data (1999–2009) from the
Puente Carretera (PCA) limnimetric station. Four iterations of 200 simulations each one was
carried out, changing the parameters included in the SUFI2. The validation used registries
of streamflow (2015–2016), with an iteration of 200 simulations. With the participative
workshops and social cartography described in Section 3.2, we contrasted and validated
the results from the SWAT model with social perception of the LPRB map.

3.2. Evaluation of the Ecosystem Services Supply

The evaluation of the ES supply was developed under a participative approach with
experts and communities, through workshops, social cartography and field visits as estab-
lished in the proposed MESM, to validate the hydrological modelling, prioritize the HRUs,
proposed a joint definition of the concept of ecosystem services, their categories and for
zoning each one of them under the land cover/slope combination.

3.2.1. Identification of WES

The WES identification was based on the hydrological conditions of the LPRB modelled
with SWAT, with the resulting water-soil-climate-use-slope interaction for the 1999–2017
period, which is represented in the HRUs distribution map.

The SWAT outputs allow the analysis of (i) the water production as the water recharge
(WYLD) and soil water availability (SW), potential and real evapotranspiration (ET-ETP),
and surface runoff (SURQ). Additionally, (ii) for the estimation of water pollution, trough
the variables of sediments yield and transport (SED YIELD), nitrates on surface runoff
(NO3-SURQ) and organic phosphorus (ORGP)

From this, it is feasibly to group SWAT outputs by taking the sub-basin as the unit, to
identify the water importance ones, due to the regulating function supported by natural
land covers, and those in which is necessary to implement sustainable practices and soil
management, considering the productive land covers.

3.2.2. Prioritized Ecosystem Services for LPRB

The HRUs were prioritized with experts and community’s stakeholders participative
workshops according to (i) dominant land cover, assigning importance values for hydro-
logic regulation from 1 to 5, the most important with one (1) score for natural coverages and
the least important in regulation with five (5) score, for anthropic coverages; (ii) the slopes
with greatest susceptibility to erosion processes [31] were assigned scores corresponding to
the value of three (3) for the 0–25% range, a score of two (2) for the 25–75% range, and one
(1) for the critical zones (75%).
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3.2.3. Social Cartography

Social cartography is a participatory method that combines digital tools with qualita-
tive methods to generate maps that represent the components, relationship and dynamics
in specifics landscapes [32], in this case, we conducted workshops with communities of the
upper, middle, and lower zones of the LPRB, to carried out four stages: (i) The first stage
was to produced hand-drawn maps under the community perception to locate the main
stream, tributaries, natural forest, crop production areas and pastures for livestock. These
maps were then compared and complemented by the stakeholders with a press LULC map,
this allowed us to validate the LULC map used as input for the SWAT model; (ii) the second
stage was to create a jointly definition of ES and the corresponding categories of regulating,
cultural and provisioning, then to list ES by each category; (iii) the third stage, was the
location of each identified ES in the hand-drawn map using words, colors, pictures, or any
other symbol to create the legend of the map; and in (iv) the fourth stage, the digitalization
of this inputs into the HRUs map to generate the WES zoning.

3.3. Analysis of Ecosystem Services Distribution
Socioecological Conflicts

The water conflicts for local communities were analyzed trough the stakeholders
(institutions and communities) perspectives of the water supply dynamics in LPRB, this
was carried within a workshop to discuss about the different uses and views that each one
of the stakeholders have respect to the LPRB as well as the action or strategy developed for
its water management, this discussion was based on the results of SWAT model, the LUCL
dynamics and WES zoning. The guiding questions for conducting the discussion about
the use was: What do you use water for on your farm/home? For analyzing the views we
ask the question: What does the LPRB represent for you, your family and/or community?
For actions implemented the question was: What individual or community actions are
developed to conserve water? Each question was discussed in focus groups of institutional,
small peasants’ and indigenous communities’ representatives; the final output was a single
statement that represents the collective thought.

4. Results
4.1. Implementation of the SWAT Model

This section presents the updated cartographic outputs for LPRB, as a result of the
SWAT modelling, such as the total area of the basin, the tributaries, the calibration parame-
ters, and the hydrograph.

