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Abstract: The coordinated scheduling of cascade hydropower with photovoltaic (PV) power stations
can significantly improve the utilization rate of delivery transmission lines. However, the inherent
uncertainty associated with photovoltaic (PV) forecasts challenges the reliable and economic operation
of the complementary energy system. Against this background, in this paper, a day-ahead, chance-
constrained scheduling for cascaded hydro-photovoltaic complementary generation systems (CHPSs)
considering the transmission capacity is proposed. Firstly, the uncertainty of PV forecast errors is
simulated by a probability density function fitted using kernel density estimation with historical
sampling data. Then, a chance-constrained optimization model considering peak-shaving demands
of the receiving-end power grid is developed to determine the day-ahead optimal schedules of
CHPSs. Also, complex hydraulic coupling and unit operation constraints of cascade hydropower
are considered in the proposed model. To deal with the nonlinear and stochastic constraints, an
efficient linearization method is adopted to transform the proposed model into a mixed-integer linear
programming (MILP) problem. Finally, the effectiveness and feasibility are verified by case studies.
The results show that the day-ahead schedule optimized by the proposed method can fully balance
peak-shaving and photovoltaic accommodation while considering photovoltaic output uncertainty.

Keywords: cascaded hydropower and photovoltaic; peak-shaving operation; data-driven; chance-
constrained optimization; transmission capacity constraints; mixed-integer linear programming

1. Introduction

Overusing traditional fossil fuels has caused severe environmental pollution and
accelerated the climate crisis in the last few decades. Replacing fossil fuels with renewable
energy (RE), such as wind and photovoltaic (PV) sources, can alleviate this crisis to some
extent. Against this background, the installed capacity and power generation of new
energy sources, such as wind power and photovoltaic, continue to increase [1,2]. Due
to the inherent intermittency, volatility, and uncertainty, the direct integration of wind
power and photovoltaic creates challenges in the safe and stable operation of the power
grid [3-5]. Combining flexible power resources (such as hydro and thermal) and renewable
energy into a complementary power-generation system is an effective means to promote the
consumption of new energy connected to the grid [6,7]. Among these options, hydropower
generation is an environmentally friendly power source with the advantages of providing a
fast response to load variability, robustness to weather fluctuations, and energy storage [8,9].
The coordination of hydropower and RE does not produce pollutants and contributes
to sustainable society and economic growth with much lower carbon emissions. Thus,
the coordination of hydropower and RE is preferred as a nonpolluting power source for
replacing fossil fuels to alleviate the weather crisis and achieve cleaner and more sustainable
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energy systems. The insight is applicable for both large-scale and small-scale hydropower
to offer sustainable development options for various conditions [10].

The coordination of the existing hydropower system with renewable energy in the river
basin using the same delivery transmission lines to realize the bundled delivery of clean
energy can effectively improve the utilization rate of the transmission channel and promote
the accommodation of renewable energy, which is an important direction for the develop-
ment and utilization of clean energy in the future [11-13]. There are many combinations of
hydro-wind—photovoltaic hybrid systems that have been developed worldwide, especially
in China, such as the wind-PV-hydro hybrid system located along the Yalong River and the
hydro—photovoltaic hybrid system located at the Longyangxia hydropower station.

In recent years, research on the coordination of hydropower and complementary
renewable energy scheduling has been widely discussed. Li et al. [14] proposed a long-
term optimization model for the hydropower-PV hybrid system using multi-objective
optimization programming, aiming to smooth the total power outputs and maximize the
annual total power generation of the hybrid system at the same time. Silvério et al. [15] used
floating PV plants to coordinate with hydropower plants, presenting a sizing optimization
method considering technical and economical factors. Guo et al. [16] proposed a novel
short-term operation model for a cascade hydro-PV complementary system using the
artificial intelligence method, in which hybrid time steps are considered. Fagerstrom
et al. [17] established an operation model for hydro-PV hybrid generation systems and
investigated the potential of batteries to improve the cost-effectiveness of hydro-PV hybrid
systems. The bundled transmission of hydro-wind—photovoltaic generation is inevitably
constrained by the delivery transmission capacity. However, the above research does not
analyze the influence of delivery transmission capacity on optimal dispatch. In addition,
the operational status of units at the same hydropower station may differ simultaneously.
Considering the possible variation of different units’ characteristics, the widely used plant-
based hydropower operation model, in which the same energy conversion efficiency is
applied for all units, may be inappropriate. Hence, extending plant-based to unit-based
scheduling to obtain a more accurate model is necessary.

