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Abstract: In the quest for sustainable production, manufacturers are increasingly adopting mixed-
flow production modes to meet diverse product demands, enabling small-batch production and
ensuring swift delivery. A key aspect in this shift is optimizing material distribution scheduling
to maintain smooth operations. However, traditional methods frequently encounter challenges
due to outdated information tools, irrational task allocation, and suboptimal route planning. Such
limitations often result in distribution disarray, unnecessary resource wastage, and general ineffi-
ciency, thereby hindering the economic and environmental sustainability of the manufacturing sector.
Addressing these challenges, this study introduces a novel dynamic material distribution scheduling
optimization model and strategy, leveraging digital twin (DT) technology. This proposed strategy
aims to bolster cost-effectiveness while simultaneously supporting environmental sustainability.
Our methodology includes developing a route optimization model that minimizes distribution
costs, maximizes workstation satisfaction, and reduces carbon emissions. Additionally, we present a
cloud–edge computing-based decision framework and explain the DT-based material distribution
system’s components and operation. Furthermore, we designed a DT-based dynamic scheduling
optimization mechanism, incorporating an improved ant colony optimization algorithm. Numer-
ical experiments based on real data from a partner company revealed that the proposed material
distribution scheduling model, strategy, and algorithm can reduce the manufacturer’s distribution
operation costs, improve resource utilization, and reduce carbon emissions, thereby enhancing the
manufacturer’s economic and environmental sustainability. This research offers innovative insights
and perspectives that are crucial for advancing sustainable logistics management and intelligent
algorithm design in analogous manufacturing scenarios.

Keywords: material distribution; digital twin; scheduling model; ant colony algorithm; environmental
sustainability

1. Introduction

As customer demands are becoming increasingly diverse, personalized, and dynamic,
the global manufacturing industry continues to develop and evolve. This trend presents
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manufacturers with significant challenges due to the demand for increased flexibility and
sustainability in their production and logistics processes to establish a sustainable man-
ufacturing system [1]. In this process, sustainability has become a central focus of the
manufacturing industry, especially in the field of material delivery scheduling, which
directly affects production efficiency and overall sustainability [2]. Sustainable material
distribution systems emphasize the use of intelligent logistics scheduling systems devel-
oped through digital technologies. Manufacturers can efficiently meet customer demands
while simultaneously enhancing production efficiency, optimizing resource utilization,
reducing energy consumption, and minimizing waste generation. This not only helps
manufacturers maintain their core competitiveness but also contributes to the achievement
of sustainability objectives (e.g., including economic and environmental sustainability),
thus propelling the manufacturing industry forward [3].

With the rapid development of digital technologies such as the Internet of Things
(IoT) [4], digital twins (DTs) [5], and big data (BD) [6], manufacturers have begun to
adopt a flexible and dynamic mixed-flow assembly production mode. This approach
not only enhances their economic benefits but also helps reduce environmental impact,
thereby maintaining their core competitiveness. However, under this production mode,
traditional material delivery scheduling faces challenges due to backward information
methods (e.g., relying on paper and electronic spreadsheets for recording operational
data) and unscientific decision-making schemes, leading to unreasonable material delivery
task assignments and inefficient route planning. These issues not only delay the progress
of logistics delivery but also increase operating costs, energy consumption, and carbon
emissions, challenging the economic and environmental sustainability of manufacturers [7].

Furthermore, unavoidable uncertainties during execution, such as new demands
and equipment failures, further degrade the performance of the logistics system, limiting
the overall sustainability of the system [8]. Therefore, there is an urgent need to achieve
comprehensive state awareness and real-time dynamic decision-making and control of the
material delivery system, forming a strategy that is both flexible and sustainable. One of
the main challenges facing the traditional material delivery scheduling and control strategy
is the difficulty in comprehensively collecting and sharing the real-time operational status
data of the logistics system. IoT technology, by transforming traditional manufacturing
resources, endows them with identification, perception, and communication capabilities,
making real-time information visibility possible. In recent years, a DT-based information
sharing model has emerged, aimed at achieving real-time information sharing in production
and logistics [9].

Although real-time information visibility technology is highly regarded for enhancing
the transparency of the manufacturing system, it cannot fully achieve dynamic mate-
rial delivery scheduling and control on its own. Thus, innovative methods are urgently
needed to combine real-time information visibility with dynamic decision-making to op-
timize material delivery. DT, as a high-fidelity virtual simulation technology, has begun
to attract attention due to its real-time information-driven dynamic delivery scheduling
optimization [10–15]. However, the theoretical foundation in this area still needs further
exploration. Therefore, this study will delve into how to better optimize dynamic material
delivery scheduling.

