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Abstract: In addition to a carbon-neutral vision being recognized worldwide, the utilization of wind
energies via horizontal-axis wind turbines, especially in offshore areas, has been intensively inves-
tigated from an academic perspective. Numerical simulations play a significant role in the design
and optimization of offshore wind turbines. The current review focuses on studies concerning the
numerical simulations of offshore wind turbine dynamics, including the modelling of the aerody-
namic and hydrodynamic conditions of the environment and the reduced-order modelling of the
wind turbine dynamic responses. In detail, the functions and mechanisms of each module in the
numerical simulation of the wind turbine dynamics are articulated, which in turn demonstrates its
importance for the design of offshore wind turbines, and hence the development of the offshore wind
industry. Based on this review, it is argued that the vertical variations in wind velocities, the blade
element momentum theory, the wave dynamic models, and the reduced-order model for structural
dynamics are the major concerns for the numerical simulation of wind turbines. Consequently, such
directions should be emphasized in future studies.

Keywords: dynamic response; floating wind turbine; numerical simulation; time domain

1. Introduction

Due to the rising anxiety about the environmental consequences and energy crisis re-
lated to economic volatility and even geopolitical instability, efforts have been continuously
made to shift energy consumption from conventional sources such as fossil fuels to a more
eco-friendly energy mix. More specifically, the supply of energy from renewable sources
has increased significantly over the past decade due to the rapid growth in solar and wind
resource acquisition [1,2]. It is widely acknowledged that renewable energy is key to the
sustainable development of society, and hence it is a topic for academic studies concerning
sustainability. In fact, wind energy is considered the most promising in the process of
replacing conventional fossil fuel sources to sustain the healthy development of society.
Given its renewable nature and close-to-zero carbon emissions, the wind energy industry is
an important module for a carbon-neutral vision and for the realization of sustainability. As
a crucial component of the wind energy industry, the exploitation of offshore wind sources
plays a significant role as it provides an ample and steady energy supply close to the energy
consumption centre. Therefore, offshore wind has gradually gained momentum recently as
it has been actively promoted by many countries [3]. In fact, investment in offshore wind
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energy worldwide has already exceeded that of offshore oil and gas since 2021, and its total
grid-connected installed capacity reached 64.3 GW by the end of 2022.

Although the exploitation of offshore wind sources is a widely acknowledged module
for a carbon-neutral vision, the operational strategy and power generation control of off-
shore wind turbines face various challenges [4]. In the operation of wind turbines installed
in a wind farm, a well-designed algorithm is required to stabilize the power generation and
mitigate the structural vibration, which improves its general serviceability [5,6]. Currently,
the control algorithm for a Horizontal-Axis Wind Turbine (HAWT) adjusts the torque
of the generator and the pitch angle of the blade to optimize the turbine performance
according to environmental wind velocities [6,7]. While the generator torque is controlled
to maximize the power generation when the environmental wind velocity is in the range
between the cut-in and rated velocities, the blade pitch angle is adjusted to stabilize the
power generation when the environmental wind velocity exceeds the rated velocity of a
wind turbine.

Numerical simulation plays a significant role in the development and implementation
of novel control algorithms, as the wind turbine state is required as an input for the
algorithm to devise an effective control strategy. On the one hand, the numerical simulation
provides the overall information on a wind turbine operated under various wind velocities.
On the other hand, it delivers the structural responses of a wind turbine, which is helpful
for the algorithm to balance the power generation and the vibration mitigation.

The HAWT is a highly complex system consisting of a tower, a series of blades, a hub,
a nacelle, a drivetrain, and a platform/foundation. While the tower and the blades are
flexible in nature, other parts of a wind turbine are generally modelled as rigid bodies [8].
Compared to the motion simulation of rigid bodies, the flexible simulation of towers and
blades is more complex. At present, the structural dynamics of the tower and blades are
commonly simulated using the finite element method or a reduced-order model [9]. In
fact, high-fidelity simulations, which are widely used in the design of control algorithms,
typically employ finite element models of blades and towers to provide more accurate
estimates of their structural responses [10]. Efforts have been made to advance the dynamic
modelling of the blade because of its importance in the overall dynamics of the wind turbine.
For example, finite element tools such as NuMAD [11] and FOCUS [9] are recommended
to simulate the vibration and deformation of the blades. Since geometric nonlinearity
should be taken into consideration [12,13], Outer Mold Layer shell elements [12–14] are
suggested to simulate the HAWT blade. For instance, the S4R-type element in the ABAQUS
library, which is essentially a four-node quadrilateral shell element, is frequently adopted
to capture the blade dynamics [12,15]. Because the use of finite element methods requires
relatively high computational costs, the reduced-order model is applied to discern the
key dynamic characteristics of a wind turbine in order to develop and implement a novel
control algorithm [16]. In addition, a reduced-order model is employed to assess the
influence of different control algorithms on the structural vibration of the wind turbine.

