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Abstract: Whilst upcoming innovations on digital technology and renewable energy can have
a significant impact on the reduction of operational carbon emissions in the construction industry,
readily available fast-growing building materials like bamboo are already proving reductions in the
embodied carbon of dwellings above 60% when compared to traditional brickwork in Colombia.
This paper presents a like-by-like comparison of the environmental impact of a conventional clay
brick house (CBH) and a bamboo house for social housing in Colombia, which was built using
adapted vernacular technologies. The bamboo house uses bamboo species Guadua angustifolia
Kunth as the main structural support for the light cement bamboo frame (LCBF) system, a.k.a.

‘cemented bahareque’, whilst the CBH combines clay bricks and steel for the load-bearing walls.

Traditionally built Guadua angustifolia Kunth bahareque (GaKB) houses are a key part of the vernacular
architecture in the ‘coffee cultural landscape of Colombia’ (CCLC) recognised by UNESCO. A life
cycle assessment (LCA) was performed to calculate the carbon footprint of the houses following
four phases: (1) definition of objective and scope; (2) inventory analysis; (3) impact assessment; and
(4) interpretation of results. The results show that the carbon footprint of the GaKB house accounts
for about 40% of the CBH, i.e., the GaKB generates a carbon footprint of 107.17 CO,-eq/ m? whilst
the CBH results in a carbon footprint of 298.44 kg CO;-eq/ mZ2. Furthermore, from a carbon balance
calculation, the carbon footprint of the GaKB house is further reduced to about 36% of the CSB
house. LCA results for the built GaKB house demonstrate that vernacular housing projects that
preserve cultural heritage can also be resilient and climate-neutral. This paper sets a precedent for
the establishment of targeted government policies and industry practices that preserve the cultural
heritage and vernacular technologies in the CCLC region and in other emergent economies worldwide
whilst promoting future-proof and net-zero carbon construction.

Keywords: biobased building materials; life cycle assessment; carbon footprint; environmental loads;
sustainable building; vernacular housing

1. Introduction

Construction with bamboo and bio-based materials is a key part of the cultural heritage
of the ‘coffee cultural landscape of Colombia’ (CCLC), which was inscribed on the UNESCO
world heritage list in June 2011. The CCLC region includes 18 urban centres and six farming
areas (highlighted in Figure 1) across four neighbouring states (departments) in Colombia
(Caldas, Risaralda, Quindio, and Valle del Cauca). However, this heritage is at risk of
disappearing due to government policies promoting the use of conventional “modern”
materials such as structural clay brick, cement block, steel, and concrete, which are known to
contribute to about 16% of global carbon dioxide (CO,) emissions. With the global demand
for steel and cement to grow between 12-23% and 15-40%, respectively, by 2050 [1], the
need to rescue and future-proof low-carbon vernacular techniques widespread in the CCLC
region and worldwide is paramount.
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Figure 1. Location of the Colombian Coffee Cultural Landscape (CCLC), which includes the depart-
ments (states) of Caldas, Risaralda, Quindio, and some municipalities of northern Valle del Cauca.

Recent research on ‘sustainable vernacular architecture’ is demonstrating how the
implementation of vernacular techniques and the use of natural and bio-based materials
globally offer vital lessons for sustainable architecture, with reduced environmental impacts
and increased energy efficiency [2—4].

A vernacular technique in the CCLC region commonly known as ‘bahareque’ [5,6]
makes up a high degree of vernacular dwellings in the region, which is one of the
16 attributes that give the CCLC its exceptional character, according to UNESCO. Tra-
ditionally, the bahareque system is composed of bamboo mats (‘esterilla’) and /or metal
mesh (chicken mesh) nailed to a bamboo frame, which is then rendered with a lime or
cement mortar render, as seen in Figure 2. A modern adaptation of the system in use in
Colombia, the Philippines, and other parts of the world is referred to as the light cement
bamboo frame (LCBF) system and recognised as a structural shear wall system for low-rise
construction by ISO 22156:2021 [7-10].

Nevertheless, current perceptions of bahareque construction are torn between two po-
sitions: on the one hand, the stigmatisation due to its association with informal housing
processes in the urban peripheries (slums) and, on the other hand, its recognition as
both a standardised ‘seismic-resistant’ building system (LCBF) under ISO 22156:2021 and
a sustainable construction system for two- to three-storey dwellings [6,9,11-13].