The output of renewable energy power generation is often difficult to predict accu-
rately and has obvious uncertainty, which affects the economy and the security of the
optimal scheduling of hydropower and renewable energy. Stochastic optimization is an
effective method to deal with renewable energy power output uncertainty. Existing studies
have extensively explored how to accurately generate the typical scenario set describ-
ing random factors. Lu et al. [18] presented a coordinated optimization mode for the
hydropower-wind-PV hybrid system, where the uncertainties of predicted errors of wind
and PV power outputs were formulated by scenarios generated using Latin hypercube
sampling and k-means clustering. Zhang et al. [19] proposed several short-term scheduling
optimization models with different dispatching preferences for operators. Forecasting
based on probability functions was presented to obtain typical scenarios of random vari-
ables for the next dispatching horizon. Hu et al. [20] presented a day-ahead optimization
model for the hybrid system consisting of cascaded hydropower, wind, and photovoltaic
stations using the stochastic optimization method, where the strong regulation ability
of hydropower is considered. To capture the correlation characteristics of wind and PV
power, the improved generative adversarial networks method is adopted. Yuan et al. [21]
proposed a coordination mechanism between the hydropower-PV co-generation station
and the power grid. Guo et al. [22] proposed a generation curve formulation method to
achieve steady power delivery considering the operation requirements of high-voltage
direct current transmission. Representative scenarios were generated to describe the un-
certainties of renewable energy power generation. Zhang et al. [23] proposed a stochastic
optimization model for cascaded hydropower-wind PV plants, where the autoregressive
moving average model and improved vine-copula theory are adopted to simulate the joint
probability distribution of renewable energy power using measured data.
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The above stochastic optimization models focus on generating typical scenarios to
represent the wind and PV power uncertainties to balance the calculation speed and accu-
racy [24-26]. The key to these research papers is to generate a limited number of scenarios
to represent the probability distribution characteristics of random variables. However, it is
difficult to cover all possible scenarios, especially extreme scenarios, to analyze operation
risks for multi-energy complementary systems. In the case of the limited transmission
capacity of hydropower and photovoltaic systems, extreme PV output scenarios may influ-
ence the operation of the combined power generation system, resulting in severe renewable
energy generation curtailment [27,28].

With the rapid development of the Chinese economy, the peak—valley differences of
the power loads have tended to increase significantly. Since the ramping power of coal-fired
thermal units is limited and requires several hours to start up or shut down, flexible power
sources for peak regulation are obviously insufficient in a coal-dominated energy system,
which increases operational costs and risks for power systems. Cascaded hydropower is
characterized by huge installed capacities and flexible regulation capacity, usually applied
for peak-shaving and frequency-regulating power systems.

Against this background, the peak-shaving operation of cascaded hydropower and
photovoltaic generation systems (CHPSs) aims to smooth the residual load so that the
residual power supplied by thermal units will be flat. However, the peak-shaving operation
of CHPSs is a complex nonconvex and nonlinear programming problem because of the
nonlinear formulation of hydropower production functions, spatial-temporal coupling of
hydraulic connections, unit commitment constraints, and uncertainties associated with
renewable energy generation [29].

In view of the above problems, this work aims to present a schedule-optimization
model for the peak-shaving operation of CHPSs in which PV output uncertainty is involved
based on a chance-constrained programming approach. Also, the complex constraints,
including hydraulic connection, unit commitment, and limited transmission capacity, are
considered. The main contributions of this paper can be summarized as follows:

(1) A unit-based peak-shaving schedule optimization model for CHPSs considering
transmission capacity is established in this paper. The proposed model considers the
peak-shaving demand of the receiving-end power grid and the accommodation of PV
power generation.

(2) Non-parametric kernel density estimation is utilized to simulate probability density
functions of PV forecast errors based on historical sampling data. To facilitate the
modeling of PV uncertainties, the proposed schedule-optimization model is refor-
mulated as a chance-constrained optimization. In addition, the proposed nonlinear
model is transformed into a mixed-integer linear programming (MILP) problem to
improve computational efficiency.

The remainder of the sections are organized as follows: Section 2 establishes the day-
ahead coordination mechanism of cascaded hydropower plants and photovoltaic stations.
Section 3 presents a peak-shaving schedule optimization model of cascade hydropower—
wind-photovoltaic hybrid systems. Section 4 provides a chance-constrained reformulation
and transformation of the proposed model. Case studies are carried out in Section 5, and
conclusions are given in Section 6.

2. Day-Ahead Peak-Shaving Coordination for Cascade Hydropower and
Photovoltaic Systems

Cascaded hydropower and photovoltaic complementary generation systems are
shown in Figure 1. The cascaded hydropower station is bundled with a photovoltaic
system to transmit power using the same transmission line to the receiving-end power
system. The cascaded hydropower station can operate flexibly with good regulating abil-
ity, assisting in the creation of power-generation plans concerning the randomness and
fluctuation of photovoltaic output.
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Figure 1. Schematic diagram of cascaded hydropower and photovoltaic complementary generation
system.

The mode of CHPS participation in the power grid operation is as follows:

(1) In the day-ahead stage, runoff data and photovoltaic outputs on the next day are
predicted and reported to the centralized control center of CHPSs.

(2) According to the forecast load data on the next day, the control center of CHPSs
makes the unit commitment, stop, and generation plan of CHPSs, with the technical
characteristics of cascaded hydropower such as water balance, power capacity, and
start-up and shut-down operation constraints taken into account. The power output
schedule of CHPSs is then submitted and reported to the system operator of the
receiving-end system operator before the power delivery begins.