Firstly, previous material delivery scheduling optimization models often focused on
economic sustainability indicators such as fixed distribution costs and variable travel costs
but ignored the satisfaction levels of workstations with distribution service quality, limiting
the efficiency and effectiveness of the system. Therefore, we will incorporate workstation
satisfaction and also consider carbon emission indicators to respond to the approaching
“carbon neutrality” target, constructing a more comprehensive and reasonable material
delivery scheduling optimization model to enhance the economic and environmental
sustainability of the system. Secondly, as many manufacturing enterprises are still in the
early stages of informatization, it is challenging to obtain operational data for material
delivery systems. This study will explore how to collect and integrate various types of data
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in real time and comprehensively, using DT technology to build multi-scale digital twin
models and providing a solid foundation for dynamic decision-making. Additionally, we
will improve existing intelligent optimization algorithms to enhance their solving speed,
quality, and stability.

This study proposes a DT-based material delivery scheduling optimization method,
which, by considering workstation satisfaction and carbon emissions, constructs a model
that comprehensively reflects minimizing total delivery costs, maximizing workstation
satisfaction, and considering carbon emissions. Additionally, based on the standard DT
architecture, we designed a material delivery scheduling optimization decision-making
framework and dynamic scheduling optimization strategy for intelligent and adaptive
scheduling in complex, dynamic environments. We also proposed an improved ant colony
algorithm, which optimizes path node selection probability and pheromone update rules
and enhances the solution speed and quality of optimal solutions. Using real data from a
cooperative assembly workshop, it is demonstrated that the proposed material distribution
optimization model and strategy can not only reduce the material distribution cost but also
enhance resource utilization, reduce resource consumption and carbon emissions, and thus
promote the sustainable development of manufacturing enterprises at both the economic
and the environmental level.

The rest of this paper is organized as follows: Section 2 introduces the related work
on enabling technologies for production logistics management and material distribution
scheduling models and algorithms. Section 3 describes the problem under consideration
and the corresponding material distribution scheduling models. Section 4 presents the
proposed solutions, including a DT-based material distribution scheduling optimization
decision framework, the composition and operation mechanism of the DT-based material
distribution system, a DT-based dynamic material distribution scheduling optimization
strategy, and an improved intelligent scheduling optimization algorithm. Section 5 provides
a numerical case study to validate the proposed methods. Section 6 further elaborates the
discussion. Finally, Section 7 offers the main conclusions and limitations of this research.

2. Related Work

This section comprehensively reviews work closely related to the research topic, mainly
involving applications of IoT and DT in logistics distribution management, material distri-
bution scheduling optimization problems, and the application of intelligent algorithms.

2.1. Applications of IoT and DT in Logistics Distribution Management

With the continuous development of industrial internet technologies, the application
of IoT and DT in smart production logistics management is increasingly being enhanced [5].
IoT technology, through the use of intelligent tools, efficient data utilization, and enhanced
mobile productivity, has profoundly impacted the manufacturing industry. It connects
various smart devices to physical resources, creating intelligent entities with sensing, posi-
tioning, and communication capabilities, thus enabling communication and data exchange
between objects and opening new possibilities for logistics distribution management [16].
For instance, Li et al. proposed an intelligent logistics management system based on IoT
technology, showing significant advantages in addressing complex processes, inefficiency,
and vehicle management chaos in logistics companies [17]. Lei et al. introduced an IoT-
based intelligent distribution model that effectively solved the problems of decision-making
time and speed in a large-scale information interaction environment [10]. Qing et al. devel-
oped an IoT-based emergency logistics vehicle dispatch model that effectively addressed
vehicle scheduling challenges in post-disaster emergency logistics [18]. Additionally, Ren
et al. created an IoT-based recycling logistics information management system, solving
integrated management and operational control issues in recycling logistics [19].

Digital twin technology, by creating virtual replicas of physical systems, provides a
real-time visible and traceable digital information environment for simulation, prediction,
analysis, and optimization of processes. This technology has shown significant application
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value in real-time tracking and process optimization in the field of material distribution. For
example, Zhang et al. proposed an optimal state control method based on DT to address
real-time goal setting and optimal execution control problems in synchronized production
operation systems [20]. Yao et al. introduced an IoT-enhanced DT model, significantly
improving the scheduling efficiency of AGVs and machinery in flexible manufacturing
systems and supporting decision-making during production interruptions [11]. Kaoud
et al. utilized DT-based discrete event simulation to address the synchronous scheduling
of AGVs and machinery in flexible manufacturing systems, aiming to determine sched-
ules for each task to minimize the total completion time [12]. Farooq et al. proposed a
multi-AGV path optimization framework based on an improved genetic algorithm for
the intelligent cyber-physical production environment in the textile spinning industry,
effectively reducing the total path distance [13]. Vlachos et al. studied the integration of
AGVs and IoT technology in flexible manufacturing systems, exploring how they jointly
transform traditional manufacturing systems [14]. Monek and Fischer created an IIoT-
based “physical–digital” synchronized DT solution. This solution, utilizing DT for discrete
event simulation, achieved accurate identification and tracking of materials during the
production process and optimized production flow decisions [15]. Wang et al. developed a
material distribution system based on DT to optimize in-factory material distribution deci-
sions [21]. Fang et al. introduced an innovative job shop scheduling method based on DT to
reduce scheduling deviations [22]. These studies demonstrate that DT technology not only
optimizes material distribution processes but also increases transparency and flexibility in
manufacturing processes, positively impacting economic and environmental sustainability.