After a devastating earthquake with epicentre in the CCLC region in 1999, the modern
version of bahareque, the LCBF or cemented bahareque wall system was included in
the Colombian code of earthquake-resistant construction or NSR-10 [14,15]. Recently,
the use of cemented bahareque has been included in the Andean Standard N-2015 [16],
ISO 22156:2021 [9], and other building codes around the world, but despite this, the use
of LCBF in Colombia has not been sufficiently stimulated by government agencies. On
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a sight of hope, a concern for rescuing vernacular techniques and ancestral knowledge
inherent to architectural heritage in Colombia is becoming evident in public policies such
as the ‘Housing and habitat Law” (HhL) and the National Sustainable Buildings Policy
(NSBP). In particular, the HhL goes beyond the concept of social interest housing (affordable
housing) by introducing the concept of cultural interest housing (CIH), which is described
as “being totally rooted in its territory and its climate; with a design, construction, financing
and regulatory criteria responding to local customs, as well as following local traditions,
lifestyles, materials, construction and production techniques” [17]. On the other hand,
the NSBP “seeks to promote the inclusion of sustainability criteria within the life cycle
of buildings, through instruments for transition, monitoring and control, and financial
incentives that allow the implementation of sustainable construction initiatives” [18]. Whilst
implementation of these policies is lacking, recent research on sustainable construction in
Colombia includes studies on circular economy [19], lean construction to optimise process
and efficiency [20], and LCA of traditional and engineered biobased bamboo buildings [9].
Circular economy and LCA approaches applied to vernacular building systems can take
into account end-of-life scenarios for the constituent materials, encourage the efficient use
of biobased materials, and promote the recovery of degraded land and ecological systems.

1 Bamboo studs (round GaK culms)
2 Bamboo top rail (round GaK culms)
3 Bamboo rafters (round GaK culms)
4 Esterilla (GaK mats)

5 Cement mortar render

—

Figure 2. Light cement bamboo frame (LCBF) system.

The life cycle assessment (LCA) approach is recognised worldwide for its effectiveness
in assessing environmental impacts. In particular, the measurement of the equivalent
carbon footprint (kg CO;-eq) of materials and buildings serves as a universal environmental
indicator for comparing construction practices [7,8,21,22]. A clear estimation of the impact
of these building systems can aid in the establishment of targeted government policies that
preserve cultural heritage whilst reducing the carbon emissions of new housing projects in
the CCLC region and beyond.

Commonly, the scenarios for LCA studies are fictitious and based on assumptions
about materials’ utilisation, construction methods, transport efficiencies, etc. A key novelty
of this paper is its use of first-hand data from the construction of the vernacular housing
model for a comparative LCA. Between 2020 and 2022, a prototype rural house using
the modern bahareque system was designed and built on the campus of Universidad
Tecnolodgica de Pereira (UTP) in Pereira, Colombia [23] and closely monitored by one of
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the authors, which provided an outstanding test base for this study. This project led by
Fedeguadua (the Colombian Guadua bamboo trade association or ‘Federacion Nacional
de Empresarios de Guadua y Bambu’) aims to enhance the value of regional bahareque
architecture and promote the construction of sustainable, resilient, and affordable vernacu-
lar housing for the CCLC. With the aim of aiding the promotion and implementation of
heritage and sustainable construction policies in Colombia and beyond, this study provides
a systematic analysis of the carbon footprint of a prototype vernacular bahareque house
and compares it with that of a widespread conventional clay-brick house in Colombia.
Today, the built bahareque house is a space for knowledge transfer and dissemination in
the region.

2. Materials and Methods

The methodology adopted for calculating the carbon footprint of the selected houses
is framed in the LCA approach regulated by ISO 14040:2006 [24] and ISO 14044:2006 [25]
standards. The methodological development of this study was carried out in four phases:
(1) definition of objective and scope; (2) process inventory analysis; (3) impact assessment;
and (4) interpretation (Figure 3). The LCA was carried out with the support of the soft-
ware openLCA v 1.10.3 and the ecoinvent 3.6 database. The LCA was undertaken using
the Intergovernmental Panel on Climate Change (IPCC) 2013 GWP 100th V1.03 impact
assessment method [26].