The optimization of offshore wind turbines has become critical as the demand for
renewable energy rises. Our study focuses on time-domain numerical simulations of
the structural responses of HAWTs. In fact, the present study reviews advances in the
numerical simulations of the HAWT dynamics, which provide indications for further devel-
opment. The review points in the direction of increasing the operational lifespan of these
turbines and lowering the financial and environmental costs associated with the offshore
wind industry.

In the following pages, Section 2 discusses the wind profile modelling techniques, and
Section 3 presents a comprehensive review of simplified models for Fluid–Structure Inter-
action (FSI), aimed at improving the estimation of aerodynamic loads. The hydrodynamic
load simulations are reviewed in Section 4. Section 5 reviews the reduced-order model.
Concluding remarks are provided in Section 6.
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2. Wind Field Modelling

Since the environmental wind velocity is the key piece of information enabling the
algorithm to control the wind turbine and the numerical simulation to assess the dynamic
responses of a wind turbine [17], it is usually determined based on the in situ measurements
and an empirical model of wind profiles [18,19]. Because the wind sensor is usually installed
at a certain height and the wind velocity varies vertically in the atmospheric boundary
layer, the wind profile model is necessary to convert the measured wind velocity to various
heights for the calculation of wind loads acting on the blades and the tower. Although the
computational fluid dynamic simulation could produce the wind profile without empirical
models, the relatively high computational cost hinders its application for discerning the
wind profile for developing the control strategy of a wind turbine [20]. Consequently,
different empirical or semi-empirical models are commonly used to depict the vertical
variation in wind velocities.

In fact, the wind flow is usually assumed to be in a steady and horizontally homoge-
neous state in the wind profile models [21]. In other words, the temporal and horizontal
variations in the atmospheric boundary layer are averaged in the empirical wind profile
models. From the boundary layer theory, the vertical profile of the averaged wind field is
determined by the roughness of the underlying terrain, and hence possesses a logarithmic
shape. In addition to the logarithmic model, the vertical variation in wind velocities is also
depicted by the power law and presents a similar shape. In fact, the wind profile can be
described as

U(z) =
u∗
k

ln
(

z− zh
z0

)
(1)

U(z) = Ure f

(
z

zre f

)α

(2)

In Equation (1), corresponding to the log-law profile model, k is the Von Karman
constant, which commonly takes the value of 0.41, z is the height above the ground, zh is
the zero plane displacement, z0 is the roughness length of the underlying terrain, and u∗ is
the shear velocity, which shows the drag from the underlying terrain [21]. In Equation (2),
corresponding to the power-law model, zre f is the reference height, which usually takes the
hub height of the wind turbine, and Ure f is the wind velocity at the reference height. In the
power-law model, the shear exponent of α is related to the roughness of the underlying
terrain, and hence determines the general shape of the wind profile.

In addition to the mean wind profile, the turbulence also influences the aerodynamic
loads acting on the wind turbine. Specifically, the comprehensive modelling of the atmo-
spheric boundary layer wind field adds the turbulent fluctuations described by certain
power spectral density models on the mean wind profile. Several models are available to
calculate the power spectral density of the wind field inside the atmospheric boundary
layer, and the Kaimal model obtained from analysing in situ measurements of wind veloci-
ties is widely accepted to present the turbulent characteristics of winds. The Kaimal model
of the wind power spectral density shows the following:

S( f , z) =
Iu

2U(z)l(
1 + 1.5 f l

U(z)

)5/3
(3)

In Equation (3), S( f ) is the power spectral density with the frequency of f , U(z) is the
mean wind velocity, l represents the turbulent length scale, and Iu gives the turbulence
intensity in the longitudinal direction, which is defined as

Iu =
σu

U(z)
(4)



Sustainability 2023, 15, 16878 4 of 19

In Equation (4), σu is the turbulent wind velocity in the longitudinal direction, which
is calculated as the standard deviation for a time series of longitudinal wind velocities.

Given the vertical profile and power spectral density of mean and turbulent winds,
a pseudo stochastic wind field u(z, t) can be generated via summing the series cosine
functions with random phases, as follows:

u(z, t) = U(z) +
N/2

∑
i=1

√
4π∆ f S( fi)cos(2π fit− ϕi) (5)

In Equation (5), the power spectra are discretized at the frequencies of fi, i = 1, 2, · · · , N
with an equal frequency step of ∆ f , and the randomness is introduced via the phases ϕi,
varying within the range of 0− 2π, corresponding to various frequencies [22].

Equation (5) presents the generation of pseudo stochastic wind velocities at a specific
point, and the time domain simulation of wind turbine dynamics also requires the spatial
variations in the wind field as the input. Therefore, spatial correlations of wind velocities
should be modelled in addition to the single-point wind time series. More specifically, the
coherence is introduced to show the spatial correlation of wind velocities in the frequency
domain. Based on measurements accumulated in the field of meteorology, the coherence is
suggested to be modelled as follows:

coh(L, f ) = exp
(
−12

f L
U

)
(6)

In Equation (6), coh shows the coherence as functions of the spatial distance L and the
frequency of f . With the help of the coherence defined in Equation (6), the wind field is
not only determined by the power spectral density but also by the cohesive power spectral
density, as follows:

C(∆x, f ) = coh(L, f )
√

S(z1, f )S(z2, f ) (7)

In Equation (7), ∆x shows the vector difference between two points in the space at the
heights of z1 and z2, and their spatial distance is L.