2.2. Material Distribution Scheduling Problems and Intelligent Algorithms

Material distribution scheduling optimization represents a pivotal issue in the produc-
tion logistics management of manufacturing enterprises, directly impacting the operational
costs and service levels of the production logistics system [23]. The essence of this problem
lies in finding vehicle routing plans that not only meet customer demands but also optimize
the objective function within specific material distribution networks and constraints [24].
Depending on its complexity and practical characteristics, this problem can be catego-
rized into various types, such as the basic vehicle routing problem (VRP), VRP with time
windows (VRPTW), and VRP with pickup and delivery (PDPTW) [25].

For instance, Klen et al. proposed a milk-run material transportation scheduling model
for multi-assembly stations’ real-time material distribution needs, adaptable to dynamic
disturbances [26]. To address these optimization challenges, a multitude of intelligent algo-
rithms have emerged, including particle swarm optimization (PSO), simulated annealing
(SA), and ant colony optimization (ACO). These algorithms exhibit unique advantages
in diverse application scenarios. For example, Tao et al. enhanced the PSO algorithm to
effectively solve the path planning issues of AGVs in workshop production lines [27]. Wang
et al. proposed the self-learning non-dominated sorting genetic algorithm II (SNSGA-II),
addressing the integrated path optimization problem [28].

Furthermore, Chaudhry et al. designed a proprietary genetic algorithm for AGV
assignment and production scheduling in flexible job shop environments [29]. Chen
et al. introduced an improved hybrid ant colony algorithm, enhancing the precision
in pathfinding and reducing the frequency of path selection decisions [30]. Emde et al.
designed a taboo search algorithm, addressing the material supply issue of delivering parts
efficiently and in a timely manner to automatic assembly lines using tow trains within
the factory, achieving a zero-defect state in assembly lines while minimizing work-in-
process inventory to meet just-in-time targets [31]. Lyu et al. developed an algorithm
combining a genetic algorithm with Dijkstra’s algorithm, addressing the optimal number
of AGVs, shortest transport time, path planning, and conflict-free routing of machines and
AGVs in flexible manufacturing systems [32]. Liu et al. proposed a knowledge-guided
distribution estimation algorithm based on delivery satisfaction evaluation, addressing the
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AGV scheduling problem in general manufacturing workshops with matrix-layout stations,
uncertain station replenishment times, and dynamic AGV unloading efficiency [33].

Synthesizing the existing research, we identified several pressing issues in the field
of material distribution. Firstly, traditional material distribution models typically focus
solely on fixed distribution costs and variable travel costs, neglecting the satisfaction level
of workstations towards the delivery service. This practice limits the overall efficiency and
outcomes of the logistics system. Moreover, with the growing emphasis on environmental
protection, incorporating sustainability indicators such as carbon emissions into material
distribution scheduling optimization models is becoming increasingly crucial to create
more comprehensive and rational optimization models. Secondly, most research concen-
trates on static distribution planning within workshops. Although some manufacturing
enterprises have begun utilizing IoT technology to acquire real-time physical resource
information, these data are often singular, localized, and heterogeneous, originating from
different information systems and making it challenging to form a unified global view.
In contrast, research on dynamic material distribution scheduling optimization based on
DT technology remains relatively scarce. This is primarily manifested in the lack of a
unified DT-based scheduling decision framework encompassing various scheduling rules
and its operating mechanism. Additionally, traditional intelligent algorithms still need
improvement in terms of the quality, speed, and stability of material distribution scheduling
solutions to meet practical enterprise needs. These gaps in the field, especially regarding
the incorporation of environmental sustainability and DT technology, point towards future
research directions. Future research should include the design of dynamic material dis-
tribution scheduling models that integrate environmental factors and the exploration of
more efficient and adaptable intelligent algorithms. Moreover, case studies based on real
industrial applications will aid in understanding the practical applications and effects of
these new technologies in real-world settings.

In light of this, our study proposes a DT-based dynamic material distribution schedul-
ing optimization model, strategy, and corresponding improved algorithms. Our objective
is to address the limitations of existing material distribution models by integrating the
latest DT technology and enhanced intelligent algorithms, considering environmental
sustainability, and providing manufacturing enterprises with more efficient, transparent,
and flexible material distribution solutions.

