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Abstract: The plant protection unmanned aerial vehicle (UAV) scheduling model is of great signif-
icance to improve the operation income of UAV plant protection teams and ensure the quality of
the operation. The simulated annealing algorithm (SA) is often used in the optimization solution of
scheduling models, but the SA algorithm has the disadvantages of easily falling into local optimum
and slow convergence speed. In addition, the current research on the UAV scheduling model for
plant protection is mainly oriented to static scenarios. In the actual operation process, the UAV plant
protection team often faces unexpected situations, such as new orders and changes in transfer path
costs. The static model cannot adapt to such emergencies. In order to solve the above problems, this
paper proposes to use the Levi distribution method to improve the simulated annealing algorithm,
and it proposes a dynamic scheduling model driven by unexpected events, such as new orders and
transfer path changes. Order sorting takes into account such factors as the UAV plant protection
team’s operating income, order time window, and job urgency, and prioritizes job orders. In the aspect
of order allocation and solution, this paper proposes a Levy annealing algorithm (Levy-SA) to solve
the scheduling strategy of plant protection UAVs in order to solve the problem that the traditional
SA is easy to fall into local optimum and the convergence speed is slow. This paper takes the plant
protection operation scenario of “one spray and three defenses” for wheat in Nanjing City, Jiangsu
Province, as an example, to test the plant protection UAV scheduling model under the dynamic
conditions of new orders and changes in transfer costs. The results show that the plant protection
UAV dynamic scheduling model proposed in this paper can meet the needs of plant protection
UAV scheduling operations in static and dynamic scenarios. Compared with SA and greedy best
first search algorithm (GBFS), the proposed Levy-SA has better performance in static and dynamic
programming scenarios. It has more advantages in terms of man-machine adjustment distance
and total operation time. This research can provide a scientific basis for the dynamic scheduling
and decision analysis of plant protection UAVs, and provide a reference for the development of an
agricultural machinery intelligent scheduling system.

Keywords: plant protection UAV; dynamic scheduling; simulated annealing algorithm; Levy distribution

1. Introduction

Disease and pest control is an essential part of crop production and is related to
food safety [1–3]. Plant protection unmanned aerial vehicles (UAVs) characterized by
easy take-off and landing and high flight mobility are suitable for a variety of operating
environments, such as plains and hills, and are, therefore, extensively applied in the
process of crop disease and pest control [4–6]. In UAV plant protection operations, the
swarm of plant protection UAVs generally provides services in the form of a UAV plant
protection team, which can include multiple plant protection UAVs; multiple teams operate
on plant protection orders by division of work and cooperation with each other. The
reasonable scheduling of plant protection UAVs is crucial to guarantee the operation
quality and improve the operation income of UAV plant protection teams [7]. Current
studies on the scheduling of plant protection UAVs are mainly conducted from a static
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perspective [8,9]. However, in practical operations, UAV plant protection teams often face
unexpected situations, such as new orders and transfer cost changes, while the static model
cannot adapt to the practical production demand properly. Therefore, a scheduling model of
plant protection UAV swarms taking into account unexpected situations is of great practical
significance to improve their operational efficiency and guarantee operational quality, while
providing a reference for the development of scheduling systems for intelligent agricultural
machinery [7].

Currently, the hot spot of research on the scheduling of plant protection UAVs focuses
on in-field flight path planning, based on which the swarm scheduling model is solved
by using the heuristic algorithm [8,9]. Li et al. [10] used the particle swarm algorithm to
solve the UAV swarm allocation strategy based on in-field flight path planning of plant
protection UAVs. Xu et al. [11] used the genetic algorithm to solve the operation sequence of
plant protection UAVs based on UAV flight path planning in multiple fields. Cao et al. [12]
sorted the operational plots by their size, distance, and operational urgency and optimized
the scheduling path of plant protection UAVs by the elitist non-dominated sorting genetic
algorithm (NSGA-II). Research on the scheduling of agricultural machinery similar to the
scheduling scenario of plant protection UAVs started in the 1980s [13]. Wu et al. [14] pro-
posed a multi-objective agricultural machinery scheduling model with time windows from
the perspective of balancing operation income and quality and optimized the scheduling
model by the dynamic planning method. Wang et al. [15] put forward a two-step scheduling
model of clustering before allocation, considering the operational requirements of different
crops, clustered the operational plots with such factors as attributes of planted crops and
areas of operational plots as the measurement indexes, and optimized the planning model
using the hybrid linear programming method on this basis. Gareth et al. [16] took the
interface between rice harvesting and drying segments into comprehensive consideration
and used the taboo search algorithm to optimize the scheduling model of rice harvesters
with the goal of minimizing the interval between harvesting and drying.

To sum up, in terms of model optimization, the commonly used methods include
two main categories: exact solution methods and heuristic algorithms [17,18]. Among
them, exact solution methods include: dynamic programming, linear hybrid programming
methods, etc. [19,20]. Heuristic methods include: particle swarm algorithm, tabu search al-
gorithms, genetic algorithm, etc. [21–23]. The exact solution methods can be used to obtain
the optimal solution of the planning strategy. However, they may face problems, such as
dimensional explosion and long solution time under large-scale, multi-constraint condi-
tions [24,25]. The heuristic algorithms have certain advantages in solving multi-constraint
problems [25]. Among them, the simulated annealing algorithm (SA) is a commonly used
heuristic algorithm [26]. However, the design of the computational function for accepting
suboptimal solution probabilities during search makes the algorithm prone to falling into
local optimum in the early stage and slow convergence in the later stage [27,28]. The results
of previous studies have indicated that the Levi distribution has a good effect on preventing
the heuristic algorithm from falling into local minimum [29,30].