In practice, the space to generate the pseudo stochastic wind field is usually discretized
into a mesh, and the power spectral densities and cohesive spectral densities are usually
organized into a matrix corresponding to the grids of the mesh. By decomposing such a
matrix to specify the magnitudes of cosine variations as shown in Equation (5), the full-set
pseudo stochastic wind field can be generated for the time domain simulation of the wind
turbine dynamics. It is noted that such a pseudo stochastic wind field only shows the
turbulent fluctuations, and the mean wind profile should be added to drive the numerical
time-domain simulation of the HAWT dynamics.

Although the spectral characteristics summarized based on the in situ measurements
provide the most common base for generating the pseudo-stochastic wind field as the input
for the time-domain simulation of wind turbine dynamics, other approaches have also been
suggested in previous studies. For example, the spectral tensor model has been suggested
within the framework of the rapid distortion theory to show the development of the natural
wind field from a hypothetical, isotropic state [23]. The discretization of the spectral tensor
therefore shows spatial variations in the natural wind field, which are then used to generate
the pseudo-stochastic wind field given a proper spectral tensor.

In terms of numerical tools for the generation of a pseudo-stochastic wind field for
the purpose of numerically simulating the wind turbine dynamics, TurbSim, developed by
the National Renewable Energy Laboratory (NREL), is frequently used [24–29]. TurbSim
describes the natural wind field based on the Kaimal power spectral density model and
provides the user with various options to calculate the cohesive power spectral densities,
including the common von Karman model and the Riso-Smooth-Train model [30].
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3. Aerodynamic Modelling for Fluid–Structure Interaction (FSI)

Once the turbulent wind field has been generated, the aerodynamic loads acting on
the blades and the tower can be estimated via the Blade Element Momentum (BEM) the-
ory [31–33]. More specifically, the temporally varying aerodynamic loads can be estimated
according to the wind velocity time series generated from the pseudo-stochastic wind field
model, which then leads to the estimation of the ultimate torque acting on the generator
and bending moment at the tower base [34]. In the estimation of the aerodynamic loads
acting on the blades, the blade is segmented spanwise into a series of sections. The drag
and lift forces acting on the sections along an individual blade are accumulated as the
linear and angular momentum acting on the blade root, which consequently presents the
aerodynamic torque for the estimation of the power generation and also internal forces in
the blades for the structural vibration assessment [6,35].

As for the floating HAWT, the aerodynamic loads acting on the blades and the tower
are not solely determined by the inflow wind velocities [6,36]. In fact, the motion of the
floating foundation should be considered, and the relative velocity between the blade
motion should also be taken into consideration for the floating foundation motions and
the inflow wind velocity to determine the aerodynamic loads acting on the blades of the
floating HAWT [37]. Figure 1 presents the motion responses of a floating HAWT, and hence
illustrates the necessity of using the relative velocity to calculate the aerodynamic forces on
the floating HAWT [38].
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(a) surge motion, (b) pitch motion, and (c) front view.

Based on the rigid assumption of the wind turbine, the relative velocities of a blade
element with a distance of r from the rotational center of the blades can be calculated as
follows [38]:

u = U∞(cos θy − a) +
.
z cos θy + (H + rcos φ)

.
θy (8)

w = rωr
(
1 + a′

)
−
( .
z + U∞

)
sin θy (9)

In Equations (8) and (9), U∞ is the inflow velocity perpendicular to the rotation plane
of the HAWT and θy and

.
z show the pitch and heave responses of the floating HAWT.

While H is the height of the rotational center and r is the radial distance of the blade section
from the rotational center, φ presents the azimuth angle of a certain blade. a and a′, on the
other hand, are the axial and tangential induction factors, which are calculated in Equations
(16) and (17). It is noted that the aerodynamic loads acting on the blade rely primarily on
the relative velocity component perpendicular to the blade (u) and in the vertical direction
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(w), and hence the component along the blade (v) is neglected. The inflow angle, which is
key to calculating the angle of attack (AOA) and then for the induction factors, is therefore
determined as follows:

tan ϕ =
w
u

(10)

The aerodynamic loads acting on the blades, specifically the lift and drag forces, are
mainly determined by the AOA, the Mach number, and the Reynolds number. While the
Mach number is typically small enough in the case of HAWT (usually less than 0.3) to be
ignored, the Reynolds number interacts with the airfoil design of the blade to impact the
aerodynamic load calculation. Nonetheless, it is commonly acknowledged that the AOA
(αattack), as shown in Figure 2, is the most influential factor in the estimation of the drag
and lift forces acting on the blade [39,40], defined as the difference between the inflow
angle and the θ (sum of the pitch angle (β) and the twisting angle (ϑ) of the specific section),
as follows:

αattack = ϕ− (β + ϑ) (11)
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Figure 2. Relative velocity on a blade section, considering the platform motion (Reprinted/adapted
with permission from Ref. [38]. 2021, Daniel Micallef, Abdolrahim Rezaeiha). (a) Blade velocity
vectors, and (b) inflow velocity vectors.