3. Problem Analysis and Description
3.1. Material Distribution Operational Process and Operational Problems
3.1.1. Material Distribution Operational Process

This work was motivated by collaboration with a well-known home appliance com-
pany. The company manufactures hundreds of different products, each with varying order
quantities. Different product categories may have distinct production processes. To meet
the demand for high product variety and small batch production, they have implemented
a mixed-model production approach in the air-conditioning final assembly workshop.
Currently, the company’s workshop is gradually transitioning to smart manufacturing and
has deployed automated guided vehicles (AGVs) in the assembly workshop to handle
material transport and distribution tasks within the assembly line workstations. These
AGVs are coordinated by an automatic guidance system for material distribution across
the assembly lines.

The study focuses on dynamic material distribution scheduling optimization within
the mixed-model assembly workshop. As illustrated in Figure 1, the principle of material
demand-driven distribution involves workstations continuously consuming materials from
their workstation buffer areas. When the inventory level drops below a reorder trigger
threshold, material replenishment orders are generated and sent to the material distribution
system. Within each specific production cycle, the material distribution system aggregates
material demands from each workstation buffer area, creating a material distribution task
list. These tasks are then grouped into a material distribution batch order and sent to the
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material supply center to arrange available logistics resources for the required distribution
tasks. Consequently, the material distribution process can be divided into two main phases:
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Planning phase: The production planning department generates daily production
distribution schedules and daily material demand order lists based on customer orders
and scheduling rules. These schedules and order lists are transmitted to the material
distribution management department through the material distribution system. The mate-
rial distribution management department, based on this timetable and material demand
order list, allocates distribution demand orders among available logistics resources (e.g.,
AGVs) to formulate the daily material distribution plan to ensure the timely distribution of
required materials.

Execution phase: On the day of execution, the material distribution management
department assigns AGVs to carry out pre-allocated tasks and routes according to the
established material distribution plan. AGVs travel to the warehouse of the material supply
center to retrieve various required materials and deliver them to the workstation buffer
areas. After completing the designated distribution orders, AGVs return to the warehouse
of the material supply center.

3.1.2. Analysis of Material Distribution Operation Problems

Through the analysis of the operational processes described above, we drew the fol-
lowing conclusions: In the mixed-model manufacturing mode, due to the diversity and
complexity of materials, efficient, accurate, and timely material distribution is required in
the workshop. However, the material distribution process is often influenced by dynamic
factors such as demand, resources, and processes, which can lead to inadequate coordina-
tion between material distribution and assembly production. Through the investigation of
a mixed flow assembly shop (MFAS), we identified the following research questions:

• Optimizing workstation material distribution presents certain difficulties. Handling
various types and quantities of materials with limited logistics resources, without
adequately considering the impact of production speed on material distribution,
results in inefficient material distribution and increased costs. Additionally, with
limited buffer capacity, there is a need for frequent, appropriately sized material
replenishments. However, traditional material distribution strategies rely on manual
experience lacking scientific planning, which often leads to early deliveries, causing
material accumulation, or late deliveries, causing assembly line downtime, thereby
reducing workstation satisfaction.
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• Manufacturing companies face the challenge of comprehensive information acquisi-
tion. Due to the variety of products, material distribution becomes complex. Achieving
precise and efficient material distribution requires advanced information technology
support. However, the current level of enterprise informatization is relatively low, ca-
pable of collecting only certain key performance indicators of the material distribution
system but unable to acquire real-time comprehensive operational status information
required for the material distribution system. The lack of transparency in production
logistics information within the workshop and inefficient information transmission
pose challenges to material distribution scheduling optimization.

• Designing effective dynamic distribution scheduling optimization strategies presents
a challenge. Traditional material distribution schedules are typically based on static
planning without considering disruptive factors during the execution of production
logistics. However, unexpected dynamic changes often occur during execution. The
absence of real-time information-driven material distribution scheduling optimization
strategies to effectively address these disruptions results in significant deviations
between on-site execution and planned expectations, presenting a significant challenge
to management.

3.2. Description of Material Distribution Scheduling Optimization Problem (MDSOP)

The scenario consists of a logistics transportation system comprising K AGVs, each
capable of material distribution for N workstations on multiple assembly lines. The
maximum carrying capacity of each AGV is denoted as Q, covering a range of materials,
including evaporators, controllers, sheet metal parts, and both in-house and outsourced
components. Since each workstation has specific time window requirements for materials,
the material distribution scheduling optimization problem can be categorized as the vehicle
routing problem with time windows (VRPTW) [25]. In this problem, the concept of soft
time windows is introduced, incurring a penalty cost if the soft time window is exceeded.