(38) The system operator of the receiving-end power grids coordinates the power supply
and loads of the whole power system to determine the final power generation curve
of CHPSs. According to the confirmed transmission plan of CHPSs, the receiving-end
system operator then arranges the generation plan for other power plants.

Therefore, the short-term peak-shaving model of CHPSs aims to decrease the peak-
shaving pressure of the receiving-end power systems while considering the promotion of
PV power. In the proposed model, the day-ahead output schedule of hydropower units,
unit commitment schedule, and water discharge of the cascaded reservoir are optimized.
However, PV power cannot be accurately predicted and is easily affected by meteorological
factors such as radiation intensity. With limited transmission capacity, PV uncertainty
may cause severe power curtailment. To cope with this issue, non-parametric kernel
density estimation is utilized to fit the PV power forecast error, which is involved in
the proposed schedule optimization model based on chance-constrained programming.
Chance-constrained programming is useful for risk control when making decisions under
uncertainties. By introducing the confidence parameters, chance constraints are established
to ensure that any constraints subject to uncertainty factors will be feasible with a certain
level of confidentiality predefined by the decision-makers. Using chance-constrained
programming, PV uncertainty can be considered so that the PV power can be fully absorbed
at a certain confidence level. It is important to highlight that this study has assumed that
hydropower plants and photovoltaic stations are owned by the same stakeholder and
operated by the same dispatching center, and thus cooperation between hydropower and
photovoltaic power can be achieved smoothly.



Sustainability 2023, 15, 16916

50f 20

3. Optimal Scheduling Model of CHPSs
3.1. Objective

The optimal scheduling of CHPSs aims to minimize the peak-valley difference of
the receiving-end grid’s residual load. A scheduling optimization model of CHPSs is
established to reduce the fluctuation of the residual load of the receiving-end power grid
and reduce the regulating pressure of other peak-regulation sources (such as thermal
power) [30]. The objective function can be expressed as follows:

min F = max Pyp,— min P 1
=127 Rt g RE M
I G;
Py =Pri—Povi—) ) Pig 2)
i=1g¢=1

where F is the peak-valley difference of the residual load of the receiving-end grid; T is the
number of periods in a scheduling cycle; Py , and P, , are the residual load and the original
load of the receiving-end power grid at time interval ¢, respectively. Ppy ; is the PV power
output at time interval ¢, I is the number of cascaded hydropower stations participating in
operation, G; is the total number of units of hydropower station i, and P; ¢ ; is the output of
unit ¢ in hydropower station 7 at time interval f.

3.2. Constraints

1.  Water balance constraints:

Vie = Vier + (Ry + Q% | — Q%) At 3)
Gi

O =Y Gigt+si 4)
g=1

where V; ; is the storage capacity of reservoir 7 at time interval t; Q9}", R; ,, and s; ; are total
water discharge, local inflow, and water spillage of hydropower station i at time interval £,
respectively; g; ¢ ; is the turbine discharge of unit ¢ in hydropower station 7 at time interval
t; At indicates the duration of a scheduling period in the scheduling cycle; and 7;_; is the
water lag time between the hydropower station i — 1 and hydropower station i. Water
balance needs to be considered in the operation of a cascade hydropower system, as shown

in (3) and (4).

2. Storage control constraints:

V; <V,<V

imin = Vit = Yimax (5)

V',O =V Vi,T = Vi,end (6)

i i,begin/

where V, . and V, . are the upper and lower limits of the storage capacity of reservoir i,

respectively; and V. gin and V; . are the target control storage capacity of reservoir i at

the beginning and end of the dispatching period, respectively. Expressions (5) and (6) set
the initial and expected terminal reservoir storage volumes, respectively.

3. Power and abandoned water flow constraints:

ui,g,tqgn < Gigt < uz’,g,tqg;fax )
0< Sit <s; (8)

i,max

where u; ¢ ; is a 01 variable representing the on-off state of unit ¢ in hydropower station i
max min

max and g}
i,g i,g
tively, the upper and lower limits of the generation flow of unit g in hydropower station i;
S; max 18 the upper limit of abandoned water flow of hydropower station i. Expressions (7)
and (8) give the upper and lower bounds of water discharge.

at time interval t. If the unit is on, its value is 1; otherwise, it is 0. g are, respec-
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4.  Hydropower unit generation characteristic constraints:

Hydropower outputs can be expressed as a nonlinear function of turbine discharge,
energy conversion ecoefficiency, and net water head, as shown in (9). Also, the upper and
lower limits of hydropower outputs are shown in (10).

Pj St = 9~81p77i,gHi,g,tqi,g,t (9)
uzgtP < P gt = < uzg,tp (10)

where p is the density of water; 7; ; is the generation efficiency of unit ¢ in hydropower
station ; H; ¢ s is the net water head of unit g in hydropower station 7 at time interval ¢; and
P;I‘gax and Pir,‘:gm are, respectively, the maximum and minimum technical outputs of unit g in
hydropower station i.

5. Vibration zone restriction of hydropower unit constraints:

Hydropower with a large capacity usually has several discontinuous vibration zones.
Hydropower units should avoid operating in the vibration zones, as shown in (11).