4.2. Updated Outputs of the SWAT Modelling of LPRB

The LPRB delimitation was updated with a total area of 6606.27 ha, approximately
20 ha less than the one reported by [26], due to the precision of the DEM used in the study,
from 30 m to 12.5 m. Based on this, 18 sub-basins were identified in the LPRB, compared to
13 reported by [33], regarding to this, the Robles sub-basin is included (6), the Santa Teresa
sub-basin is divided into Santa Teresa (2), Las Pavas (3) and Santa Teresa II (4), the Aguas
Claras sub-basin is divided into Aguas Claras (13), La Cabaña (14) and San Pedro (15) And
the Buena Vista sub-basin is divided into the El Cedro (17), Peñas Blancas (18) and Piedra
Negra (16), as shown in Figure 3 for details and comparisons.
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4.3. SWAT Calibration and Validation

The values of the determination coefficient were R2 = 0.99 for ARR and R2 = 1 for DIV.
Water quality data were not considered in the calibration because these do not comple-
ment the minimum historical data, however, satisfactory calibration was obtained with
R2 = 0.614 [34] for monthly streamflow data (Figure 4), Table 1 shows the calibrated values
for the parameters of interest.
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Table 1. Calibration parameters of the SWAT model for LPRB.

ID Parameter Description Process Initial Range Calibrated Value

1 GWQMN (Threshold water depth
in the shallow aquifer for flow)

Threshold of
water depth Base flow 550–1000 862.96

2 Alpha-Bf (Base flow alpha factor) Base flow factor Base flow 0–1 0.5

3 Gw-Delay (Groundwater delay) Storage of groundwater Base flow 0–50 26.86

4 Cn2 (Initial SCS CN II value) Run-off 35–98 45.63
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4.4. Evaluation of the ES Supply

This section presents the identification of WES as result of the hydrological modelling,
which stablishes the baseline conditions for water supply in LPRB, the identification and
the prioritization of WES according to the stakeholders’ perspectives and the zoning of
WES under the communities’ views.

4.5. Identification of WES

A 607 HRUs map of the LPRB was prioritized (from an initial 1687 HRU map) by a
minimum percentage of aggregation considering representative land use, soils, and slopes
of the zone, covering 100% of the basin modeled with the best distribution in the 18 sub-
basins [27], from this output. The actual condition of the LPRB was modelled made at
sub-basins level; the results are shown in Figure 5.
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The water production in the LPRB, i.e., is represented by the amount of water gener-
ated in each sub-basin reaching the streamflow, Figure 5a,b, shows the offer of WES by the
parameters WYLD and SW, corresponding to water balance in the land phase [35,36]. Thus,
it was possible to identify the sub-basins with the highest water contribution (WYLD), cor-
responding to areas with prevalence of high slopes (≥75%) and natural land cover (dense
forest, páramo, and shrub (Figure 1) such as the sub-basins 17 (856.92 mm), 3 (664.13 mm),
10 (818.56 mm), 16 (808.83 mm), 12 (798.89 mm), and 14 (740.54 mm).

The green color identifies the sub-basins with the lowest water recharge, which are
areas with crops and grasslands (clean and degraded), in the 4, 2, 8, 6, and 1 sub-basins.
The amount of water stored in the soil (SW) for plants, increases toward lower zones,
especially in sub-basin 2 (748.13 mm), 8 (803.49 mm) and 6 (872.06 mm), corresponding
to productive areas. The water losses from soil surface in the LPRB, were analyzed under
weather conditions simulated with the Penman–Monteith method (1999–2017), for the
ET and ETP. Natural covers of the upper area had high values of ETP in sub-basin 3
(3500 mm), 15 (3497 mm) and 18 (3473 mm) while crops and pastures of the lower area
presented high values of ET in sub-basins 2 (947.69 mm), 8 (942.95 mm), 6 (936.52 mm)
and 9 (827.63 mm). The water consumption by forests is greater than in other vegetation
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types due to the depth of roots, height, and foliage. Water is retained and stored in the soil-
vegetation interphase and regulates source recharge processes, while zones with higher ET
are susceptible to drought due to poor retention and regulation of soil water [37]. In these
dynamics, weather conditions, productive and management practices are determinant for
hydrological regulation, in the case of the LPRB, the areas with dominant agricultural and
fish farming activities are sub-basins with high ET values.