Specifically, the problem can be summarized as follows: AGVs depart from the dis-
tribution center, deliver loaded materials to the workstation buffer areas on the assembly
lines, and return to the distribution center. The material load of each AGV must not exceed
its maximum carrying capacity while adhering to other constraints. The objective is to
deliver materials to the workstations within soft time windows while ensuring delivery
completion within hard time windows. The ultimate goal of the entire process is to mini-
mize the number of AGVs and path lengths required for material distribution, and consider
environmental impacts (e.g., carbon emissions) while reducing workstation dissatisfaction,
thus minimizing the total material distribution cost, with the constraint of finite AGV
resources [34]. Initially, all AGVs are available for use. However, during the execution of
distribution, dynamic disruptions such as rush orders and vehicle breakdowns are encoun-
tered, necessitating adjustments to the distribution plan based on the actual circumstances
to achieve optimal material distribution performance. Furthermore, DT-based material
distribution scheduling must meet the following requirements:

• Each workstation buffer area can only be serviced by a single AGV.
• Each AGV can serve multiple workstation buffer areas.
• All AGVs have the same priority and cannot be interrupted once they start serving a

workstation buffer area unless there is a vehicle breakdown.
• When the AGV shows a power warning during the distribution process, it needs to be

replenished.
• The distribution capacity on each distribution path does not exceed the AGV’s maxi-

mum payload.
• Both the starting and ending points of AGVs are at the distribution center (material

storage area), and AGVs travel along the planned path at a fixed speed.
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3.3. The Formulation of MDSOP

According to the description provided above, the relevant symbol definitions for the
problem model under consideration are presented in Table A1 of Appendix A.

The mathematical model for the research problem considered in this paper is repre-
sented as follows:

Fgoal= min{ f1, f 2, f3, f4} (1)

f1 = ∑N
i=1 ∑K

k=1 x0ik (2)

f2 = ∑N
i=0 ∑N

j=0 ∑K
k=1 Dij · xijk (3)

f3 = ∑N
i=0 ∑K

k=1

{
max

[
ai − tk

i , 0
]
+ max

[
0, tk

i − bi

]}
(4)

f4 =

{[
EC · 〈

di,j

100
〉
]

/η

}
· π (5)

∑N
i=1 qiyik ≤ Q, ∀k = K (6)

∑K
k=1 yik = 1, ∀i = {I, i 6= 0} (7)

∑N
j=1 x0jk = ∑N

j=1 xj0k, ∀k = K (8)

tk
i + ti,k + tij − F

(
1− xijk

)
≤ tk

j , ∀i = I, ∀j = I, ∀k = K (9)

Ci =


δ(ai − ti−k), ti−k < ai

0, ai ≤ ti−k ≤ bi

β(ti−k − bi), ti−k ≥ bi

(10)

Equation (1) represents the three objective functions of the material distribution
scheduling optimization problem; Equation (2) minimizes the number of distribution
vehicles used; Equation (3) minimizes the length of distribution vehicle routes; Equation (4)
maximizes workstation satisfaction in light of the direct correlation between worksta-
tion satisfaction and penalty costs associated with AGV delivery delays, which can be
quantified by minimizing penalty costs associated with early or late vehicle arrivals;
Equation (5) represents the carbon emissions generated during the use of distribution
vehicles; Equation (6) ensures that each distribution vehicle’s load does not exceed its
maximum capacity; Equation (7) specifies that each workstation can only be serviced by
one distribution vehicle; Equation (8) ensures that distribution vehicles start from the distri-
bution center, complete their deliveries, and return to the distribution center; Equation (9)
dictates that distribution vehicle k must arrive at workstation j after time tk

i + ti,k + tij; and
Equation (10) enforces time window constraints, incurring penalty costs if materials are
delivered outside the specified time window.

The mathematical model constructed in this article belongs to the domain of multi-
objective optimization [35]. According to the theory of quantitative comparison, it is
often challenging to directly compare different types of objectives, such as time, distance,
satisfaction, and carbon emissions, due to the diversity in their units of measurement.
Furthermore, based on the theory of decision consistency in business and engineering
decisions [36], cost factors are frequently considered the primary quantifiable indicators.

To simplify the original multi-objective problem without losing its essence, this study
transforms it into a single-objective optimization problem centered on cost minimization.
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Specifically, the increased purchase and maintenance costs due to the additional use of
delivery vehicles are quantified as cost factors. Similarly, an increase in delivery route length
implies higher fuel consumption and potential time costs, which are also converted into
monetary costs. Regarding workstation satisfaction, failure to meet the time requirements of
a workstation may lead to production being either advanced or delayed, and the associated
penalty costs should also be included in the total cost. As for carbon emissions, they can be
converted into carbon emissions costs based on the current carbon pricing mechanism.