In terms of scheduling model scenarios and optimization objectives, the optimiza-
tion of plant protection UAV scheduling is a multi-objective optimization problem with
time windows, and the optimization objectives include: maximizing operation income,
minimizing operation time, and minimizing scheduling distance. The constraints of the
optimization model include: the operation shall be conducted on each plot and completed
within the operation time window. The above studies are mainly conducted from a static
perspective, and the optimization models established lack the capacity to respond to unex-
pected situations in a timely manner [17–30]. However, in the practical operation process,
the swarm of plant protection UAVs often faces dynamic events, such as additional orders
and changes in the transfer cost of UAV plant protection teams due to COVID-19 or traffic
congestion [31,32]. Therefore, it is more instructive to address the scheduling and planning
issues of plant protection UAVs from a dynamic perspective, respond to unexpected sit-
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uations in a timely manner, and establish a dynamic scheduling model that can adapt to
changes in the environment for scheduling plant protection UAV swarms in practice.

According to the experiences in vehicle and military UAV scheduling, studies on dy-
namic scheduling models can be divided into two types: prediction of the occurrence
probability of unexpected events and event-driven rescheduling [33–35]. Studies on
the prediction of the occurrence probability of unexpected events include those from
Amorim et al. [36] and Chang et al. [37]. Studies on event-driven methods include those
form Wang et al. [38] and Grbac et al. [39]. Studies on the occurrence probability prediction
of unexpected events mainly address the cases where the occurrence probability of an
unexpected situation is predictable or the scheduling object planning is large, which can
significantly increase the amount of computation in real-time scheduling. In the field of
plant protection UAV scheduling, new orders or changes in road transfer costs are usually
unpredictable factors, and the number of UAVs in a plant protection UAV swarm is limited,
with relatively few optimization objectives. Hence, the event-driven dynamic scheduling
method is more suitable for the scenario in this paper.

In summary, this paper fully considers the needs of farmers’ plant protection opera-
tions, the actual operational capacity of UAV plant protection teams, the law of pest and
disease spread, and other factors, and uses the methods of transportation logistics distribu-
tion scheduling and military equipment scheduling for reference to establish the operation
scheduling models and algorithms of UAV plant protection teams in different operation
scenarios. This will enable the provision of scientific and reasonable operation scheduling
schemes for the UAV plant protection teams to meet their diversified scheduling needs
and improve the utilization efficiency of UAV resources in order to ensure the economic
benefits of UAV plant protection teams and reduce the losses caused by pests and diseases.
The theoretical and practical significance of this study is reflected in the following aspects.
(1) Upgrade the scheduling means of UAV plant protection teams, improve the informa-
tization construction level of plant protection flight prevention teams, and enhance the
response ability of flight prevention teams to farmer orders. (2) Improve the operational
efficiency and economic benefits of the UAV plant protection teams, and reduce the risk of
pest outbreak and spread within the region. (3) The dynamic scheduling method is intro-
duced into the plant protection production scheduling problem to improve the response
ability of the UAV plant protection teams to emergencies and provide a reference for the
mechanical scheduling of other agricultural production links.

2. Problem Description
2.1. Description of Plant Protection UAV Scheduling Environment

In the practical operation links of plant protection, farmers issue plant protection
operation orders to the UAV plant protection team according to the crop type and growth
condition, and the order contents include: the location and area of the operation plot,
operation time window and service type, etc. The UAV plant protection team organizes
UAVs for the plant protection operation according to the workload of the received order.
One team includes several UAVs, and the operation orders are completed by the division
of work and cooperation among the teams.

Plant protection UAV scheduling is a multi-objective, multi-constraint optimization
problem. Based on previous studies combined with practical operation demands [8–10],
the optimization objectives of this paper are determined as follows: (1) minimum total op-
erating time, (2) shortest total distance of UAV field scheduling, (3) highest total revenue of
the UAV plant protection team, and (4) minimum penalty for delayed jobs. In the dynamic
scenarios, mainly new orders and transfer cost changes are considered in this paper.
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2.2. Mathematical Description of the Model

(1) Given that the description of the set of UAV plant protection teams: U = {U1, U2,
U3, . . . , Un} denotes n UAV plant protection teams, each can be described by Equation (1):

Ui = {(li, ti), e, v, C} (1)

In Equation (1), li and ti denote the longitude and latitude of the current location
of the UAV plant protection team, respectively; e denotes the operation efficiency of the
plant protection UAV; v denotes the field transfer efficiency of the plant protection UAV; C
denotes the set of operation income and the cost of the plant protection UAV.

(2) Set of operation income and cost

C = {Cs, Cwo, Ct, Cwa, Cde} (2)

The set C mainly includes: the operation income (Cs) of the plant protection UAV; the
operation cost (Cwo) of the plant protection UAV, such as energy, pesticide, and machinery
depreciation; the transfer cost (Ct) of the plant protection UAV; the waiting cost (Cwa) of
the plant protection UAV; and the penalty cost (Cde) of the plant protection UAV beyond
the operation time window.

(3) Set of farmland orders

F = {(l, t), (ts, te), a, e} (3)

The set of farmland orders mainly contains: (l,t): the longitude and latitude of the
area where the farmland is located; (ts, te) denote the start and end time of the farmland
operation time window, respectively; a: plot area; e: urgency of plot operation.

(4) Set of UAV plant protection team transfer costs (TP = {PF, PU}). The transfer
costs of UAV plant protection teams include the transfer cost from each UAV plant protec-
tion team to each farmland and the path transfer cost between farmlands.

(5) Set of operation flags (JS =
{

x f

}
). The operation flag has two values, indicating

whether the operation is completed in each farmland, with 1 being operation completed,
and 0 being operation not completed.