With the known AOA, the drag (Cd) and lift (Cl) coefficients can be derived from a
table containing the data accumulated from the experiment or full-set numerical simulation
results [41]. In fact, it is found from the literature that Reynolds numbers [42], the general
geometry of the blade [43], the use of end-plates [44], and other factors all influence the
aerodynamic characteristics of the blade. Hence, it is necessary to obtain the drag and lift
coefficient database specifically for the blade design under investigation. Given the inflow
angle of ϕ, the normal (Cn) and tangential (Ct) load coefficients are calculated as follows:

Cn = Clcos ϕ + Cdsin ϕ (12)

Ct = Clcos ϕ− Cdsin ϕ (13)

In addition, the thrust and torque acting on the rotating centre induced by a single
blade are calculated as follows:

F =
1
2

ρ
∫ Rb

Rh

Cn

(
u2 + w2

)
c(r)dr (14)
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M =
1
2

ρ
∫ Rb

Rh

Ct

(
u2 + w2

)
rc(r)dr (15)

In Equations (14) and (15), F is the thrust, M is the torque, c(r) shows the chord length
as a function of the radial distance (r), and Rh and Rb are the radius of the hub and the
radial distance of the blade tip, respectively. The axial and tangential induction factors
are functions of the relative velocity, solidity, normal, and tangential load coefficients, as
follows:

a =
1

1 + 4sin2 ϕ
σCn

(16)

a′ =
1

1 + 4sin ϕcos ϕ
σCt

− 1
(17)

In Equations (16) and (17), σ is the solidity of the blade section and is defined as the
ratio of the swept area and the corresponding control volume.

It is understandable that the aerodynamic loads estimated according to classic BEM
theory are inaccurate in a number of aspects [45]. Consequently, there are several corrections
reported in the literature to reduce the bias of the assumptions employed in the classic BEM
theory (relevant details are available in [46]). For example, the Prandtl correction factor
has been suggested to correct the unrealistic infinite blade section assumption [47], and
the Glauert correction is suggested for cases where the axial induction factor is beyond
0.4 [6,34].

The calculation of the aerodynamic loads acting on the HAWT according to the
BEM theory is in fact an iterative process starting with an assuming axial and tangential
factor [48]. The AOA can then be calculated according to Equation (11), which leads to
the estimates of lift and drag coefficients. Afterwards, the normal and tangential load
coefficients are delivered to give the estimates of the induction factors in the current
iteration, as shown in Equations (16) and (17). Such an iterative process continues until
the residuals corresponding to both induction factors reduce below the specific thresholds.
The ultimate estimates of the thrust and torque acting on the blades are then calculated
according to Equations (14) and (15). Alongside this conventional approach, different
algorithms have also been suggested, such as the simplification reported in [49].

4. Hydrodynamic Modelling for Offshore Wind Turbines

Along with the exploitation of wind resources moving from onshore sites to offshore
sites, and further from shallow waters to deep-sea areas, the numerical simulation of
floating HAWT has attracted attention from both academia and industry [6]. For a floating
HAWT, the hydrodynamic loads should be realistically and accurately modelled for the
numerical simulation of its overall dynamic responses [5]. Therefore, many methods have
been suggested to estimate the hydrodynamic loads acting on various components of the
floating HAWT [50].

Among the various factors inducing the hydrodynamic loads, waves play the most
significant role as they are associated with the most destructive effect [51]. For estimating
the wave loads acting on the floating HAWT, the velocity potential theory, which is used
to describe a flow without viscosity and rotation, is widely adopted to show the kinet-
ics, and hence dynamics, of waves and their loading effect [7]. Specifically, a potential
function (ϕ) is introduced which summarizes the flow velocity components (V) in three
orthogonal directions via spatial gradients as V = ∇ϕ [52,53]. Given the velocity potential
function, the continuity equation of the flow is reduced to the Laplace equation of∇2 ϕ = 0.
Solving the Laplace equation with specific boundary conditions yields the field of flow
velocities, which can then be used to estimate hydrodynamic loads following the Bernoulli
equation. Although the introduction of the velocity potential simplifies the calculation of
hydrodynamic loads, the track of free surfaces (ξ(x, y, t)), which is key in the specification
of the upper boundary condition of the Laplace equation, is challenging [51,54,55]. The
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linearization of the boundary condition at the free surface is therefore necessary to derive
the analytical solutions describing the kinematics of waves. It is noted that the combination
of the Laplace equation and the linearized boundary condition leads to the description of
regular waves, but the realistic waves in the sea are irregular in nature [56]. In order to
depict the natural wave field realistically, wave spectra are suggested based on long-term
observations obtained worldwide. Among various wave spectra models, the JONSWAP
and P-M models are most commonly used in the field of ocean engineering, and hence are
frequently adopted for calculating the hydrodynamic loads acting on the floating HAWT.
The JONSWAP spectra model shows the following:

S( f ) = 0.3125HsTp

(
f
fp

)5
exp

[
−5

4

(
f
fp

)−4
]
(1− 0.287lnγ)γ

exp[
(ω−ωp)2

2σ2ωp2 ]
(18)

In Equation (18), Tp and fp are the peak wave period and frequency, Hs is the significant
wave height, and both are estimated based on long-term in situ observations. σ = 0.07 in
the cases where f < fp, and σ = 0.07 corresponding to f ≥ fp. γ is the peak parameter of
the JONSWAP spectra model, and can be calculated as follows:

γ =


5 Tp√

Hs
≤ 3.6

exp
(

5.75− 1.15 Tp√
Hs

)
3.6 <

Tp√
Hs
≤ 5

1 Tp√
Hs

> 5

(19)

Given the wave spectra model, the elevations and then velocities of the wave field can
be numerically simulated via superimposing the cosine functions with different frequencies
and random phases, as follows:

η(t) = ∑N
j=1 Ajsin

(
ωjt− k jx + φj

)
(20)

Aj =
√

2S
(
ωj
)
∆ω (21)

u = ∑N
j=1 ωj Aj

cosh[k(zw + dw)]

Tpsinh(kdw)
sin
(
ωjt− k jx + φj

)
(22)

In Equations (20)–(22), η(t) is the wave elevation time series, ωj is the angular fre-
quency related to the frequency ( f ) as ωj = 2π f j, Aj is the amplitude of a regular wave
component at a certain frequency, and φj is the phase angle, taking the value in the range of
[0− 2π], which is usually modelled as a random variable with uniform distribution. dw is
the water depth and zw shows the vertical distance from the still water surface. It is noted
that the wave number k is related to the angular wave frequency ω through the dissipation
equation as follows:

ktanhkdw =
ω2

g
(23)

With the kinematics either solved analytically from the velocity potential theory or
simulated numerically from the empirical wave spectra model, the hydrodynamic loads
are commonly calculated from the Morrison equation shown in Equation (24).

F = CMρV0
du
dt

+
1
2

CdρA0|u|u (24)

In Equation (24), u is the velocity of water particles in a wave field, and is obtained from
the wave kinematics; CM and Cd are empirical coefficients generally extracted from in situ
observations or scaled-down laboratory experiments; and ρ, V0 and A0 show the density,
the characteristic volume, and the area of the floater under investigation, respectively. It is



Sustainability 2023, 15, 16878 9 of 19

noted that the Morrison equation is only applicable to estimate the wave forces experienced
by slender structures whose horizontal dimension is generally less than 0.15 times the
wavelength corresponding to the dominant wave frequencies [54]. When the dimension
of the offshore structure, or its key component, exceeds the above-mentioned threshold,
the Morrison equation is no longer applicable [57]. In such cases, solving the Laplace
equation with complex solid boundary conditions corresponding to the offshore structure
is unavoidable. In practice, the boundary element method is commonly used to deliver
the velocity, and hence the dynamic pressure, around the object of interest by numerically
solving the Laplace equation. Within the framework of the boundary element method, a
branch of software (such as WAMIT Ver. 7.0 [58]) has been developed for estimating the
dynamic loads induced by waves acting on the offshore structures with large dimensions.

Although the wave force is the main reason for the platform to move in the system
of the floating HAWT, the mooring lines subjected to both wave and current loads also
influence the dynamics of the floating platform [59–61]. Understandably, the Morrison
equation is utilized to estimate the wave load acting on the mooring lines due to the
small cross-section in the comparison with the wavelength [59]. From the hydrodynamic
forces calculated from the environmental conditions, the dynamic responses of the mooring
system are simulated using the Kane or Euler–Lagrange methods [62]. Commonly, the
mooring lines are modelled as continuous beams vibrated under the excitation of both wave
and current loads, in which the bending and torsional stiffness are taken into consideration.
As shown in Figure 3, the mooring system in a floating HAWT connects the floating
platform at the fairlead and the seabed at the anchor point [62].
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5. The Reduced Order Model

After the aerodynamic and hydrodynamic loads acting on the HAWT have been
calculated, and the motion of the floating platform has been restrained by the mooring
system, the structural and motion responses of the floating HAWT can be numerically
simulated following the procedures sketched in Figure 4, once the structural responses of
the wind turbine have been simulated via the reduced order model.
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Conventionally, in the reduced order models, the blade and the tower are modelled as
elastic beams in the numerical simulation of the dynamic responses of the HAWT, according
to either the Euler–Bernoulli or Timoshenko theory [63,64]. While the Euler–Bernoulli beam
theory is inadequate for the thick beam since it neglects the shear deformation and rotatory
inertia [65], the Timoshenko beam theory describes the deformation via a set of partial
differential equations with infinite degrees of freedom (DOFs), which are mathematically
difficult to solve [5,54]. Hence, the Galerkin method is introduced to reduce the complex
partial differential equation into a series of ordinary differential equations with a limited
number of DOFs by separating the variable, describing the dynamic characteristics of the
beam linearly.