=V
(Pogt = Pigi) (Pigst = Pligi) = 0 (11)

=V . . I
where P, o y and Bvi,g,k are, respectively, the upper and lower limits of the vibration zone
k of unit g in hydropower station i.

6.  Unit commitment constraints:
{ Yigt = Yigt = Uigt = Uigi-1 (12)
Yig,t + yi,g,t <1

where y; ¢+ and y; o are 0-1 variables representing the start-up and shut-down opera-
tion of unit ¢ in hydropower station 7 at time interval ¢, respectively. Expression (12)
presents the relations of start-up and shut-down operations with on/off status for every
hydropower unit.

7. Generating head of the unit constraints:

Higr = (Z + 27y 1>/2 ~ Zfy — Higy (13)

where Zup is the forebay water level of reservoir 7 at time interval ¢, Ztl is the tail water

level of reservoir i at time interval ¢, and HIOSS is the head loss of unit g in hydropower
station i at time interval t. Expression (13) prov1des the calculation method of the net
water head.

8. Relation between forebay water level and reservoir storage capacity:

ZP = frpi(Viy) (14)
where fgp ;(-) is the function of the forebay water level and storage capacity of reservoir i.

9.  Tail water—discharge relationship constraints:

G
Zzt,lt = frL,i <Z Qigt T 5i,t> (15)

g=1
where f11 ;(-) is a function of the tail water level of grade i reservoir and the discharge flow.
10. Delivery transmission capacity constraints:

The delivery transmission capacity of CHPSs is usually issued by the power sys-
tem’s operator while considering the power system’s secure operation constraints. Then,



Sustainability 2023, 15, 16916

7 of 20

the CHPS optimizes the schedule of hydropower and photovoltaic with the maximum
transmission capacity as shown in (16):

I G
22 1gt+PPVt<PLmax (16)
i=1g=1

where P nay is the maximum transmission capacity of transmission lines for CHPSs.
11. Positive and negative system reserve constraints:

Hydropower stations usually assume the responsibility of providing reliable upward
and downward reserves for power grids, which should be considered in the schedule
optimization of CHPS, as shown in (17) and (18):

I

Y Y (P — Py ) > 0Py (17)
i=1g=1

ZZ( st — Hig i PIA") =GP (18)
i=1g=1

where 4 is the load reserve rate required by receiving-end power grids.
In summary, the day-ahead optimal scheduling model of CHPSs comprises (1)—(18).

4. Chance-Constrained Model Formulation and Deterministic Transformation
4.1. Modeling of PV Output Uncertainty Sets

In recent years, although PV power forecasting in the day-ahead has significantly
improved, forecast errors of PV power generation are still unavoidable [31,32]. PV outputs
are easily affected by weather, and PV output prediction has obvious uncertainty. The PV
output can be described as the sum of the PV output predicted value and the PV prediction
error, as shown in Equation (19):

Ppy; =P lfjv,t + Ppy s (19)

where PPVt is the predicted value of PV output at time interval ¢, and Pgy; , is the PV’s

prediction error at time interval ¢. PPVt can be predicted in advance by combining mete-
orological information. Ppy ; has obvious uncertainty and fluctuates randomly within a
certain range, which can be obtained based on experience or data analysis. Usually, the PV
power forecast errors are assumed to follow a normal distribution to model the PV power
uncertainty. However, it has been proven by many studies that the normal distribution
can simulate the forecast error to a satisfying degree. With measured data, non-parametric
kernel density estimation has good performance to estimate the probability distribution of
random variables without relying on presetting probability distribution functions [33-35].
The kernel density estimation formulation for PV power output over a single time interval
is shown in (20): . .
e 1 & Poy,— Py,

ft(PPV,t> nthtizle( ht ) (20)
where 1 is the number of samples; h; is the bandwidth; K(+) is the kernel density function,
and the Gaussian kernel function is used in this paper; Ppy, , ; is the sample of forecast error
that can be obtained from historical data of PV operation.

4.2. MILP-Based Formulation

The established model includes a min—-max form objective function, as shown in (1);
constraints with stochastic variables, as shown in (16); and non-linear constraints, as shown
in (9), (11), (14), and (15), which make the proposed model difficult to solve directly. Many
methods, such as Lagrangian relaxation (LR), dynamic programming (DP), and intelligent
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heuristic algorithms, have been applied to solve the hydropower scheduling-based problem.
Many difficulties and challenges are encountered with the above methods [36]. In recent
years, mixed-integer linear programming (MILP)-based approaches have been adopted by
more and more researchers to solve hydropower scheduling-based problems because of the
availability of better-performing and more user-friendly commercial software with efficient
solvers such as CPLEX v12.10.0 and Gurobi v11.0 [37,38]. The various linearization methods
can be used to transform the proposed model into a mixed-integer linear programming
problem, as follows:

4.2.1. Transformation of the Objective Function

Since objective function (1) contains the nonlinear form of min-max, auxiliary variables
PR max and PR min are first introduced to represent the maximum and minimum of the
residual load of receiving-end power grids, and objective (1) is formulated as (21)—(23):

min F = PR,max - PR,min (21)
I G;

Promax > Pre—) . ) Pigt— Plf’V,t — Ppy (22)
i=1g=1
I G

Promin < PLt— ) ) Pt — Py, — Piy, (23)
i=1g=1

where PR max and PR min are, respectively, the maximum and minimum value of residual
loads of receiving-end power grids.