PROCESS INFORMATION REQUIRED
LCA references
Definition of Crogl et Seepe

Functional unit and environmental indicator(s)
System boundaries (stages and scenarios)
Assessment method, software and database support

goal and scope

A 4

Software modelling and parameter definition

Process ) .

invento Materials quantify

anal sirsy Transportation distances calculations

v Life Cycle Inventory (LCI)
Software feed
Environmental indicator(s) calculation (Carbon Footprint)
Impact
Assessment results
assessment

Normalization to functional unit
Results systematization

:

Interpretation

Process impacts analysis
Comparisons analysis
Verification

Reporting and communication

Sl Ll pl
S N T

Figure 3. The study’s methodology flowchart.

2.1. Definition of the Goal and Scope of the Life Cycle Assessment (LCA)
2.1.1. Goal and Scope

The goal of the LCA was to quantify the environmental impact in terms of the carbon
footprint calculation of two houses with different construction systems for comparison:
a conventional social house of Clay Structural Brick (CSB) and a Guadua angustifolia Kunth
Bahareque (GaKB) house built on the UTP campus (Figure 4). The scope of the LCA focused
on the supporting elements of the houses, i.e., key components within the construction
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system such as the foundation, the floor slab, the structural walls, and the roof structure.
Both houses use reinforced concrete strip foundation and reinforced concrete ground floor
slabs; CSB uses concrete infilled clay structural walls, reinforced concrete tie beams and
crown beams, and a roof structure with steel profiles, while GaKB house uses structural
walls on a LCBF system and a roof structure composed of Guadua trusses and beams.

Figure 4. Photos of the houses under comparison: (a) CSB house (EDUR); (b) GaKB house at the
UTP campus.

2.1.2. Functional Unit and System Boundaries

To establish the functional unit, references were adopted from previous research on
LCA, in which alternative housing systems, especially bamboo, were analysed [8,22,27].
The functional unit was determined as kilograms of carbon dioxide equivalent per square
metre (kg COy-eq/m?) of living area.

Regarding system boundaries, two stages were considered according to the European
Standard EN 15978:2011 [28], (1) A1-A3 Production stage and (2) A4-A5 Construction
process stage, which include five phases: (A1) Supply of raw materials, (A2) Transport,
(A3) Manufacturing, (A4) Transport, and (A5) Construction—installation process, where
A4 and A5 are modelled scenarios, as seen in Figure 5. The limits of the system did not
include the use stage (B1-B7), nor did they include the final stage of the life cycle (C1-C4).
This is due to the uncertainty inherent in housing in Latin America due to regulatory gaps
regarding the usage and final disposal of construction materials and economic aspects that
affect the extension of the life cycle [8].

The functional unit (kg CO,-eq/m?) was chosen to represent the characteristics of
each building system. To contrast the carbon footprint, a conventional CSB social housing
typology was taken as a baseline; considering the high replicability of this typology in
the region and in the country, we worked with the designs of the Bello Horizonte project
located in the department of Risaralda, which has 41.04 m?, provided by Empresa de
Desarrollo Territorial Urbano y Rural de Risaralda or EDUR (Urban and Rural Development
Company of Risaralda) (Figure 6a). For the analysis of the GaKB house, the vernacular
housing prototype developed by Fedeguadua was utilised, which has an area of 60.65 m?
(Figure 6b).
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Figure 5. Life cycle phases according to EN 15978:2011.

Regarding the measurement of the carbon footprint, the IPCC 2013 GWP 100th V1.03 [26]
impact assessment method of the Intergovernmental Panel on Climate Change IPCC 2013
GWP 100th V1.03 was chosen, which allows the analysis of the global warming category.

i

(b)
Figure 6. Floor plans of the houses: (a) CSB house A = 41.04 m? (EDUR); (b) GaKB house A = 60.65 m2.

2.2. Process Inventory Analysis

Once the openLCA model was set up and the main parameters were defined, the next
step of inventory analysis of the two dwellings was the calculation of material quantities.
For this purpose, the architectural and structural designs and the general construction
programme and budget were used. The values corresponding to the processes of extraction,
transport, and transformation of Guadua angustifolia Kunth (GaK) components were based
on previous LCA studies [29,30].