(6) Set of operation time (WT = {FWs, FWe}). FWs denotes the start time of the plant
protection operation by the plant protection UAV on farmland F, and FWe denotes the end
time of the plant protection operation on farmland F.

2.3. Mathematical Model of Operation Scheduling
2.3.1. Objective Function

(1) Maximize operation income

max C =
m

∑
i=1

(Csi − Cwoi − Cwai − Cti − Cdei) (4)

Csi denotes the operation income of the plant protection UAV on plot i, which is
proportional to the area of the farmland and the urgency of the operation; Cwoi denotes the
operation cost of the machinery and pesticides on plot i, which is proportional to the area of
plot i; Cwai denotes the cost of waiting for the plant protection UAV operation; Cti denotes
the cost of transfer to plot i in the plant protection UAV operation strategy; Cdei denotes
the corresponding penalty for the delayed operation of the plant protection UAV on plot i.
Among them, Cti, Cwai, and Cdei can be reduced through the reasonable scheduling strategy
to increase the total revenue of the UAV plant protection team.

(2) Minimize total operation time

minT = max(FWe)−min(FWs) (5)
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The total operation time (T) can be expressed by Equation (5), where FWe denotes the
operation end time of orders; max(FWe) denotes the latest operation end time of all orders;
FWs denotes the operation start time of orders; min(FWs) denotes the earliest operation
start time of all orders. The total operation time of the UAV plant protection team can be
expressed as the difference between the latest operation end time and the earliest operation
start time.

max R =
m

∑
i=1

(Csi − Cwoi − Cti − Cwai − Cdei)− (max(FWe)−min(FWs)) (6)

In summary, the objective of operation scheduling can be described as Equation (6): R
denotes the scheduling synthesis target value, which consists of maximizing service income
and minimizing operational time, where each part shall be normalized to solve the problem
of different dimensions.

2.3.2. Constraint Function

The following constraints shall be met for the operation scheduling of UAV plant
protection teams.

∀x f = 1 (7)

WT ∈ [ts, te] (8)

Equation (7) indicates that operation services shall be completed on all farmlands.
Equation (8) indicates that the operation time on each farmland shall be completed within
the operation time window of farmland demand.

3. Design of Scheduling Model Based on Levy Distribution

The scheduling model of plant protection UAV mainly includes two parts: operation
order sorting and order task assignment.

3.1. Prioritization Rules for Plant Protection Orders in Static Situations

The following factors are mainly considered for operation order sorting:
(1) Operation time window. When issuing orders, farmers can set the operation time

window of a plot based on the comprehensive consideration of factors such as disease
and pest outbreak patterns, crop growth, or local weather. The UAV plant protection
team needs to carry out the plant protection operation within the operation time window.
Excessively early or late operation will not be conducive to achieving the crop control
effect; for operation beyond the time window, a certain penalty of reduced income will
be imposed on the UAV plant protection team. Therefore, the earlier the time window
of the plot starts, the shorter the total duration of the time window and the higher the
order priority.

(2) Plot area. In terms of plant protection UAV operation efficiency and revenue, the
larger the field plot area, the more regular the field shape, the higher the operation efficiency
of the plant protection UAV, and the higher the revenue of the UAV plant protection team.
Therefore, the larger the field plot area, the higher the order priority.

(3) Operational urgency. Farmers can add the operational urgency flag according
to the urgency of the operation. For urgent operation orders, the UAV plant protection
team can get a higher pay. Therefore, the higher the order urgency, the higher the order
operation priority.

In this paper, the plant protection order sorting weights are calculated according to
Equation (9).

o = w1·ts + w2·(te − ts) + w3·a + w4·e (9)

w1 + w2 + w3 + w4 = 1 (10)

In Equation (9), the start time of the time window is ts, the duration of the time window
is (te − ts), the operation plot area is a, and the priority is e. All the above variables are
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subject to normalization. w1 denotes the weight of the time window, w2 denotes the weight
of the operation time window duration, w3 denotes the weight of the field plot area, w4
denotes the urgency weight, and the sum of all weights is 1, as shown in Equation (10).
After the calculation of operational priority weights for all plots, the operational sequence
of all field plots is obtained by sorting in descending order.

3.2. UAV Scheduling Solution Model Based on Simulated Annealing Algorithm with
Levy Distribution

Based on order sorting, tasks shall be assigned to UAVs in the plant protection team.
The scheduling cost of plant protection UAVs is calculated according to Equation (6). The
simulated annealing algorithm is characterized by easy process and fast search for multi-
dimensional problems. Therefore, the scheduling strategy of the plant protection UAV
is optimized by the simulated annealing algorithm in this paper based on the annealing
principle of solid. When the solid temperature is very high, its internal energy is relatively
large, and its internal particles are in rapid disorderly operation. When the temperature
drops slowly, the internal energy of the solid decreases, and the motion of particles gradu-
ally becomes orderly. Finally, when the solid is at room temperature, the internal energy
reaches the minimum. At this point, the particles are in the most stable state. The process
of the simulated annealing algorithm is as follows:

(1) Let the initial temperature be T and the maximum number of cycles be M.
(2) Randomly generate a set of allocation strategies (w) and calculate the cost function

score f (w) under this strategy.
(3) Randomly generate a set of perturbation allocation strategies (w′) and calculate the

cost function score f (w′) under this strategy.
(4) Calculate ∆E = f (w′) − f(w).
(5) If ∆E < 0, the perturbation strategy w′ is accepted; otherwise, the probability of

accepting the perturbation strategy is calculated according to Equation (9), where T
is the current temperature. That is, a number δ between (0,1) is randomly generated.
If δ < p, the perturbation strategy w = w′ is accepted; otherwise, the original strategy
w = w is accepted. The number of cycles is i = i + 1.

p =
1

1 + e−∆E/T (11)

(6) If the strategy w meets the optimization requirement, or i > M, then the cycle is broken;
otherwise, T = T − t, where t is the value of the temperature drop in each cycle, and
proceed to step (3).