However, (22) and (23) contain the PV power output forecast error, which is a stochastic
variable. The uncertainty of PV output makes it difficult to directly solve the model, and the
equivalent transformation is required. To transform the proposed model into a deterministic
one [36,37], the proposed objective can be further transformed into a chance constraint, as
shown in (24)-(26):

I G
Pr{Pl%t,min < PL,f - Z Z Pi,g,t - PIf’V,t - PI‘EV,t < PIg,t,max} > IB (24)
i=1g=1
PR,max 2 PI%t/maX (25)
PR,min S P]%t,min (26)
where PI% £ max and Pl% ¢ min are, respectively, the lower and upper bounds of the interval of

residual loads of receiving-end power grids at time interval f. (26) means that the residual
PE

R max | at time interval t with

load of receiving-end power grids is in the interval [PI({j £ min
the confidence level .

The chance constraints make it difficult to solve directly. Using a cumulative probabil-
ity distribution fitted by non-parametric kernel density estimation, chance-constraints are

converted to the equivalent deterministic form as follows:

I G
£ 1 C
Pri—Y. ) Pigt = Povy — Fpy (1= B) < PRt max (27)
i=1g=1
Lo £ 1 C
Pri—3 ) Pigt—Ppy;— Foy ¢ (B) 2 PRt min (28)
i=1g=1

where FP_V1 +(+) is the inverse function of the cumulative density function of the PV forecast
error at time interval ¢.
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4.2.2. Transformation of Power Transmission Limits

Also, with the PV power forecast error, the power transmission limit constraint (16)
contains a stochastic variable, which can be rewritten as (29). For the deterministic transfor-
mation of (29), the power transmission limit constraint can be formulated as the chance
constraint, as expressed in (30) with the confidence level &, and further transformed into a
deterministic formulation using the cumulative density function, as shown in (31).

I G

Y zgt+PPVt+PPVt<PLmax (29)
i=1g=1
I G
Pf{ZZ ,g,t+PPVt+PPVt<PLmax}21X (30)
i=1g=1
I G;
Z Z P',g,t + PIf’V,t + FP_Vl,t(ac) < pL,max (31)
i=1g=1

4.2.3. Linearization of Output Characteristics of Hydropower Units

As seen in Equation (9), there is a nonlinear function relationship between hydropower
unit outputs and the generating efficiency, generating flow, and generating water purifica-
tion head. In this paper, it is assumed that the power-generation efficiency 7; ; of each unit
is constant, and the output characteristics of the hydropower unit can be linearized by the
McCormick convex envelope relaxation method [20,39], as shown in (32)-(35).

Pigt > 087 (715 H g + HIM™gy 0 — qan H" ) (32)
Pigt = P80 (4 Higs -+ HIM™qi 0 — g HP™) (33)
Pigt < 080 (08 Hy g+ HI™ g 0 — A" HP™) (34)
Pigt < 80 (478 Higs + HMgs 0 — I H™) (35)

4.2.4. Linearization of Vibration Zone Operation Constraints

The operation characteristics of a large hydropower unit are shown in Figure 2. There
are usually multiple vibration zones within the feasible range of its technical output. The
safe operation division of the unit is divided into several discontinuous zones [40,41],
and the nonlinear constraint of Equation (11) is transformed into a linear constraint by
introducing 0-1 variables, expressed as (36) and (37):

K+1

Z Zigt = Uigt (36)
K+1 K+1
Y 2K P <P < Y 2k P (37)
igt=igk = tigt = igtt gk
k=1 k=1

where K is the number of vibration zones of unit g in hydropower station i, and z¥ gt isa

binary variable. If the output of unit g in hydropower station 7 at time interval ¢ is located in
the safe operation zone k, its value is 1; otherwise, it is 0. ﬁi,g,k and Bi,g,k are, respectively, the
upper and lower limits of the safe operation zone k of unit g in hydropower station i. Their
values correspond to the upper and lower limits of the vibration zone and the maximum
and minimum technical output of the hydropower station, and the specific corresponding

Py Pigk =PY

max
i,k .

and pi,g,K-‘rl =P

: : __ pmin _
relationships are Bi,g,l = Pl-, T Bz’,g,k 1= i kr i
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Figure 2. Schematic diagram of vibration zone of hydropower units.