Therefore, the objective function defined in this study (as shown in Equation (11))
aims to minimize the comprehensive total cost, which includes the fixed cost of delivery
vehicles, the transportation cost, the penalty cost for workstation time windows, and the
cost of carbon emissions.

Fgoal = ∑n
i=0 ∑m

k=1 Co · x0ik + ∑N
i=0 ∑N

j=0 ∑K
k=1 Dij·Cd·xijk + ∑n

i=0 ∑m
k=1 Ci ·

{
max

[
ai − tk

i , 0
]
+ max

[
0, tk

i − bi

]}
+ Ctax·{[

EC · 〈 di,j
100 〉

]
/η
}
· π

(11)

4. Proposed Methodology
4.1. DT-Based Decision-Making Architecture for Material Distribution Scheduling Optimization

This section primarily introduces a decision-making architecture for material distri-
bution scheduling optimization based on DT, as illustrated in Figure 2. This architecture
comprises two key levels: the physical object layer and the virtual twin layer. Each layer
plays a specific role in enhancing the efficiency and accuracy of material distribution
scheduling. This innovative decision-making framework offers a novel and efficient mate-
rial distribution solution for manufacturing enterprises.
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4.1.1. Physical Object Layer

The physical object layer is divided into the physical resources layer and the smart
devices layer.
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• Physical Resources Layer

This layer encompasses various on-site physical entities in the mixed-flow assembly
workshop, such as materials, pallets, AGVs, workstation buffers, workshop environments,
and operational personnel.

• Smart Devices Layer

This layer consists of various smart IoT sensing devices. Active sensing devices
include handheld PDA terminals, wearable devices, sensors, etc., whereas passive sensing
devices encompass 1/2D tags, RFID tags, etc. These devices are responsible for collecting
information related to materials, vehicles, task execution, orders, and the environment. The
collected data are then transmitted to the upper layer of the decision-making architecture
through heterogeneous networks such as RFID, Wi-Fi, 4/5G, Bluetooth, ZigBee, and LoRa.

4.1.2. Virtual Twin Layer

The virtual twin layer can be further subdivided into the DT image layer and the DT
service layer.

• DT Image Layer

The DT image layer comprises two critical components: the data hub and the model
hub. The data hub is tasked with collecting, storing, and managing multi-source, multi-
dimensional heterogeneous real-time data from the physical object layer (such as the status
of AGVs, workstation information, and material tasks). It then performs data fusion and
analysis, providing a comprehensive and accurate real-time status foundation for the
material distribution system.

The model hub is responsible for constructing and updating DT models (such as
DT models of physical resources, processes, and operations) and integrating models of
different scales (like device level, system level, etc.). This layer, driven by the “data–model
fusion” of DT technology, generates multi-scale virtual images reflecting the actual material
distribution system based on real-time operational data from the data hub and multi-scale
static twin models from the model hub to support decision simulation.

• DT Service Layer

In the DT-based material distribution scheduling system, the DT service layer plays a
pivotal role. It integrates various services and modules to create a comprehensive decision-
support environment. This includes the material distribution scheduling optimization
strategy, control systems, and service modules within the application system. Notably,
the material distribution scheduling optimization strategy (see Section 4.3) is seamlessly
integrated into the material distribution scheduling control system (including subsystems
for material delivery task allocation and vehicle scheduling). This integration supports real-
time data-based dynamic decision-making and execution control, enhancing the overall
efficiency and responsiveness of the material delivery process.

Upon the arrival of material distribution tasks, the virtual twin layer analyzes the
material flow, vehicle status, and production requirements. Using the embedded intelligent
algorithm module within the control system, it generates optimal task allocation and
vehicle scheduling plans. These decision plans are then transformed into commands for
the execution control of the physical system. Moreover, the control system encompasses
various services: data calling, algorithm calling, program operation, simulation operation,
and decision output. These services ensure the smooth and efficient operation of the system
and provide simulation assessments of the scheduling plans.

To meet the real-time requirements of the material distribution scheduling system, an
innovative “cloud–edge” computing architecture is adopted (as shown in the right half
of Figure 2). This architecture effectively allocates computational needs between cloud
and edge servers [37], balancing the optimization of computing resources and real-time
performance. The cloud servers handle historical operational data, conducting large-scale
data analysis and mining. Based on these analyses, decision models are constructed
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and intelligent algorithms are invoked to generate decision schemes. The edge servers,
located closer to data sources, are responsible for initially collecting and processing simple
distribution operation data and loading digital models. They also monitor the system’s
execution in real time, ensuring rapid responses to dynamic changes on site.