The traditional simulated annealing algorithm is analyzed: The probability of accept-
ing the suboptimal solution by the traditional simulated annealing method is shown in
Equation (11). Equation (11) is a composite function of 1 + e−x and ∆E/T, where 1 + e−x is
a curve function, generally known as sigmoid function. The function curve is shown in
Figure 1. It can be seen from Figure 1 that the function values are distributed in the interval
[0,1], and the function changes fast in [0,1]. As the independent variable increases, the
function value tends to 1 infinitely.



Sustainability 2023, 15, 1772 7 of 20
Sustainability 2023, 15, x FOR PEER REVIEW 7 of 20 
 

 

 

Figure 1. Schematic diagram of sigmoid function. 

∆E/T is a random function. According to the description of the simulated annealing 

algorithm process, ∆E is a random variable and T is a linear variable. To describe in line 

with the function variation law, this paper assumes that ∆E is a random number that fol-

lows a Gaussian distribution, and linear variable T is described by Equations (12) and (13). 

The MATLAB platform is used to describe the composite function, and the simulated dis-

tributions of 𝑝 =
1

1+𝑒−∆𝐸/𝑇 are shown in Figure 2a,b. The results in Figure 2 indicate that 

the function value fluctuates substantially in the early stage of iteration, which is not con-

ducive to the exchange of suboptimal and optimal solutions, making it difficult to achieve 

the purpose of expanding the search range and jumping out of the local optimum solution. 

In the later stage of iteration, most of the function values are distributed around 0.5. As a 

result, there is still a 0.5 probability of accepting the suboptimal solution based on the 

method, which is not conducive to the convergence of function values. 

𝑇 = 1000 − 8𝑥 (12) 

𝑇 = 100 − 8𝑥 (13) 

 

  
(a) 𝑇 = 1000 − 8𝑥  (b)  T = 100 − 8𝑥 

Figure 2. Schematic diagram of 𝑝 =
1

1+e−∆E/T function. 

As the improved simulated annealing algorithm has the problems of weak search 

ability in the early stage and slow convergence in the later stage, this paper proposes to 

improve the probability function for accepting suboptimal solutions in the simulated an-

nealing algorithm by using the Levy distribution method. The Levy distribution can be 

expressed by Equation (14), where Levy distributions vary with different values taken for 

C. Figure 3 shows the function distribution corresponding to different values taken for the 

constant C. The figure indicates that regardless of the value taken for C, the range of func-

tion values of Levy distribution is [0,1]; as the independent variable increases, the function 

Figure 1. Schematic diagram of sigmoid function.

∆E/T is a random function. According to the description of the simulated annealing
algorithm process, ∆E is a random variable and T is a linear variable. To describe in line
with the function variation law, this paper assumes that ∆E is a random number that
follows a Gaussian distribution, and linear variable T is described by Equations (12) and
(13). The MATLAB platform is used to describe the composite function, and the simulated
distributions of p = 1

1+e−∆E/T are shown in Figure 2a,b. The results in Figure 2 indicate
that the function value fluctuates substantially in the early stage of iteration, which is
not conducive to the exchange of suboptimal and optimal solutions, making it difficult to
achieve the purpose of expanding the search range and jumping out of the local optimum
solution. In the later stage of iteration, most of the function values are distributed around
0.5. As a result, there is still a 0.5 probability of accepting the suboptimal solution based on
the method, which is not conducive to the convergence of function values.

T = 1000− 8x (12)

T = 100− 8x (13)
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1+e−∆E/T function.

As the improved simulated annealing algorithm has the problems of weak search
ability in the early stage and slow convergence in the later stage, this paper proposes
to improve the probability function for accepting suboptimal solutions in the simulated
annealing algorithm by using the Levy distribution method. The Levy distribution can
be expressed by Equation (14), where Levy distributions vary with different values taken
for C. Figure 3 shows the function distribution corresponding to different values taken
for the constant C. The figure indicates that regardless of the value taken for C, the range
of function values of Levy distribution is [0,1]; as the independent variable increases, the
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function values increase rapidly, then decline slowly and level off, and finally stabilize at
around 0.1. With the increasing value of C, the maximum of the function declines.

f (x; µ, c) =


0, µ < 0√

c
2π

e
− c

2(x−µ)

(x−µ)
3
2

, µ ≥ 0
(14)
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The function that accepts suboptimal solutions based on the simulated annealing algo-
rithm is improved by the Levy distribution method, and the function can be re-expressed
as Equation (15), where T is replaced by Equations (12) and (13). The composite function is
shown in Figure 4a,b. Figure 4 shows that no matter how the T-value function changes, the
composite function still retains the function trend of the Levy distribution; that is, as the
independent variable gradually increases, the function value increases first, then decreases,
and gradually stabilizes at around 0. By applying the composite Levy distribution to the
simulated annealing algorithm, the following can always be achieved: At the beginning of
the iteration, the temperature T is relatively high, the probability function value is high,
and the function has a relatively high probability of accepting new solutions, which is
conducive to jumping out of the local minimum and obtaining the global optimum. As
the number of iterations increases, the temperature T keeps dropping, the iteration region
converges, and the probability of accepting new solutions gradually decreases, accelerating
the convergence of the function.

f (x; µ, c) =


0, ∆E < 0√

T
2π

e
− T

2(∆E)