4.2.5. The Relationship between Forebay Water Level and Storage Capacity

The relationship between the forebay water level and the storage capacity is nonlinear.
The nonlinear relationship is linearized by the piecewise linearization method, as shown in
(38)—(42).
Firstly, the storage capacity of reservoir i is divided into | intervals:
{WM—W<W<m<W<m<W—W“ 68)
Z} = fesi(V])

where Vi] is the water storage capacity of reservoir i at the endpoint of subdivision j, and Z{
is the corresponding water level of reservoir i at the endpoint of subdivision j. Then, at

time interval ¢, the forebay water level Zluf and the storage capacity Vl] , of reservoir i can
be expressed as (28)—(31):

/.
Yo, =1 (39)
j=1
: ]
2 Vi,t = Vi,t (40)
]:
j yi~t <yl R
Vi SV < ns (41)
I (. . 7l _ 71 S
up __ J i1 ] j—1
Ziy = Z:{ri,tzi toort Ve s } } (42)
=1 Vi Vi

where rf ; is a binary variable to mark if the storage capacity of reservoir i is in the section j
of storage capacity of at time interval ¢. If yes, it is 1; otherwise, it is 0.

4.2.6. Linearization of the Relationship between Tail Water Level and Release Flow

The relationship between tail water level and release water flow shown in Equation (15)
is linearized by the piecewise linearization method similar to (38)-(42), which is not
listed here.

To summarize, the day-ahead peak-shaving scheduling model proposed in this paper
is converted into a MILP problem, which can be solved by a mature commercial solver. In
this paper, the Yalmip /Gurobi solver solves the established optimal scheduling model.
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5. Case Study

Three cascaded hydropower stations and one aggregated photovoltaic power station
are included. The total installed capacity of the cascade hydropower station is 3310 MW, the
capacity of the photovoltaic power station is 1000 MW, and the transmission capacity of the
cascade hydropower system is limited to 3500 MW. Confidential levels « and f are both set
to 0.95. The predicted output value of the photovoltaic power station is shown in Figure 3.
The upper and lower bounds of the actual output with the given confidence level (estimated
using the inverse cumulative density function of the PV forecast error) are shown in Figure 3.
The relevant parameters of cascade hydropower units, runoff, and reservoir parameters are
shown in Table 1. The load curve of the receiving-end power grids takes the measured load of
a power grid in a province of China as an example. The load peak value is 15,000 MW, the
load valley value is 9600 MW, and the load peak-valley difference is 5400 MW.

9001

= 600
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=
&
=
o
(&)
2 300
©
>
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0

Timeh
—=— Predicted output Fluctuation range

Figure 3. Fluctuation range of photovoltaic output.

Table 1. Parameters of cascaded hydropower units.

Hydropower Installed Unit Vibration Maximum Power Flow
Station Capacity/ MW Zone/MW per Unit/(m3-s—1)
1 4 x 460 0~80, 150~300 257
2 4 x 300 0~40, 80~180 328

5.1. Analysis of the Results of Pre-Day Peak Scheduling

Figure 4 shows the optimized residual load curve of the receiving-end power grids and
the output of hydropower and PV stations. Since PV outputs are uncertain, the PV outputs
are the predicted values in Figure 4. It can be seen in Figure 4 that the CHPSs can adjust their
power outputs according to the change in the load curve to achieve peak-shaving operation.
The task of peak regulation is mainly undertaken by the first and second hydropower stations
and the photovoltaic power station. This is because the reservoir capacity and installed capacity
of the third hydropower station are small, and its regulation capacity is limited. In the valley
load periods (1-7 h), the hydropower station stops and reduces its outputs. In the first load
peak period (10-12 h), the photovoltaic outputs are high, and the cascade hydropower station
appropriately reduces its outputs to ensure the full accommodation of photovoltaic power
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generation. In the second peak load period (16-18 h), the photovoltaic outputs decrease. The
outputs of the cascaded hydropower station are increased to achieve the effect of peak regulation.

5000 116,000
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S 3000 f 12,000 =
Z . =
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g E
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@) 10,000 S
1000 | 2000
0 === 6000
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I st hydropower station [ ] 3rd hydropower station
I 2nd hydropower station [ Photovoltaic

—+— Original load —¥— Residual load
Figure 4. Optimal dispatching results of CHPSs.

The peak-shaving effect of CHPSs on the grid is shown in Table 2. As can be seen
in Table 2, after the peak-shaving of CHPSs, the peak—valley difference of the receiving-
end power grids’ load is reduced from the original 5400 MW to 2319 MW, with a de-
crease of 57.1%, and the load variance of the receiving-end power grids is reduced from
3,022,344 MW? to0 556,200 MW?, with a decrease of 81.6%. After the joint optimization of
CHPSs, compared with the original load curve, the residual load curve is flatter, and the
peak-valley difference and smoothness of the load curve are greatly improved. CHPSs can
adjust their outputs in time according to the load-changing trend to meet the peak regula-
tion demand of the receiving-end power grids and reduce the ramping and peak-shaving
pressure of other regulating power sources in the receiving-end power grids.

Table 2. Peak-shaving effect of proposed method.