With respect to water quality, in the LPRB, the SED YIELD parameter shown in
Figure 5c resembles the nutrient loss response, where the sub-basins 2 (0.88 ton/ha), 8
(0.913 ton/ha) and 1 (0.49 ton/ha) presented higher accumulation of contaminants in the
soil (in brown) from agro-chemicals of the potato’s crops.

According to the NO3-SURQ parameter, the largest yields were presented in sub-
basins 8 (1.11 kg/ha), 2 (1.06 kg/ha), 4 (0.98 kg/ha) and 1 (0.81 kg/ha), related to the use of
agro-chemicals for crops and livestock production Figure 5d. The sub-basins 1 (0.81 kg/ha),
9 (0.79 kg/ha), 13 (0.44 kg/ha), and 14 (0.32 kg/ha), had lower crop production because
these are conservation areas with fragile ecosystems and low-fertility soils. The results
showed a similar behavior for phosphorous and nitrogen, the largest producers of ORGP
were the 1 (1.57 kg/ha), 2 (3.41 kg/ha), 8 (3.94 kg/ha) and 11 (1.40 kg/ha) sub-basins,
related to the larger monocrop and livestock production zones. The distribution of this
nutrient is key in management processes because it comes from both organic (ash, manure)
and chemical (commercial) sources, and is enhanced in scenarios of excessive fertilization
combined with soil compaction caused by cattle trampling.

4.6. Prioritized Ecosystem Services for LPRB

The joint definition of ES established by local communities of the LPRB is as follows:
“Ecosystem services are what nature provides to people, it results from interaction with human
beings, where man receives benefits”. To understand the specific categories of ES, communities
in LPR established that regulating ES represents: “Equilibrium in the biological processes of
ecosystems”; the cultural ES are: “Goods and materials that contribute to inner wealth”; and
finally, the provisioning ES refer to: “What nature gives us”. The specific WES identified and
classified by the upper, middle, and lower zone of the LPR, are presented in Table 2.

Table 2. Prioritized ecosystem services for LPRB.

ES
CATEGORY

PRIORITIZED ES
Upper Middle Lower

Provisioning

� Food sovereignty
� Water availability for the

communities

� Water quantity
� Water quality

� Productivity availability of timber
resources

� Good quality water

Regulating

� Air regulation
� Climate regulation
� Hydrological regulation

� Oxygen availability
� Biological control
� Climate regulation

� Soil nutrient cycling
� Pollination
� Oxygen availability

Cultural

� Sacred sites
� Maintenance of oral tradition
� Knowledge of the territory

� Traditional
knowledge

� Maintenance of oral
tradition.

� Field schools
� Ecotourism areas
� Traditional knowledge of the

territory
� Network of civil society reserves

for conservation

4.7. Social Cartography

According to the WES map (Figure 6) the upper zone of the LPRB was related mainly
with regulation and cultural ES, associated with zones of natural regulating coverages that
are identified as sacred or pilgrimage sites like the Puzná Mountain. The middle zone had
an important supply of cultural ES related with property appraisals and the ecotourism
potential, because of their strategic location toward zones with high slopes, conservation,
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and areas of environmental protection. The lower zone represented the availability of
provisioning ES, associated in this case with grazing and crop areas.
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The ES analysis evidenced the community relationships with their territory trough a
deep connection with the LPRB “the water connects us”, where the provider and beneficiary
stakeholders’ dynamics, as well as the productive activities developed, condition the
opportunities to sustainable socioecological transition processes.

The ES approach has been incorporated into the management strategies of some local
entities, such as the ES payments in farmers with water recharge areas, which includes a
property tax discount by the municipal administration (Agreement 30/2012) and environ-
mental educational processes. These sorts of payments are applicable to rural properties
located in areas with hydrological importance for the water intake of the municipal water
service, that has been recognized by the environmental authority. This management strat-
egy is included in the planning and environmental conservation processes of the municipal
aqueduct enterprise. From local communities’ leadership, an important strategy for conser-
vation is the creation of civil society’s nature reserves (a formal protection figure recognized
by Colombian environmental ministry) and the natural reserves that still are not recognized
by local government, which in turn, constitutes important places for ecotourism routes.