Based on the Galerkin simplification of the Timoshenko beam theory [16], the blade
and the tower of the HAWT are modelled as thin beams whose in-plane and out-plane
vibrations can be decoupled (shown in Figure 5) as follows [16,66]:

uin,j = ∑N
i=1 ϕin,iqin,i, j = 1, 2, 3 (25)

uout,j = ∑N
i=1 ϕout,iqout,j, j = 1, 2, 3 (26)
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Figure 5. Front and side views of the in- and out-plane vibration of the HAWT. (a) In-plane vibration,
and (b) out-plane vibration.

In Equations (25) and (26), ϕin,i and ϕout,i are the ith mode shape for the vibration of the
blade/tower corresponding to the in-plane and out-plane directions, respectively; qin,i and
qout,j are the participation coefficients of the corresponding modes; and uin,j, uout,j show the
resulting vibration of the specific blade or the tower. It is noted that the mode shape ϕin,i
and ϕout,i are estimated based on the geometric and structural characteristics of the blade
or the tower, and usually normalized either at the blade tip or the tower top [67]. Therefore,
the reliable estimates of the vibration modes depend on the precise data concerning the
twist, stiffness, and density of the blade or the tower.

Taking the NREL 5 MW baseline wind turbine as an example, the reliable estimates of
the vibration mode shape of both blades and the tower, which in turn lead to the correct
simulation of its dynamic responses under wind and wave loads, require the general and
aerodynamic properties as summarized in Tables 1 and 2, respectively [68].

Table 1. The general properties of the NREL 5 MW baseline wind turbine [68].

Rating 5 MW

Rotor orientation, Configuration Upwind, 3 blades
Control Variable speed, Collective pitch

Drivetrain High speed, Multiple-stage gearbox
Rotor, Hub diameter 126 m, 3 m

Hub height 90 m
Cut-In, Rated, Cut-out wind speed 3 m, 11.4 m, 25 m

Rated tip speed 80 m/s
Overhang, Shaft tilt, Precone 5 m, 5◦, 2.5◦

Rotor Mass 110,000 Kg
Nacelle Mass 240,000 Kg
Tower Mass 347,460 Kg

Coordinate location of overall CM (−0.2 m, 0.0 m, 64.0 m)

The HAWT is a complex multi-body system consisting of the blades, the tower, the
drivetrain, and the hub [69]. Even when the dynamic vibration of the blades and the tower
is analysed with the reduced order method, the interactions within this multi-body system
still put forward a heavy computational burden for the dynamic assessment of the HAWT.
Consequently, the numerical simulation of the overall dynamics of the HAWT is still in
need of reduced order models. Generally, the Euler–Lagrange or the Kane approaches have
been employed in the simulation of the HAWT to date [16,67,70–72].



Sustainability 2023, 15, 16878 12 of 19

Table 2. The blade aerodynamic properties of the NREL 5 MW baseline wind turbine.

Node Rnode Aero-Twist Chord Airfoil Type

1 2.8667 13.308 3.542 Cylinder 1
2 5.6000 13.308 3.854 Cylinder 2
3 8.3333 13.308 4.167 Cylinder 2
4 11.7500 13.308 4.557 DU40_A17
5 15.8500 11.480 4.652 DU35_A17
6 19.9500 10.162 4.458 DU35_A17
7 24.0500 9.011 4.249 DU30_A17
8 28.1500 7.795 4.007 DU25_A17
9 32.2500 6.544 3.748 DU25_A17
10 36.3500 5.361 3.502 DU21_A17
11 40.4500 4.188 3.256 DU21_A17
12 44.5500 3.125 3.010 NACA64_A17
13 48.650 2.319 2.764 NACA64_A17
14 52.7500 1.526 2.518 NACA64_A17
15 56.1667 0.863 2.313 NACA64_A17
16 58.9000 0.370 2.086 NACA64_A17
17 61.6333 0.106 1.419 NACA64_A17

5.1. The Euler–Lagrange Approach

In a multi-body system, the interactions among different bodies, and their responses
under external excitation, could be modelled via the generalized coordinate system follow-
ing the Euler–Lagrange concept. More specifically, the dynamic system without constrain
is governed by the following:

d
dt

(
∂L

∂{q}

)
− ∂L

∂{q} = {Q} (27)

In Equation (27), L is the Lagrangian variable, {q} shows the vector of the generalized
coordinates, and {Q} is the vector of the generalized force. It is apparent that the complexity
of the dynamic system relies on the length of the generalized coordinate vector. In other
words, the computational burden for solving Equation (27) is related to the number of
DOFs considered in the dynamic system. For a bottom-fixed offshore HAWT, there are
usually 11 DOFs constituting the generalized coordinate vector [73]. Specifically, there are
six DOFs for the blade, two for the tower, two for the drivetrain, and one for the pitch
system to rotate the blade, and these are employed to describe the dynamics of the entire
wind turbine system. For a floating HAWT, an additional six DOFs are introduced to
describe the motion responses of the floating platform [74]. In order to model the wind
turbine dynamics at a more realistic and reliable level, more DOFs could be included in
the generalized coordinate vector shown in Equation (27). For example, two modes for
the in-plane (edgewise) vibration of the blade, one mode for the flap-wise vibration of the
blade, two for the side–side vibration of the tower, and two for the fore–aft vibration of
the tower are added [75]. The Lagrangian variable L is usually defined as the difference
between the kinematic and potential energy of the dynamic system as functions of the
generalized coordinates, as follows:

L = T
( .
{q}, {q}

)
−V({q}) (28)

In Equation (28), T
( .
{q}, {q}

)
is the kinematic energy as the general coordinates {q}

and generalized velocities
.
{q} and V({q}) gives the potential energy depending on the

generalized coordinate.
Generally, the dynamic system governed by Equation (27) is constrained by either holo-

nomic or non-holonomic equations of the generalized coordinates. While the holonomic
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constraints depend only on the generalized coordinates, the non-holonomic constraints are
the linear combination of the generalized coordinates and generalized velocities.

Within the framework of the Euler–Lagrange approach, the dynamics of the HAWT
are described via a series of independent generalized coordinates. The total kinetic energy
of the HAWT is the summation of the kinetic energies of the blades, the tower, the nacelle,
the drivetrain, and the floating platform, in the case of floating HAWT. More specifically,
the total kinetic energy of the HAWT could be expressed as

T =
1
2

3

∑
i=1

∫ R

0
µbvb,i

2dr+
1
2

∫ H

0
µtvt

2dh +
1
2

Mn
.

qn,in
2
+

1
2

Mn
.

qn,out
2 (29)

In Equation (29), µb and µt are the densities of the blade and the tower, vb,i and vt
are the velocities of vibration along the blade and the tower, and Mn gives the mass of
the nacelle. R is the radius of the blade and H is the height of the tower. It is noted that
the vibration velocities of various components in a HAWT are determined in accordance
with the coordinate system. Taking a floating HAWT of the spar-type as an example [76]
(as illustrated in Figure 6), the coordinate system contains at least eight different sets:
(1) an inertial coordinate system z1z2z3 that is established and fixed at a certain point at
the sea surface; (2) a coordinate system a1a2a3 that is attached to the tower base; (3) a
coordinate system b1b2b3 that is attached to the nacelle; (4) a coordinate system c1c2c3
that is fixed to the low-speed shaft and rotated with it; (5) a coordinate system d1d2d3
that is attached to the low-speed shaft and rotated with the nacelle in the yaw direction;
(6) a coordinate system e1e2e3 that is attached to the low-speed shaft and rotated in the
tilt direction; (7) a coordinate system g1g2g3 that is aligned with the rotor and rotated
with it; and (8) a coordinate system f1 f2 f3 that is attached to the blade and takes the cone
angle of the blade into consideration [55,76–78]. Although the deformation and vibration
of important components in a HAWT could be described by the local coordinate system,
the kinetic energy calculation shown in Equation (29) requires the local motions to be
transferred into the inertial coordinate system of z1z2z3 via rotational matrices [55]. In
fact, the velocities of the key components shown in Equation (29) can be obtained by
transferring the corresponding position vectors from the local coordinate system into the
inertial coordinate system and taking time derivatives [79,80]. The potential energies
in association with the blades and the tower are the summation of the strain energy of
the material, the centrifugal energy of the blade rotation, and the gravitational energy of
the axial members. The potential energy could be calculated based on the linear Euler–
Bernoulli beam theory and the small deformation assumption [16,66,70,79–81]. Substituting
the kinetic and potential energies calculated into Equation (28), the Lagrange variable L is
ready for further use.

In addition to the Lagrange variable, the generalized force vector {Q} shown in
Equation (30) is determined by the virtual displacement method. Specifically, the virtual
work (δW) for the dynamic system to deform in the generalized coordinate system with a se-
ries of virtual displacements (δ{q}) is calculated, which yields the results of the generalized
forces as

{Q} = ∂(δW)

∂(δ{q}) (30)

In a dynamic system of the floating HAWT, the generalized forces are essentially linear
combinations of the known external loads, such as aerodynamic loads, hydrodynamic
loads, gravity, and hydrostatic restoring and damping forces.

5.2. The Kane Approach

In order to model the complex dynamics of a multi-body system, Kane equations
have been proposed based on the simplification of the Gibs–Appel approach based on the
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Gibs function [82]. In fact, the Kane approach shows the dynamics via acceleration vectors
instead of the scalar function of energy, as follows [83–85]:

∑N
i=1

(
miaGi

∂VGi

∂
.

qk
+

.
HGi

∂ωGi

∂
.

qk

)
= Qk, k = 1, 2, · · · , n (31)

In Equation (31), N is the amount of flexible/rigid bodies in the multi-body system,
and mi, aGi, HGi, and ωGi are the mass, acceleration of the centroid, angular momentum,
and angular velocity of the ith body. k shows the counts of the DOFs in the system and
Qk is the generalized force corresponding to the specific DOF. The generalized force is
calculated as

Qk = ∑N
i=1

(
Fi

∂VGi

∂
.

qk
+ MGi

∂ωGi

∂
.

qk

)
(32)

In Equation (32), Fi and MGi are the external forces and moments acting on the
ith body.