2.2.1. Transportation Distance Calculations

The LCA model considers the quantities of construction materials and production
sites, which were geographically located in Colombia (Table 1); distances were calculated
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with the help of the Google Maps route calculation engine. To make the models comparable,
the CSB house under analysis was assumed to also be located at the UTP campus.

Table 1. Production sites and material transport distances.

Inputs—Materials

Place of Origin or Production Distance to UTP Campus (km)

Reinforcing steel
Cement
Washed sand
Gravel
Preserved Guadua
Clay Brick

Acerias Paz del Rio, Duitama, Boyacd 530

Yumbo, Valle del Cauca 203

Corregimiento Caimalito, Pereira, Risaralda 58.2
Corregimiento Caimalito, Pereira, Risaralda 58.2

Vereda El Laurel, Quimbaya, Quindio—Dosquebradas, Risaralda 54.5
Corregimiento Cerritos, Pereira 23.1

2.2.2. Life Cycle Inventory (LCI)

Considering the phases and stages of the life cycle established in the system boundaries
for the process inventory analysis of the CSB house, the calculation of material quantities
was performed, as summarised in Table 2. An inventory structure comparable to that of
the GaKB house was modelled in openLCA, and the inputs of both models were fed with
the corresponding values.

Table 2. Life Cycle Inventory (LCI) of CSB and GaKB houses.

CSB House (41.04 m?) GaKB House (60.65 m?)

Materials kg/house kg/house
Round GaK culms - 1772.64
GaK mats - 2048.48
Concrete 28,057.89 17,651.4
Clay brick 12,174.1 564.48
Cement mortar 1944.19 5189.6
Steel * 1047.15 515.51

* Steel includes rebar and roof structure.

2.3. Impact Assessment

Methodologically speaking, this phase implies five steps: (1) software feed; (2) environ-
mental indicator’s calculation (carbon footprint); (3) assessment results; (4) normalisation
to functional unit; and (5) systematisation of results. In order to provide in-depth insight
and clarity, the results of these items will be addressed in Section 3.

2.4. Interpretation

Interpretation as a process occurs permanently throughout the LCA; even the final
phase involves four steps: (1) process impacts analysis; (2) comparisons analysis; (3) verifi-
cation; and (4) reporting and communication. As with the previous subsection, these items
will be addressed in Section 3.

3. Results and Discussion

This section showcases the results of the third and fourth phases of the LCA, corre-
sponding to the impact assessment and interpretation processes.

3.1. Environmental Indicator Calculation: Carbon Footprint

The LCA results of the construction of the CSB housing typology show that it generates
total emissions of 12,248 kg CO,-eq. The LCA of the GaKB housing resulted in total
emissions of 7220.3 kg CO,-eq. Figure 7 shows the breakdown of the impact by process in
each case.
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Figure 7. Emissions kg CO2-eq;: (left) CSB house A = 41.04 m?; (right) GaKB house A = 60.65 m?.
3.2. Normalisation to Functional Unit
To perform the comparative analysis of the carbon footprint of the two housing
typologies, the LCA results were normalised to the functional unit per living area, kg
CO,-eq/m?. Considering that the CSB house has an area of 41.04 m?, determining its
environmental impact in terms of the functional unit shows that the carbon footprint for
1 m? of living area of the CSB house is 298.4 kg CO,-eq/m?. The GaKB house has a larger
area than the CSB house, corresponding to 60.65 m?; consequently, when determining its
environmental impact in terms of the functional unit, the resulting carbon footprint per unit
of housing area is 119.0 kg CO,-eq/m?. It is evident that the GaKB house has a significantly
lower environmental impact since it accounts for about 40% of the carbon footprint of the
CSB (Table 3).
Table 3. Comparison of material and kg CO,-eq/m? of house type.
Material CSB House (41.04 m?) GaKB House (60.65 m?) GaKB/CSB Percentage
aterials kg/house kg COz-eq kgCO,-eq/m?>  kg/house kgCOr-eq kg CO,-eq/m? Comparison (%)
Round GaK culms 0.0 0.0 0.0 1772.6 365.0 6.0 -
GaK mats 0.0 0.0 0.0 2048.5 443.0 7.3 -
Concrete 28,057.9 2473.0 60.3 17,651.4 2126.0 35.1 58.2
Clay brick 12,1741 4873.0 118.7 564.5 782.0 12.9 10.9
Cement mortar 1944.2 454.0 11.1 5189.6 1101.0 18.2 164.1
Steel * 1047.2 3588.0 87.4 515.5 1786.0 29.4 33.7
Transportation 860.0 21.0 617.3 10.2 48.6
Total 43,223.3 12,248.0 298.4 27,742.1 7220.3 119.0 39.9

* Steel includes rebar and roof structure.