(∆E)3/2 , ∆E ≥ 0
(15)
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The probability function in step (5) of the simulated annealing algorithm is improved

by using the Levy distribution. The steps of the improved Levy simulated annealing
algorithm (Levy-SA) are as follows:

(1) Let the initial temperature be T and the maximum number of cycles be M.
(2) Randomly generate a set of allocation strategies (w) and calculate the cost function

score f (w) under this strategy.
(3) Randomly generate a set of perturbation allocation strategies (w′) and calculate the

cost function score f (w′) under this strategy.
(4) Calculate ∆E = f (w′) − f (w).
(5) If ∆E < 0, the perturbation strategy w′ is accepted; otherwise, the probability of

accepting the perturbation strategy is calculated according to Equation (9), where T
is the current temperature. That is, a number δ between (0,1) is randomly generated.
If δ < p, the perturbation strategy w = w′ is accepted; otherwise, the original strategy
w = w is accepted. The number of cycles is i = i + 1.

(6) If the strategy w meets the optimization requirement, or i > M, then the cycle is broken;
otherwise, T = T − t, where t is the value of the temperature drop in each cycle, and
proceed to step (3).

4. Design of Dynamic Scheduling Model

In the actual process of the plant protection operation, there may be a variety of
unexpected emergencies, such as weather changes in a place will lead to a shorter working
time, resulting in farmers in the area calling the plant protection operation in advance; if a
major traffic accident occurs in the operation area, the UAV plant protection teams must
take a detour. Therefore, in the process of carrying out the original operation plan, it is not
rigid to carry out the operation step by step with the fixed operation plan. It is necessary to
take the original operation plan and emergencies into account and reschedule the flight
prevention task.

In the dynamic model planning, mainly the dynamic scenarios of new orders and path
transfer cost changes of the plant protection UAV are considered, which occur frequently in the
practical operation of UAV plant protection teams. Inspired by references [21–23], this paper
transforms the dynamic scheduling process into an event-driven static scheduling model to
obtain the solution. When the dynamic event occurs, the solution of the scheduling model is
obtained again to achieve the goal of maximizing the operation income and minimizing the
operation time while meeting the operation time window requirement. Specific scheduling
ideas are shown in Figure 5.
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Ts and Te are the start and end times of the first scheduling, respectively. If there are
no unexpected circumstances, all plant protection operations originally planned will end at
Te. However, at Ti time before the end of the operation plan, some new orders or some road
traffic changes must be made to the original operation plan. In the event of an emergency,
all operation orders can be classified into four categories. The first type is completed orders,
i.e., operation orders that have been completed before the emergency occurs. The second
type is orders in progress, i.e., orders that have been scheduled in the first dispatch, but
have not yet finished when an emergency occurs. The third type is pending orders, i.e.,
orders that have been scheduled in the first dispatch, but have not yet started when an
emergency occurs. The fourth type is new orders, i.e., orders added in the event of an
emergency without a scheduled operation. Since the first and second types of orders have
been closed or started, they cannot participate in repeat scheduling. The orders involved in
rescheduling are those of the third and fourth types that have not yet started. The dynamic
scheduling model is designed as follows, according to new orders and traffic changes.

4.1. Dynamic Scheduling Model in the Scenario of New Orders

Where there are new orders during the operation of the UAV plant protection teams,
this paper proposes the following rules for managing the orders and scheduling the plant
protection UAVs:

(1) Management of original orders. Those in the original orders that have not been
operated upon by the arrival of new orders are NF = {F|notdo(F)}, and the plant
protection UAV in operation is NU = {U|doing(U)}.

(2) Sorting of operation orders. The new order NE is merged with the unoperated order
NF to form a new order set FD = {NE U NF}, based on which the new order set FD is
sorted by the method in Section 3.1.

(3) Management of available plant protection UAVs. The difference set between the set of
all UAVs (U) and the set of plant protection UAVs that are operating (NU) is obtained
to identify the set of available plant protection UAVs (UD = {U − NU}). The location
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of each plant protection UAV in the set UD is updated. The path transfer cost from
each plant protection UAV in the set UD to each plot in the NU is updated.

(4) Assignment of tasks. The Levi simulated annealing algorithm is used to calculate the
UAV task assignment.

4.2. Dynamic Scheduling Model in the Scenario of Transfer Path Change

Where the transfer path is changed due to COVID-19, road construction, and other
unexpected situations, this paper proposes the following rules for managing the plant
protection orders and scheduling the plant protection UAVs:

(1) Management of original orders. Those in the original orders that have not been
operated upon by the change of path cost are NF = {F|notdo(F)}, and the plant
protection UAV in operation is NU = {U|doing(U)}.

(2) Management of available plant protection UAVs. The difference set between the set of
all UAVs (U) and the set of plant protection UAVs that are operating (NU) is obtained
to identify the set of available plant protection UAVs (UD = {U − NU}). The location
of each plant protection UAV in the set UD is updated. The path transfer cost from
each plant protection UAV in the set UD to each plot in the NU is updated.

(3) Assignment of tasks. The Levi simulated annealing algorithm is used to calculate the
UAV task assignment.

5. Experimental Scenario and Environment
5.1. Description of Experimental Object and Scenario

In this paper, the plant protection flight operations of “one spraying and three preven-
tion” on wheat in the Jiangning and Luhe districts of Nanjing in mid to late April are taken
as the study object. It is assumed that five UAV plant protection teams were involved in
the plant protection tasks in the aforesaid. The initial location of the teams and the location,
area, and time window of the field plots are shown in Tables 1 and 2. The earliest operation
order started on 11 April, the duration of the operation time window was 4–7 days, and
the area of each operation plot was in the range of 100–250 hm2.

Table 1. Initial position information of UAV plant protection team and UAV.