Receiving-End Peak Valley Peak—Valley . 2
Power Grids” Load Value/MW Value/MW Difference/ MW Variance/MW
Original load 15,000 9600 5400 3,022,344
Residual load 11,755 9436 2319 556,200

Figure 5 shows the change curve of the forebay water level of cascaded hydropower
over time on a dispatching horizon. It can be seen in Figure 5 that the forebay water level
meets the upper and lower limits of the water level, and the water level at the end of the
dispatching horizon meets the control requirements. Due to the valley load before 7 h, the first
reservoir is continuously filled with water from 1 to 7 h to provide sufficient water storage
for the subsequent peak-load periods to generate electricity for peak-shaving. The second
hydropower station generates electricity at 1 h and carries out peak regulation for power grids,
which results in a reduction in the water level of the second reservoir at this time. From 2 to
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7 h, the second reservoir is continuously filled with water. The third-level reservoir will arrange
the power-generation plan appropriately and reserve enough storage space for the subsequent
period of operation. In the first peak-load periods, the PV outputs are high, and the peak load is
mainly undertaken by the first-grade hydropower station. Therefore, the forebay water level of
reservoir 1 decreases, while the forebay water level of the second-grade and third reservoirs
increases due to the output limitation. In the second peak-load period, the PV outputs decrease,
hydropower undertakes the main task of peak-load regulation, the first and second hydropower
stations rapidly increase their outputs, and the forebay water level decreases. The first and
second hydropower stations are multi-year and annually regulating power stations with large
installed capacity and located upstream, which has a greater impact on the downstream inflow.
The storage capacity of the third reservoir is small. The forebay water level of the third reservoir
increases due to the significant increase in upstream inflow. After the second peak-load period,
all forebay water levels of hydropower rationally arrange the output plan and finally reach the
target control water level at the end of the dispatching horizon.
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Figure 5. Water level curves of cascaded reservoirs. (a) The first hydropower station; (b) The second
hydropower station; (c) The third hydropower station.
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Figure 6 shows the on-off status and schedule plans of hydropower units. Since
hydropower units can be flexibly started up and shut down, hydropower outputs are
regulated to compensate for PV generation. In addition, with the constraints of vibration
zones, hydropower can avoid all the vibration zones within a dispatching horizon.
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Figure 6. Hydropower outputs of different units. (a) The first hydropower station; (b) The second
hydropower station; (c) The third hydropower station.
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5.2. Comparison between Chance-Constrained Model and Deterministic Model

In order to illustrate the characteristics of the proposed chance-constrained model, the
optimization results of the chance-constrained model (CCM) and the deterministic model
(DM) are compared. The PV output in DM is equal to the predicted output. The cascade
hydropower outputs obtained by CCM and DM when the delivery transmission capacity
is limited to 3500 MW are compared, as shown in Figure 7. The cascade hydropower
outputs obtained by CCM are slightly smaller than those obtained by DM during peak-
load periods. This is because DM assumes that PV output is predicted accurately, and
in order to achieve a maximum peak-shaving effect, scheduled outputs of hydropower
in CHPSs reach the maximum delivery transmission capacity during peak-load periods.
However, there is a certain overlap between the peak load period and the peak photovoltaic
output period. In order to consider the uncertainty of PV output prediction, the output of
hydropower in CHPSs obtained by CCM needs to leave a certain adjustment space for PV
power generation by coordinating hydropower outputs when the delivery transmission
capacity is limited. Therefore, during peak-load periods, cascade hydropower outputs
obtained by CCM are reduced to avoid PV power abandonment in real-time operation due
to the actual PV output being higher than the predicted output. Thus, the accommodation
of PV power generation can be promoted.
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2500 r

2000

1500

Output / MW

1000

500

O ||||l|||

NY Y %N 5 6A D9 DN XROEN DO DA YA
Time /h
Figure 7. Comparison of hydropower output between DM and CCM.

Considering that the actual PV output fluctuates greatly, the actual peaking effect of
CCM and DM in CHPSs is compared and analyzed, and typical PV actual output curves
are selected within the given PV output fluctuation range, as shown in Figure 8. The
peak-shaving effect obtained by CCM and DM in the actual PV output scenario is shown
in Table 3. It can be seen in Table 3 that both CCM and DM models can reduce the peak
load of receiving-end power grids by adjusting the output of cascade hydropower. The
peaking effect of the cascade hydropower output plan obtained by CCM is slightly worse
than that of DM in some scenarios, but CCM can consider the uncertainty of photovoltaic
output to effectively avoid PV power generation abandonment. Therefore, the proposed
CCM can improve the benefits of CHPSs while considering the demand for power grid
peak regulation.
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Table 3. Peak-shaving effect of different dispatching models.
Model PV Output Peak—Valley PV
Scenario Difference/ MW Curtailment/(MW-h)
Predicted output 2074
Scenario 1 2064
cCM Scenario 2 2217 0
Scenario 3 2217
Scenario 4 2219
Predicted output 1999 0
Scenario 1 2064 75
DM Scenario 2 2142 0
Scenario 3 2082 75
Scenario 4 2145 0