3.3. Comparative Carbon Footprint of CSB House vs. GaKB House

The comparative graph of kg CO,-eq by type of housing (Figure 8) shows that in
both cases, the highest impacts on the environment are linked to technical materials (man-
made); in the case of the CSB house, the element that generates the highest environmental
load is precisely the structural brick, while in GaKB housing, the component that most
affects the environment is the concrete used in the foundation and ground floor slab, due
to the environmental loads from the production and transportation process of cement.
By contrast, the biobased materials used in GaKB house (i.e., GaK) in the form of round
Guadua and Guadua mats, which are the main components of the structural cemented
bahareque system, are the ones that generate the least environmental load.
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Figure 8. Carbon footprint comparison by house type.

3.4. Process Impact Analysis

In the CSB house, the highest impact corresponds precisely to the component that
gives it its name as a construction typology, the clay brick (118.7 kg CO,-eq/m?), which is
almost equal to that of the total GaKB house (119.0 kg CO,-eq/ m?) (Table 3). Overall, two
and a half houses built using GaK would have the same footprint as one CSB house. The
high impact of the CSB house is largely due to energy consumption and the generation of
greenhouse gases (GHGs) during the moulding and firing processes of the bricks [31,32].

The second process that generates the most global warming impact in the CSB house
is associated with steel, which generates 87.4 kg CO,-eq/m?, whilst in the GaKB house, the
use of steel generates only 29.4 kg CO,-eq/m? (Table 3), corresponding to one third of the
total impact of the GaKB house.

The third process in terms of global warming impacts relates to the use of concrete,
which in the CSB house is 60.3 kg CO,-eq/m?, while in the GaKB house, it is 35.1 kg
COy-eq/m?, which constitutes 58.2% of the impact generated by the GaKB house (Table 3).

The significant reduction in impacts is due to the efficiencies allowed by the light
cement bamboo frame (LCBF) system. For instance, the mass of steel reinforcement and
concrete for the foundation and the ground floor slab of the GaKB house is lower than in
the CSB house. The total mass of concrete for foundations and slabs per m? in the GaKB
house accounts for 43% of the CSB house, whilst the mass of steel for reinforcement and
roof in the CSB house is three-fold the mass of steel in the GaKB house (33%). Also, in
the LCBF system, the steel purlins or profiles supporting the roof are replaced by round
Guadua beams, which have much less impact.

The fourth process relating to global warming impacts in the CSB house is transporta-
tion, which accounts for almost double (21.0 kg CO,-eq/m?) the impact in the GaKB house
(10.2 kg CO,-eq/m?), as seen in Table 3. Transportation constitutes an item sensitive to the
availability of materials near the construction site [33]. In this case, the fact that both bricks
and Guadua are produced locally and regionally favourably impacted the low carbon
footprint and substantiate a principle of vernacular architecture in terms of the appeal of
using locally produced materials [2,3].

A process that creates a high global warming impact in the GaKB house includes the
cement mortar (18.2 kg CO,-eq/m?), which is used for rendering the walls and to fill in
the internodes of Guadua poles at joining points. By contrast, ranking at the bottom of the
global warming potential are the Guadua mats (7.3 kg COp-eq/m?) and the round Guadua
culms (6.0 kg CO,-eq/m?) (Table 3), which are exclusive to the GaKB house.

As seen in Table 4, leaving the clay brick aside, the manufacturing and construction
processes associated with materials of high industrial transformation, such as concrete,
cement mortar, and steel, together generate high impacts in both housing typologies. In
the CSB house, the impact is 158.8 kg CO,-eq/m?, corresponding to 53.2% of the carbon
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footprint, and in the GaKB house, it is 82.7 kg CO,-eq/m?, which is 69.5% of the carbon
footprint before applying the CO, balance. This constitutes valuable technical and scientific
evidence in favour of the replacement of energy- and carbon-intensive technical materials
such as concrete, steel, and bricks by locally grown renewable materials in housing projects.