4.8. Sociecological Conflicts

The production areas established in the riparian buffer zone (Figure 6), represent
an important source of trade-offs between ES, such as food supply, the regulation of
water quality, barriers of sediments, and nutrients from hillside areas, where livestock has
established. Additionally, these crops have strong exposure to the effects of prolonged
periods of rainfall, LPRB communities indicated that drought effect is exacerbate by the
soils’ low fertility and steep slopes, causing socioeconomic affectation to the families, that
depends entirely on the agriculture and livestock.

These productive activities on the riparian and hillside area were relevant in the
sub-basins of the upper zone of the LPRB, such as sub-basins 2, 5, and 8, with extended
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potato, bean, and corn crop areas, which are produced under conventional schemes with
agrochemical inputs, logging, and burning practices. Although the main production activity
in the LPRB is livestock, conventional agriculture practices and fish farming are important
sources of pollution, as the SWAT model reveals with respect to the areas with this type of
activities. Thus, these production processes limit the supply of WES, due to affectations on
water quality and quantity.

From the stakeholder’s analysis, it was possible to identify the key points of diver-
gences and convergences with respect to their views of the LPRB, as well as the manage-
ment actions taken by each one of them under these views. That is, the institutional actors
consider the LPRB as a water production space for drinking water; for small peasants,
it represents the territory for productive activities and multipurpose water supply that
supports their socioeconomic needs, and for indigenous communities, it is the space for
silvopastoral systems and multipurpose water supply, where community coexist with
nature in an ancient right where the territorial expansion is needed. Due to these different
views of the LPRB, and despite the peace and convivence agreement signed between local
communities, it has been difficult to articulate the water management strategies; some of
them are presented in Figure 7.
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5. Discussion

One of the most important contributions of this study is the possibility of performing
WES supply analysis in watersheds of water importance, such as those of the Andean zone,
which do not have detailed or historical inputs for the implementation of hydrological
models. The MESM offers a methodological integration that draws on the strengths of
quantitative and qualitative methods.

5.1. Implementation of the SWAT Model

The resolution of the DEM (12.5 m) improves the landscape shapes, making the
delimitation of the LPRB contour more precise with an area approximately 20 ha less than
reported in previous studies [26,33,38], as well as the identification of the 18 sub-basins, six
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(6) more than reported by [38] and seven (7) more than reported by [33]; additionally, we
confirm that sub-basin 6 is included in the LPRB area, as reported by [33].

For calibration, the monthly values streamflow observed and the best estimated shown
in Figure 4; corresponds to January 1999 and December 2010 (R2 = 0.614), The most distant
values are because the simulation was made without taking into account the macro-scale
weather conditions, as the Southern Oscillation (ENSO) with the warming phase or Niño
and the cold phase or Niña, due to the missing historical data; in the region the ENSO was
presented during five years (1999, 2000, 2007, 2008, 2011). This caused an underestimation
in the simulated streamflow, so it is relevant to mention that the availability of climate data
with a minimum historical record of 15 years is important to improve the calibration of
the model and to compensate for the lack of climate information [34]. The SWAT model
validation was complemented with social cartography and participatory workshops; this
allows to improve the LULC map, one of the most important inputs for SWAT, as well as
providing a space for knowledge dialogue with stakeholders.

Through the HRUs map, is possible to identify that the largest extension of HRUs
corresponds to anthropized cover (grassland) related to livestock, the main productive
activity in the LPRB [33]. The natural regulating land covers, such as dense forest, is low
(11.55% of the sub-basin area), located in the higher zones, where agricultural and livestock
is limited by the conditions of the terrain with pronounced slopes and hillside areas, this
corresponds to conservation areas isolated by stakeholders The natural pasture cover of the
entire LPRB, is an area of socioeconomic interest because it is a potential area for expanding
urban and productive activities.

5.2. Evaluation of the ES Supply

The WES related to water quantity, represented by the parameters WYLD and SW,
indicate that the sub-basins with the higher water supply (WYLD) are located towards
the upper areas, where there is less presence of productive activities, the sub-basins with
the greatest amount of water stored in the soil (SW) are located in areas with soils with
moderate agrological capacity, where medium-scale productive practices are developed.
The ET is higher in the sub-basins of the middle and lower zones, due to the cultivated
areas, while in the upper zone, the ETP is higher due to the evaporation processes of rainfall
intercepted by the canopy and tree transpiration of the paramo [37].