5.3. Sensitive Analysis of Delivery Transmission Capacity

The dispatching results of CHPSs will be affected by delivery transmission capacity.
The peak-shaving effect of CHPSs under different delivery transmission capacities is
shown in Table 4. It should be pointed out that when the delivery transmission capacity
is 4000 MW, the delivery transmission capacity is large enough relative to the installed
capacity of hydropower and photovoltaic; that is, the hydropower and photovoltaic output
is not limited by the delivery transmission capacity. In this case, the cascade hydropower
output plan is the output plan that does not consider the delivery transmission capacity
limit. As can be seen in Table 4, since the delivery transmission capacity will limit the
hydropower output in CHPSs during peak-load periods, thus affecting the peak-shaving
effect, with the increase in the delivery transmission capacity, the peak-shaving capacity of
CHPSs will be enhanced, and the peak-valley difference of the receiving-end power grid
will be reduced.
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Table 4. Peak-shaving results of different transmission capacities.
Delivery Transmission Difference between
Line Capacity/MW Peak Value/MW  Valley Value/MW 501 21d Valley/MW
3000 12,255 9436 2819
3300 11,955 9436 2519
3500 11,755 9436 2319
4000 11,554 9436 2118

In order to analyze the influence of transmission capacity limitation on unit output,
two cases are set up as follows:

Case 1: delivery transmission capacity is 3500 MW;
Case 2: delivery transmission capacity limits are not considered.

The day-ahead optimal schedule of cascade hydropower stations in two cases is
shown in Figure 9. As can be seen in Figure 9, during peak-load periods, the cascade
hydropower outputs of Case 2 are higher than those of Case 1. The reason for this result is
that between 11 and 14 h, the actual PV output may be lower than the predicted output
due to shielding and other reasons, thus reducing the peak-shaving effect of CHPSs during
peak-load periods. Case 2 does not consider the limit of transmission capacity. Thus, in
order to achieve a better peak-shaving effect under the worst PV output scenario, the
CCM optimizes a cascade hydropower scheduling plan to increase hydropower outputs
during this period to avoid deviation from the expected peak-shaving effect due to the
decrease in PV output. In contrast, the hydropower-generation plan in Case 1 is low to
avoid PV power generation abandonment due to the actual PV output being higher than
the predicted output. The hydropower-generation plans of the two cases are different, and
if the transmission capacity limit is not taken into account in operation, it will inevitably
lead to serious energy abandonment.
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Figure 9. Cascaded hydropower output comparison of different transmission capacities.
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The hydropower output plan and corresponding peak-shaving effect under different
transmission capacity limits are different. Therefore, CHPSs need to fully consider the
limitations of transmission capacity to formulate a reasonable scheduling plan. Then, the
promotion of new energy accommodations and improvements in the peak-shaving effect
can be balanced.

6. Conclusions

In this paper, a chance-constrained day-ahead peak-shaving scheduling optimization
method for cascaded hydropower-photovoltaic complementary generation systems is
proposed that considers the constraints of upstream and downstream hydraulic coupling
and unit operation. The kernel density estimation is utilized to calculate the probability
density functions of PV forecast errors. To deal with the proposed nonlinear and stochastic
constraints in the proposed model, chance constraints are presented, and an efficient
linearization method is proposed to transform the proposed model into a MILP problem.
The effectiveness of the proposed model is verified by an example analysis. The numerical
results show the following:

1. By optimizing the power-generation schedule of cascaded hydropower stations, the
fluctuation of photovoltaic power generation can be effectively compensated for, and
the peak-shaving goal can be achieved. The output plan for cascaded hydropower is
reasonable, with all the hydraulic and unit operation constraints satisfied.

2. By fitting the PV forecast error with kernel density estimation, uncertainties of PV
power outputs are included to formulate a chance-constrained optimization model
for coordinating cascaded hydropower plants and PV stations. Using linear and
deterministic transformations, the proposed chance-constrained model can be quickly
solved by commercial software.

3. Thejoint operation of hydropower and PV can effectively reduce the negative impact
of PV power uncertainties on PV generation curtailment and peak-shaving capacity of
CHPSs. That is, PV power curtailment is minimized while the demand for receiving-
end power grids’ peak-shaving is satisfied.

With the development of renewable energy along with existing hydropower systems,
bundled transmission using the same delivery transmission lines to deliver clean energy
power is a promising pathway to improve the utilization of renewable energy. For an actual
engineering project like the Longyangxia hydropower-PV complementary generation
system, the proposed coordination method can be used to decrease the power curtailment
caused by PV uncertainties. However, as hydropower uses its flexible regulation capacity
to compensate for PV power, the coordination of hydropower and PV generation could
damage the hydropower plant. In this work, a widely used assumption is made that
hydropower plants and photovoltaic stations are owned by the same stakeholder and
operated by the same dispatching center. In a practical project, hydropower and PV
systems are not necessarily operated by the same operator. So, the coordination and
compensation of hydropower and PV should be further investigated.

On the other hand, electricity markets have been widely established in China in recent
years following the combination of medium- to long-term bilateral contracts and day-ahead
spot transactions. In this case, the schedule optimization of CHPSs in electricity markets is
of great significance and will be investigated in our further work. Specifically, two main
challenges should be addressed: (1) balancing the transaction of medium- to long-term
bilateral contracts and day-ahead sports markets, since these two markets are deeply
coupled; and (2) quantifying and modeling uncertainties associated with renewable energy
power and day-ahead market price.
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