Table 4. Analysis of technical materials used in both houses.

. CSB House (41.04 m2) GaKB House (60.65 m?)
Materials 2 o 2 o
kg CO-eq/m* Percentage (%) kg COz-eq/m* Percentage (%)

Concrete 60.3 20.2 35.1 29.5

Cement mortar 11.1 3.7 18.2 15.3

Steel * 87.4 29.3 294 24.7

Sub-total 158.8 53.2 82.7 69.5

Total 298.4 100 82.8 100

* Steel includes rebar and roof structure.

It is also important to note that the mass of 3821.1 kg corresponding to the structural
support materials in the GaKB house, represented by the round Guadua and the Guadua
mat, is about 70% lower than the mass of the clay brick used in the CSB house, which is
12,174.1 kg, although the latter has a smaller area (Table 5). The mass of the clay brick of
the CSB house is 296.64 kg/m? of living space, while that of the biobased round Guadua
and Guadua mat of the GaKB house is equivalent to 63.0 kg/m? of living space (21.2%),
evidencing its structural efficiency.

Table 5. Base materials for the structural system.

CSB House (41.04 m?) GaKB House (60.65 m?)

. 0,
Materials kg/house kg/m? house kg/house kg/m? house Percentage (%)
Round GaK culm - - 1772.6 29.23 -
GaK mats - - 2048.5 33.77 -
Clay brick 12,174.1 296.64 - - -
Total 12,174.1 296.64 3821.1 63.00 21.2

3.5. Carbon Footprint Balance

To carry out the CO, balance by house typology, first the calculation of kg CO,
captured in the GaKB house was carried out due to its intensive use of GaK, which during
its growth process in the forest captures carbon as follows:

A total of 126.41 t/ha of CO, are stored per hectare;

Each hectare has 4050 Guadua culms;

The mass of a Guadua plant (leaves, branches, root, and culm) is 31.21 kg on aver-

age [29,30].

Furthermore, a Guadua culm represents 67% of the Guadua’s plant biomass [34], and
it is also estimated that from each Guadua in the forest, an average of 12 m (lineal metres)
of round Guadua or Guadua mats can be used for construction (Table 6).

Table 6. Calculation of kg CO; captured in the GaKB house.

Bamboo Demand kg CO, Captured
Materials Guadua Guadua Lengths Guadua Guadua Poles/ kg % Culm kg kg CO,/m?
Poles (m) * (m) Poles (No.) m? CO,/Guadua ° COy/house house
Round GaK 295.44 12.00 24.62 0.41 -31.21 67 —514.82 —-8.49
GaK mat 118.00 12.00 9.83 0.16 —31.21 67 —306.90 —3.39
Total bamboo 413.44 12.00 34.45 0.57 —31.21 67 —1075.29 —11.88

* Lineal metres of Guadua poles.

The balance shows that thanks to the CO, captured in the growth process of the Gak,
the carbon footprint of the GaKB house decreases by 10%, equivalent to 11.88 CO,/m?
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(Table 7), which leads to the final comparison of the carbon footprint (Figure 9). Therefore
the footprint of the GaKB house is further decreased from 39.9% to 35.9% of that of the CSB
house (Table 7).

Table 7. CO, balance by type of house.

Housing Tvpolo ke COn-ea/m? GaKB/CSB kg CO,/m? Balance GaKB/CSB
8 ypology §-P2meq Comparison (%) Captured kg CO,-eq/m? Comparison (%)
CSB 298.44 100 0 298.44 100
GaKB 119.05 39.9 —11.88 107.17 35.9

350
300
298.44
~ 250
£
LfJ- 200
g 190 119.05
2 100 107.17
50
0
Clay brick Cemented bahareque

Building system
Figure 9. Comparative carbon footprint considering CO, balance.

4. Conclusions and Future Research

As demonstrated by this LCA study, bamboo-based building systems, such as the
Lightweight Cement Bamboo Frame (LCBF), have a great potential to contribute to the
reduction of the carbon footprint of housing construction in countries of the Global South
with sizable bamboo and biobased resources, such as Colombia. An LCBF house using
Guadua bamboo in Colombia has a carbon footprint that accounts for about 36% of the
carbon footprint of a house using conventional materials such as bricks, concrete, and
steel (CSB).