The sub-basins that contribute the greatest concentrations of nutrients and sediments
are Limonal (8), Santa Teresa (2), Santa Teresa II (4), and Las Piedras (1); these areas have
productive activities, but soils have moderate to low fertility and agrological capacity,
which demands the implementation of sustainable production systems, especially in upper
sub-basins 2 and 4.

To estimate the dynamics of the WES related to quality, we analyze the N and P
cycle associated with production practices in the sub-basin which are low, since the use
of agrochemicals is not generalized and there are transitions towards the use of organic
agro-inputs; however, this condition is not common to the supply sources of the department
of Cauca or the Andean zone [10,17]. Although the values calculated are low with respect
to the whole basin area, these processes are directly related with the water quality changes
of the source basin for the municipal water service, affecting the potabilization processes
required for urban users, increasing fees, continuity, and quality of the water supply [19,23].

In this sense, the supply of WES is related to the needs of the communities in the
availability of water and food for the LPRB inhabitants and for human consumption in
urban areas, but in both cases, there are health risks for populations, on the one hand
by drinking water directly from the source and on the other hand by the potabilization
requirements. From the socioecological view of the LPRB, we identify problems with access
to water for LPRB inhabitants, by quantity (high and medium zones) and quality (low zone)
and although the agricultural production is in the process of converting to sustainable
practices, the fertility limitations that characterize the LPRB soils must be overcome, and
the commercialization channels must be improved.
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5.3. Analysis of ES Distribution

Community groups of the LPRB evidence their differences through the prioritization
of cultural ES; in the upper zone (mainly indigenous communities) we identify ES related
to knowledge of the territory and the collective cultural heritage. In the lower zone,
organizational and associative activities of the small farmers communities prevailed, and in
the middle zone, we find a transition between the two indigenous-small peasants’ visions,
by prioritizing aspects that give greater “value” to their lands in the sense of environmental
importance with ecotourism areas [13].

Because of this, it is necessary to strengthen the social network through the articula-
tion of community and institutional stakeholders. To generate synergies for conducting
planning and management processes, such actions must be accompanied by strategies for
improving socioeconomic conditions of the local inhabitants, where their broad knowledge
and environmental sense could be included in community-based productive alternatives
that allow WES supply and better-quality life.

6. Conclusions

In this paper, we present an integrated analysis of the supply of water ecosystem
services in a strategic Andean water supply basin in Colombia. The results show the
high susceptibility to hydric erosion due to changes in texture and structure of the soils
in the LPRB, which is the result of continuous implementation of agricultural activities
with inadequate technologies. This condition affects the availability of nutrients, generates
loss of soil fertility, and increases run-off rates, related, in turn, with dynamics in nutrient
concentration and alteration of the pH in water from the stream. Additionally, the middle
and lower zones of the LPRB are in drought risk due to the poor retention and regulation
of water in the soil, as indicated by high ET values associated with crop areas.

According to the SWAT model, we identify the sub-basins that demand restoration
and conservation actions, because of their hydrological importance: Las Pavas (3), Pichagua
(10), and San Pedro (15), as well as the sub-basins where it is necessary to strengthen
the processes of soil management as they represent areas with a predominant anthropic
land cover, Santa Teresa (2), Limonal (8), and Cedro (17), and productive activities for
sustain local communities. Additionally, the sediment production and transport in the
LPRB is higher in the Santa Teresa (2), Limonal (8), and Piedras (1) sub-basins, related
to agrochemicals, used for potatoes’ crops, while the Arrayanales (5) and La Chorrera
(7) sub-basins show low sediment accumulation, because these are conservation areas
delimited by stakeholders.

As future developments, we would like to consider the modelling of management
scenarios with: (i) diffuse pollution processes and soil compaction, in relation to the main
productive activities developed in the basin that are affecting hydrological ecosystems
services; and (ii) the interactions between inhabitants of the LPRB in the rural area and uses
of the water supply system in the urban area.
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