Number Longitude Latitude Number of UAVs

1 118◦22′ E 31◦14′ N 8
2 119◦08′ E 32◦19′ N 6
3 119◦45′ E 32◦20′ N 6
4 119◦08′ E 31◦04′ N 10
5 120◦12′ E 32◦29′ N 4

Table 2. Original order information.

Number Longitude Latitude Area/hm2 Operation Time
Window Urgency

1 118◦22′ E 31.14′ N 124.53 11 14 1
2 118◦54′ E 31.12′ N 130.31 11 15 0
3 118◦89′ E 31.28′ N 225.54 12 16 0
4 118◦32′ E 31.26′ N 138.23 13 17 1
5 118◦35′ E 31.25′ N 148.98 14 17 0
6 118◦53′ E 31.32′ N 157.58 14 18 0
7 118◦54′ E 31.39′ N 187.93 15 18 0
8 118◦65′ E 31.42′ N 169.46 16 20 1
9 118◦67′ E 31.54′ N 123.93 16 19 1

10 118◦57′ E 31.58′ N 147.58 17 22 0
11 118◦37′ E 31.62′ N 151.16 17 24 0
12 118◦65′ E 31.64′ N 163.51 18 22 0
13 118◦83′ E 31.79′ N 174.62 18 24 0
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In the dynamic operation scenarios: (1) Addition of new orders. It is assumed that
new orders were added on 13 April, the earliest start time of the new order operation
was April 14, the operation window duration of the new orders was in the range of
3–5 days, and the operation area of the new plant protection region is in the range of
100–200 hm2. (2) Changes of transfer path. Influenced by COVID-19, traffic congestion, and
other emergencies, some roads were under control on 17 April, and the distance between
various plots was changed. It is assumed that the transfer distance between the plots is
increased by 7 km in this paper. Detailed parameters of the new order and path are shown
in Table 3.

Table 3. New order information.

Number Longitude Latitude Area/hm2 Operation Time
Window Urgency

1 118◦22′ E 31◦34′ N 162.35 14–17 1
2 118◦28′ E 31◦32′ N 189.29 15–18 0
3 118◦42′ E 31◦32′ N 120.93 16–19 1
4 118◦53′ E 31◦23′ N 123.21 16–20 1
5 118◦84′ E 31◦37′ N 189.20 17–21 0
6 118◦39′ E 31◦79′ N 140.54 17–20 0

The parameters related to the operation and transfer of UAV plant protection teams are
as follows. It is assumed that each plant protection UAV operates 8 h per day, the operation
efficiency is 10 hm2/h, and the transfer efficiency of the plant protection UAV is 30 km/h.
In terms of operation cost and income, the operation income of the plant protection UAV
is RMB 120/hm2, the operation income of the rush order is RMB 140/hm2, the operation
energy cost is RMB 8/hm2, the field operating machinery loss and pesticide cost is RMB
8/hm2, and the transfer cost is RMB 0.90/km. The waiting cost of the plant protection UAV
is RMB 1/h, and the cost of the operation delay is RMB 100/h.

5.2. Description of Simulation Environment

In this paper, the scheduling process of plant protection UAVs is simulated by com-
puter. The computing device adopts a Windows 10 operating system with Intel i5 processor,
and the simulation platform is MATLAB 2014b. To ensure full convergence of the model,
the number of iterations of the simulated annealing algorithm and the Levi simulated
annealing algorithm is 6000 times.

6. Results and Analysis
6.1. Initial Order Results and Analysis

In this paper, the Greedy Best First Search (GBFS), traditional simulated annealing
(SA), and Levy simulated annealing (Levy-SA) algorithms are used to build the scheduling
allocation models of plant protection UAVs. The process of the GBFS algorithm is as follows:

(1) In the order sorting sequence, the order at the top is taken.
(2) UAVs that are idle are identified, and the one closest to the current plot is selected to

conduct the operation.
(3) Whether there are still orders in the order sorting sequence is determined. If so, go to

(1); otherwise, end the process.

In this paper, the three scheduling methods are compared in five aspects: total opera-
tion income of the UAV plant protection teams, total scheduling distance, total operation
time, total waiting time of the UAV plant protection teams, and operation delay time. The
comparison effect is shown in Table 4.
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Table 4. Original Order Scheduling Revenue.

Modeling
Method

Total In-
come/Yuan

Scheduling
Distance/km

Operating
Duration/h

Total Waiting
Time/h

Delay
Time/h

Greedy Best First
Search algorithm

(GBFS)
18,323.35 330.50 72.46 343.00 0

Simulated
Annealing

algorithm (SA)
18,517.87 333.24 72.46 50.17 0

Levy Annealing
algorithm
(Levy-SA)

18,787.54 323.02 72.46 18.04 0

Table 4 indicates that all three scheduling methods can complete the operation within
the required operation time window for the plot, and their total operation time is equal
(72.46 h each). However, the total scheduling distance and waiting time of the UAV swarm
based on the three methods are different: Both SA and Levy-SA outperform the GBFS
in terms of scheduling distance and waiting time; in comparison, Levy-SA is superior to
SA. The scheduling Gantt chart of Levy-SA is shown in Figure 6. The iterative process of
Levy-SA and SA is shown in Figure 7. It can be seen that Levy-SA has a higher possibility
of accepting the suboptimal solution than SA before 1000 iterations, and the function
values fluctuate violently. After 1000 iterations, the probability of Levy-SA accepting the
suboptimal solution decreases, and the objective function value tends to be stable and rises
slowly. The function tends to converge after 3000 iterations. In comparison, SA shows a
certain periodicity of iterative convergence in 6000 iterations, and it has a relatively high
probability of accepting the suboptimal solution in the early or later stages of the iterations,
which leads to the unstable function iteration effect and slow convergence.
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6.2. New Order Results and Analysis

According to the description of operation scenarios in Section 5.1, new orders are
added after 13 days, and the orders are re-sorted and scheduled for assignment by the
method proposed in Section 4.1. Firstly, the original unoperated orders at that moment
are identified. The sorting weights for the original unoperated orders and new orders are
calculated according to Equation (9), and the orders are sorted in descending order. On this
basis, the order scheduling strategy is arranged by GBFS, SA, and Levy-SA. The indexes
related to scheduling are shown in Table 5.