Bamboo construction inspired by vernacular techniques like the LCBF system requires
less steel and concrete for foundations, ground floor slabs, and roofs than in conventional
construction systems. Concrete foundations and slabs in LCBF systems are 43% lighter
than in houses such as the CSB, using conventional materials such as bricks, concrete,
and steel, which contribute to about 16% of global carbon dioxide (CO,) emissions. The
mass of steel for reinforcement and roof in a building like the CSB house is three-fold the
mass of steel in the GaKB house (33%). Thick cement mortar renders contribute greatly
to the wall mass, and together with the foundations, they result in the highest negative
environmental impact in LCBF systems. Murphy and colleagues [35] also highlight that the
overall use of aggregates, cement, and steel contributes to about 95% of the environmental
impact of Guadua bamboo construction systems. Hence, the replacement of cement with
alternative binders in the system is a key point for environmental improvement. Lime is a
widely available material that requires less energy-intensive production processes, offers
improved breathability within the building, and behaves more elastically than cement [36].
However, more research on the use of lime as an alternative render material in LCBF
systems is needed.

LCA results for the built GaKB house demonstrate that vernacular housing projects
that preserve cultural heritage can also be resilient and climate-neutral. This paper sets
a precedent for the establishment of targeted government policies and industry practices
that preserve the cultural heritage and vernacular technologies in the CCLC region and
in other emergent economies worldwide, whilst promoting future-proof and net-zero
carbon construction. The implementation of government policies that promote the use of
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vernacular building technologies can both preserve cultural heritage and create resilient,
climate-neutral, and sustainable vernacular housing projects [37]. This would be possible
with an appropriate policy framework, but also with government incentives, sustainable
production and management practices of bamboo plantations, and associated processes.
This can contribute to the regenerative development of the CCLC and other regions where
they could be used, with lasting favourable effects on local economies and communities.
In this sense, the recent approval of the so-called “Guadua Law” in Colombia in 2022 is
extremely relevant. Strong trade organisations such as Fedeguadua can incentivise the
commercial and sustainable use of Guadua and bamboos in bamboo-growing regions such
as the CCLC. The Guadua law mandates that at least 30% of the new constructions for
rural housing that are part of government programmes and that are carried out within the
territory that makes up the CCLC must be in bamboo [38].

LCA studies of vernacular housing projects, such as this one, demonstrating the low
environmental impact of this type of construction, provide firm technical and scientific
evidence in favour of using locally grown renewable materials in housing projects in
Colombia and elsewhere.

Future Research

Among future research directions, three fields of opportunity are identified: (1) LCA
of bamboo and wood products and components; (2) bamboo structural engineering [39];
and (3) materials chemistry.

Firstly, it is highlighted that LCA studies of bamboo-based buildings such as this one
favour models that consider the quantities of main building materials required for load-
bearing and non-load-bearing elements under the assumption that finishing and furnishing
elements are optional to be used by the builder or the user and are usually the same
in all typologies. Evolving user preferences for eco- and/or biobased materials and the
momentum for the Circular Economy approach create a favourable environment to develop
new comparative LCA studies involving structural bamboo and wood-based products and
components such as flooring, doors, and windows. This will enable assessment of their
impacts on the environment and meaningful comparisons with other biobased materials
and with their equivalent technical materials, including aluminium, steel, or plastics widely
used in the construction industry, such as polyvinyl chloride (PVC) and polystyrene (PS).

In addition, with regard to the opportunities in the field of bamboo structural engi-
neering for housing, there is the possibility of carrying out Research and Development
and Innovation (R&D&I) projects implementing dual modular structural systems that
efficiently combine the use of vernacular bamboo techniques and wood in the wall frames
with boards of various cladding materials such as OSB, gypsum, and Tetra Pak, seeking to
reduce cement use, optimise construction times, and increase user acceptance. Furthermore,
considering the elements most exposed to humidity that current standards prescribe to be
in reinforced concrete, the feasibility of the structural use of foundation beams and plinths
prefabricated with recycled plastic can be explored and validated.

Finally, the chemistry of materials is an important area of research, insofar as it allows
the exploration of alternatives to Portland cement mortar, both for the filling of the cores
and for the rendering of bahareque walls; thus, lime and biobased composites may be able
to fulfil the physical-mechanical properties required to advance in the substitution [40].
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