Compared to the Euler–Lagrange approach, the Kane approach is highly effective for
modelling the complex multi-body dynamic system with non-holonomic constraints [84],
and thus is suitable for large dynamic systems containing an excessive number of DOFs.
Since the Kane approach deals with the individual components separately, the dynamic
responses in association with the blades and tower can be estimated using the reduced-
order Galerkin method, in which only a selective set of modes are considered to participate
in the vibration. The Kane method is widely adopted by the numerical simulations of
wind turbines. For example, the well-known numerical tool of FAST, an open-access code
developed by NREL for the global dynamic simulation of onshore and offshore HAWT,
models the aero-elastic loads and the dynamic responses of the wind turbine based on
the Kane method. Table 3 presents a complete review of the existing approaches for
HAWT modelling.

Table 3. Summary of the suggested HAWT modelling methods.

Ref Method Turbine DOFs Description

[86–90] Euler–Lagrange
NREL 5

MW/Offshore
monopole

14 six DOFs for the blades, six DOFs for the tower,
and two DOFs for the drivetrain.

[74,91] Euler–Lagrange NREL 5 MW/floating 17
six DOFs for the blade, three DOFs for the
tower, two DOFs for the drivetrain, and six

DOFs for the spar type platform.

[77,78] Kane NREL 5
MW/Floating 22

nine DOFs for the blades (six for flapwise and
three for edgewise), six DOFs for the platform,
four DOFs for the tower (two for fore–aft and

two for side–side), two DOFs for the drivetrain,
one DOF for the nacelle yaw

[79–81] Euler–Lagrange
NREL 5

MW/offshore
monopile

12
six DOFs for the blades, two DOFs for the

tower, and four DOFs for the monopile
(translation and rotation)

[92] Euler–Lagrange NREL 5
MW/onshore 8

six DOFs for the blade (three for the edgewise
and three for the flapwise) and two DOFs for

the tower.

[93] Euler–Lagrange NREL 5
MW/onshore 3 three DOFs for the modelling of edgewise

vibration of the blade.
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6. Conclusions

Along with the development of offshore wind energy, the numerical simulation of
offshore wind turbines, especially the floating HAWT, plays an important role in the
design, manufacture, installation, operation, and maintenance of the wind turbines. Given
its importance, a considerable number of previous studies have been devoted to either
developing computer-aided design tools or discerning dynamic characteristics of offshore
wind turbines. Therefore, the present review summarizes relevant studies concerning the
numerical simulation of the offshore wind turbines in the following aspects:

1. The wind profile model serves as the fundamental basis for accurately simulating the
dynamics of HAWTs. Empirical wind profile models, such as the ones employed in
the widely acknowledged code of TurbSim, show that the vertical variations in wind
speeds could be described using the logarithm law or the power law.

2. The estimates of aerodynamic loads acting on HAWTs concern the interactions be-
tween turbulent winds and the blades and the tower. The blade element momentum
theory and its corrections are primarily used with consideration of floating platform
motion on induced velocity and inflow angle.

3. The classic wave models and hydrodynamic load calculations are necessary for the nu-
merical simulation of floating HAWTs. Specifically, the wave kinematics shown from
the potential flow theory and the empirical stochastic models are key for determining
the hydrodynamic loads.

4. Reduced-order models are applied to discern the structural responses of HAWTs.
Specifically, the Euler–Lagrange approach and the Kane approach exhibit different
computational efficiencies and result reliability, and hence should be employed under
different situations.

The transition to wind energy is in line with the urgent necessity for a worldwide
move towards sustainable energy sources in response to the growing problems brought
on by climate change and the finite nature of conventional fossil fuels [95,96]. The market
has already acknowledged the long-term advantages of renewable energy, but the use of
renewable energy also faces considerable obstacles, such as the enormous amount of initial
investment required, the uncertainty of the power generation, and the intricate dynamics of
funding distribution [97]. The need to counteract climate change, lower carbon emissions,
and promote energy independence makes the switch to wind energy inevitable. As recently
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reported by the International Energy Agency (IEA), switching to wind energy is not only a
need but also a choice that must be made in order to meet global climate targets [98].

Challenges arise from the complexity of international markets and the variety of
energy dependences. The shift especially entails a number of financial challenges, from
the large capital costs associated with developing infrastructure to the unpredictability of
investment returns and financing distribution. A number of studies have already tried to
address these issues, which is where numerical simulations have come in quite handy. As
shown by Li et al. [99] and Miller et al. [100], numerical simulations are a powerful tool
for reducing financial uncertainty related to wind energy transitions. Firstly, computer
simulations offer a virtual testing ground in which wind turbine designs can be optimized.
Secondly, numerical simulations make it possible to thoroughly examine the dynamic
responses of wind turbines, enhancing the estimation of their operation and maintenance
costs. Considering the importance of numerical simulation in financially assessing the
deployment of offshore wind turbines, the relevant studies deserve a dedicated review,
which is planned as a subsequent work after the present study.
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