Table 5. Scheduling benefits after new orders are added.

Method Total In-
come/Yuan

Scheduling
Distance/km

Operating
Duration/h

Total Waiting
Time/h

Delay
Time/h

Greedy Best First
Search algorithm

(GBFS)
20,639.97 630.08 72.46 525 0

Simulated
Annealing

algorithm (SA)
21,791.65 562.74 72.46 58.01 0

Levy Annealing
algorithm
(Levy-SA)

22,020.29 509.91 72.46 49.81 0

Table 5 indicates that the scheduling strategies of GBFS, SA, and Levy-SA are all equal
in operation duration (72.46 h). The main reason is that the duration and the interval of
operation time window required in the new order is essentially the same as in the original
one, and the UAV plant protection team can still handle the current workload of order
operation. There is no operation time delay based on any of the three algorithm, while
SA and Levy-SA are superior to GBFS in the scheduling distance and waiting time of the
strategies arranged. Both have advantages in scheduling distance and waiting time, while
Levy-SA outperforms SA in the ability to jump out of the local optimal solution during the
search process. The scheduling Gantt chart of Levy-SA for the original and new orders
is shown in Figure 8. Through comparison with Figure 6, it can be seen that the original
scheduling results are maintained for orders 1–4; original orders 5–13 and subsequent new
orders are rescheduled according to the operation requirements and costs. The final goal of
maximizing the operation income of the UAV plant protection teams is achieved.
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6.3. Path Cost Change Results and Analysis

According to the description of operation scenarios in Section 5.1, after 17 days, the
path transfer cost between various fields is changed due to COVID-19 lockdown or road
congestion. The orders are re-sorted and scheduled for allocation by the method proposed
in Section 4.2. Firstly, the orders that are not operated at that moment are identified, based
on which the order scheduling strategy is arranged by the methods in this paper. The
scheduling results are shown in Table 6.

Table 6. Scheduling benefits after changing transfer cost.

Method Total In-
come/Yuan

Scheduling
Distance/km

Operating
Duration/h

Total Waiting
Time/h

Delay
Time/h

Original
scheduling
sequence

21,789.16 709.91 72.46 49.81 0

Greedy Best First
Search algorithm

(GBFS)
21,856.23 580.73 75.62 49.81 0

Simulated
Annealing

algorithm (SA)
22,098.48 532.73 78.48 92.17 0

Levy Annealing
algorithm
(Levy-SA)

22,438.87 336.61 71.35 46.02 0

Table 6 indicates that the original scheduling strategy, GBFS, SA, and Levy-SA can all
complete the plant protection operation within the specified time. In the total operation
time consumption, both the original scheduling strategy and Levy-SA can complete the
operation within 72.46 h, while it takes SA 78.48 h. In the scheduling distance, the process
of the SA dynamic scheduling strategy saves 177.18 km and Levy-SA saves 373.3 km, as
compared to the original scheduling method. In the waiting time, SA spends 42.36 h more
and Levy-SA spends 3.79 h less than the original scheduling sequence. Figure 9 shows
the scheduling Gantt chart of the dynamic scheduling strategy based on the methods in
this paper when the field transfer cost of UAV plant protection teams is changed. The
results indicate that compared to Figure 6, the scheduling arranged based on the dynamic
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scheduling strategy results in a longer time interval between different tasks for each UAV
after the path cost change. Moreover, plant protection tasks are assigned to each UAV
based on the scheduling strategy with shorter scheduling distance, while the waiting time
between different tasks is minimized for each UAV.
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6.4. Impact of Emergency Parameters on Scheduling Schemes

Emergencies have an impact on flight defense and scheduling results, such as operation
revenue, transfer mileage, waiting time, etc. The impact of different levels of emergencies
on scheduling results will vary. To find out the changing trend of scheduling results with
emergencies, based on the analysis of Section 6.2 results, different new order areas and
time windows are introduced for repeated tests. Based on the data in Table 3, first fix the
time window of the original new order and set the average area of the new order as 10 hm2,
50 hm2, 150 hm2, and 200 hm2. Then, fix the area of the original new orders and set the
average time window of new orders to 4, 6, 8, and 10 d. Ten repeated tests were carried out
with Levy annealing (Levy-SA), and the results are shown in Tables 7 and 8.

Table 7. The effect of the change of orders area on the scheduling result.

Area/
hm2

Total Income/Yuan Scheduling
Distance/km Operating Duration/h Total Waiting Time/h Delay Time/h

Mean
Value

Standard
Deviation

Mean
Value

Standard
Deviation

Mean
Value

Standard
Deviation

Mean
Value

Standard
Deviation

Mean
Value

Standard
Deviation

10 18,607.46 107.48 546.05 53.74 72.46 0 49.58 45.59 0 0
50 21,382.39 101.41 563.59 50.71 72.46 0 47.62 13.92 0 0

150 27,720.77 700.51 574.14 17.67 72.46 0 51.45 7.09 0 0
200 30,211.63 90.43 598.66 45.09 72.46 0 72.24 5.86 0 0

Table 8. The effect of the change of operation time windows on the scheduling result.

Operation
Time/d

Total Income/Yuan Scheduling
Distance/km Operating Duration/h Total Waiting Time/h Delay Time/h

Mean
Value

Standard
Deviation

Mean
Value

Standard
Deviation

Mean
Value

Standard
Deviation

Mean
Value

Standard
Deviation

Mean
Value

Standard
Deviation

4 27,082.25 85.21 572.62 37.53 73.07 1.27 54.53 3.99 0 0

6 27,118.82 115.74 557.35 58.95 73.07 1.27 54.47 8.53 0 0

8 27,144.25 121.44 538.61 61.98 73.07 1.27 52.40 5.73 0 0

10 27,175.52 121.56 529.01 65.42 73.07 1.27 56.61 6.65 0 0
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It can be seen from Table 7 that when the operation area of new orders increases,
the total revenue of the UAV plant protection teams increases correspondingly, the total
scheduling distance increases slightly, the total operation duration remains unchanged,
and the delay time remains 0, which is basically consistent with the previous analysis
structure. The total waiting time shows a trend of increasing first and then decreasing, and
its standard deviation decreases with the increase in the work area. The main reason is that
the smaller the area of new orders, the smaller the proportion of the actual work time in
the time window, which will lead to large fluctuations in the optimization results. In actual
production, independent small orders will also increase production costs, and the flight
defense team’s handling schemes for such orders are mostly denial of service or increase of
service unit price, which is basically consistent with the model analysis results.

It can be seen from Table 8 that the time window of new orders is enlarged, the total
revenue of the UAV plant protection teams and the total waiting time have not changed
much, and the total delay time remains zero. The total operation time remained unchanged,
but slightly increased by 0.61 h compared with the results in Table 7, and the standard
deviation changed from 0 to 1.27, mainly due to 72.46 h for 8 out of 10 simulation test
results, but 75.07 h for 2 of them. According to the test results reflected in Tables 7 and 8,
the dynamic model designed in this paper has good adaptability to different levels of
emergencies, but it is necessary to pay special attention to the fact that orders with too
small size may cause certain interference to the results.

7. Discussion

In this paper, innovations are made in two aspects: scheduling model solving methods
and dynamic scenarios during the operation of UAV plant protection teams, which are
discussed as follows.

In the scheduling model solving method, SA is improved by the Levy distribution
method in this paper. The Levy distribution probability function has the following char-
acteristics: the function value is small on large probability and large on small probability.
When applied in the probability function of SA for accepting suboptimal solutions, the
probability of accepting suboptimal solutions is relatively high when the temperature
is high, while the probability of accepting suboptimal solutions gradually decreases as
the iteration increases and the temperature keeps dropping. In the scheduling results of
the scheduling model, Levy-SA outperforms SA and GBFS in the total operation income,
total operation time, waiting time, transfer path, and other aspects. From previous stud-
ies [34,35], all heuristic algorithms improved by the Levy distribution method have higher
search ability in the early stage and faster convergence in the later stage of search than
the original algorithm. In the search results, all heuristic algorithms improved by Levy
distribution can obtain better search results.

In the establishment of the dynamic scheduling model, the traditional scheduling
model generally addresses the static situation, where the orders of plant protection and
the location of plant protection UAVs are known [11–13]. However, unexpected situations
occur frequently in the practical operation process, such as the addition of new orders
and changes in the transfer cost of the UAV plant protection teams [7]. These emergencies
may have a significant or even subversive impact on the established initial production
plan [40]. If the study only solves the UAV scheduling scheme through a simple static
optimization model and ignores the impact of emergencies, the scheduling results obtained
will only have a certain reference significance and greatly reduce the application value in
actual production [41,42]. In this paper, orders change and traffic change were introduced
to establish a dynamic scheduling model to improve the practicability of the model. This
paper draws on the idea of dynamic scheduling models in logistics and military fields
and transforms dynamic events into a static scheduling model with event-driven search,
with unexpected events as the driving events of the scheduling model. The scheduling
results indicate that the scheduling strategy developed by the dynamic scheduling model
has higher economic efficiency and less time consumption than the scheduling model
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developed in the static situation, and it is better adapted to the practical situation when
unexpected events occur.

This paper also has some limitations. The emergencies introduced in the dynamic
model are hypothetical events in advance, which have a limited impact on the global
scheduling scheme. However, in reality, some emergencies are completely unpredictable
and uncertain events, such as major weather changes that interfere with the normal opera-
tion of the UAV [43,44]. Major traffic accidents lead to traffic congestion in some sections
for a certain period. The migration of pest groups reverses the risk level of diseases and
pests in different regions. Such interference events will have a subversive impact on the
dynamic scheduling scheme. Aircraft fault, battery endurance, pharmaceutical capacity,
and other aircraft operating conditions may also change, which will affect the scheduling
scheme. Due to the lack of such monitoring data, this paper does not involve the analysis
of the impact of aircraft operating conditions on the scheduling scheme. Therefore, in the
follow-up study, the dynamic scheduling model will be improved by collecting data related
to the weather forecast, pest forecast, traffic forecast, etc., as well as collecting aircraft
working conditions data through sensors for the joint analysis of big data mining and
dynamic planning, to improve the practicability of the scheduling scheme.

8. Conclusions

(1) To address the problems that SA is prone to falling into the local optimal solution
in the early stage and converges slowly in the later stage, it is proposed that SA is
optimized by the Levy distribution function to form Levy-SA.

(2) An order allocation model of UAV plant protection is designed, focusing on the
dynamic allocation model for new orders and transfer path changes during the
operation process. The allocation strategy is optimized by Levy-SA. The results
indicate that the optimization strategy of Levy-SA is superior to the SA and GBFS in
the total operation income, operation time, scheduling distance, and waiting time of
UAV plant protection teams.
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