The implementation of the “cloud–edge” computing architecture not only ensures
the efficiency and smoothness of production within the mixed-flow assembly workshop
but also maximizes the strengths of both cloud computing and edge computing. This
application significantly enhances the overall computational efficiency of the system and
strengthens its capabilities for real-time data processing and rapid response. Consequently,
the overall performance of the material distribution scheduling system is greatly optimized.

4.2. DT-Based Composition and Operation Mechanism for Material Distribution System

The material distribution system is a crucial component of the mixed-model assembly
workshop, and the DT-based material distribution system forms the foundation of the
overall scheduling optimization mechanism, significantly impacting the application of
scheduling strategies.

This section describes the composition and operational mechanism of the DT-based
material distribution system. According to the five-dimensional DT model proposed by Tao
et al. [38], the composition of the DT-based material distribution system can be described as:

DTMDS= {Ps, Vs, Ss, Ds, CN} (12)

where Ps represents the physical distribution system, Vs is the virtual distribution system,
Ss denotes the distribution service system, Ds supports the distribution decision-making
data system, and CN signifies their interactive connections. Figure 3 illustrates the relation-
ships between these components.

Ps includes AGVs, materials, operators, and smart IoT devices, which are primar-
ily responsible for receiving material distribution tasks dispatched by the production
plan and executing material transport based on the distribution plan. Vs is mainly used
for simulation, evaluation, prediction, and visualization, serving as a digital image of
Ps. It involves multi-dimensional “geometric–physical behavior rules”, multi-domain
“mechanical–hydraulic–electrical,” and multi-scale “unit–subsystem–system” models.

Ss represents a collection of various intelligent service functions that provide man-
agement and control support for the DT-based material distribution optimization system.
Ds comprises data from Ps, Vs, and Ss, along with fused information data (Data f ) and
knowledge data (Datak). The data system also acts as a driving force for Ps, Vs, and Ss.
CN is a critical link and foundation for establishing the DT-based material distribution
system, enabling interaction connections among the various components.

When distribution tasks are executed, the collaborative process among different com-
ponents unfolds as follows. Initially, Ss generates an initial plan that satisfies task re-
quirements and constraints based on the system’s multi-dimensional fused data (Data f ).
Subsequently, Vs simulates, evaluates, and optimizes the initial plan, eliminating potential
conflicts, and uploads the optimized best initial plan to Ss. Ss then sends the validated best
initial plan to Ps for logistics preparation.

Once the distribution begins, the validated best initial plan is transmitted to Vs, which
sends instructions to control the logistics operations of Ps. Ps provides real-time feedback
on the status of material distribution to Vs. During the distribution process, Vs predicts
changes in Ps’ performance trends and continuously simulates, evaluates, and optimizes
logistics based on DT data. Vs continues to evolve until the tasks are completed.

If discrepancies are found between the execution status of Ps and the initial plan
instructions (referred to as the interference intensity, defined in Section 4.3), an interference
response service is automatically triggered. Ss rapidly identifies the cause of the interference
and adjusts it based on dynamic response strategies to achieve optimal logistics operations.

Furthermore, Ds, as the “core engine” of DT operation, is indispensable for Ps, Vs,
and Ss, as they all rely on Ds to drive the system.
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4.3. DT-Based Dynamic Material Distribution Scheduling Optimization Strategy

With the support of DT-based decision architecture for material distribution scheduling
optimization, this section proposes a DT-based dynamic material distribution scheduling
optimization strategy.

Figure 4 illustrates the overall scheduling optimization strategy. Initially, material
distribution task instructions are generated based on the material distribution order de-
mands from the production plan. This entails generating a set of distribution vehicles for
each material batch in Ss, along with the collection of routes for each vehicle. Ss defines
the eligible vehicles for each type of material and employs a compression spatiotemporal
ratio method [39] to determine the precise average travel speed of the distribution AGVs.
Subsequently, the scheduling optimization model established in the initial scheduling phase
is solved using the embedded improved ACO (IACO). Next, the solved scheduling plan
is imported into Vs for simulation and verification to mitigate potential risks within the
scheduling plan. After iterative optimization, the best initial distribution plan results are
transformed into decision instructions to control and guide the logistics operations of Ps.

In the actual production logistics execution process, the comprehensive and robust
data collection capability of the DT-based material distribution system allows for real-time
operational data, including AGVs, materials, logistics operations, personnel, and environ-
mental data, to be monitored and uploaded to Ds. The collected real-time operational data
are compared with the results simulated in Vs to determine whether disturbances exceed
predefined thresholds. If such thresholds are surpassed, dynamic revised scheduling is
employed to address the disturbances.
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During the dynamic corrective scheduling phase, the material distribution system
inevitably encounters various disruptive factors, such as emergency order insertion, vehicle
breakdowns, material shortages, etc. This study categorizes these disturbances into three
levels based on their impact on system operations, denoted as R1, R2, and R3, with varying
levels of intensity. The definition of disturbance intensity is as follows:

R = fD

(
Ti, S∆

)
(13)

S∆ = FDT(Ti) (14)

Building upon our research group’s prior work [20], different dynamic response
strategies are proposed for various disturbance intensities. When R < R1, it is categorized
as level one dynamic response, i.e., R1. In this case, although the material distribution
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plan for the mixed-flow workshop is affected by disturbances, the impact is not significant
enough to disrupt normal execution. Therefore, deliveries can proceed according to the
original plan without the need for adjustment. When R1 < R < R2, it is categorized as level
two dynamic response, i.e., R2. At this stage, the material distribution plan can no longer
meet dynamic requirements, but internal corrections can be made to adjust the material
distribution plan by modifying and configuring other available distribution vehicles to
meet the material distribution needs. When R2 < R, it is categorized as level three dynamic
response, i.e., R3. In this stage, the planned corrections are insufficient to meet the high
dynamic requirements of the material distribution plan in the mixed-flow workshop,
requiring the introduction of external logistics resources for resource adjustments. Revised
material distribution planning schemes are then issued as instructions to the execution site
to meet the high dynamic production logistics requirements.

4.4. Intelligent Optimization Algorithm

In a DT-based material distribution system, the generation of scheduling plans relies
on the support of intelligent optimization algorithms. These algorithms are encapsulated
within Ss and integrated with DT. The scheduling optimization algorithm, as the core
technology of the DT-based material distribution system, has a direct impact on the per-
formance of the logistics system. Therefore, this section explores an improved intelligent
optimization algorithm.

The ant colony optimization (ACO) algorithm, inspired by the foraging behavior
of ants in nature, has demonstrated outstanding performance in finding optimal paths.
It is a probabilistic algorithm with good parallelism, robustness, and positive feedback
properties. ACO algorithms have been widely applied in various fields, including machine
learning, graph theory problems, logistics planning, and production scheduling. However,
traditional ACO algorithms often suffer from problems such as low solution precision, slow
convergence speed, and susceptibility to local optima.

In this research, we employed an IACO to address the material distribution scheduling
optimization problem in the DT-based framework. This algorithm is inspired by the behav-
ioral patterns and pheromone communication mechanisms of ants, effectively identifying
the optimal distribution pathways while simultaneously considering cost, efficiency, and
environmental impacts.

Figure 5 provides a comprehensive flowchart illustrating the operational logic of
the IACO algorithm. The diagram distinctly outlines the algorithm’s essential stages,
including parameter initialization, pathfinding, task completion assessment, the selection
of subsequent ants, and the crucial steps of pheromone renewal and iteration cessation.

The algorithm’s methodology unfolds as follows: Step 1 involves initializing the pa-
rameters, which encompasses setting the maximum number of iterations, ants (vehicles),
and workstations. It also includes initializing algorithmic parameters like the pheromone
factor, the heuristic function factor, and its volatilization factor, along with the initial
pheromone concentration and the construction of a taboo table. Step 2 engages in pathfind-
ing from the origin point (O), calculating transition probabilities for path selection and
applying the roulette wheel method to determine the subsequent node. Step 3 focuses
on assessing task fulfillment, examining whether all demand points are met by the ant;
if incomplete, the process returns to Step 2 for continued searching. Step 4 entails the
selection of the next ant, ensuring all ants have completed their pathfinding. Finally, Step 5
updates pheromones based on the ants’ path performance, terminating the iteration upon
reaching the maximum iteration count and consequently deriving the optimal solution.

A notable aspect in Step 2 is the implementation of the roulette wheel method, which
assigns probabilities to each path choice proportional to their respective advantages, thus
maintaining a balance. This implies that, although paths with higher pheromone concen-
tration are more likely to be selected (exploitation), other paths also stand a chance of being
chosen (exploration). This randomized selection mechanism aids the algorithm in swiftly
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identifying effective solutions while preventing premature convergence on local optima,
thereby enhancing the probability of discovering the globally optimal solution.
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To delve into the workings and specific implementation details of the IACO algorithm,
Algorithm 1 presents the pseudocode when applying this algorithm to material distribu-
tion scheduling problems. This table provides a clear and systematic framework for the
algorithm’s execution, meticulously detailing the process from parameter initialization,
through the core loop of ant path searching and task completion assessment and up to the
pheromone update and the termination of iterations based on predetermined maximum
iteration counts.

Algorithm 1 Pseudocode of the IACO

1 Input: maximum number of iterations itermax, pheromone factor α,
2 heuristic function factor β, pheromone constant U, pheromone evaporation
3 factor ρ, number of ants (vehicles) m, number of workstations n
4 Process:
5 Step 1—Parameter Initialization:
6 Set itermax, α, β, U, ρ.
7 Define the number of ants m.
8 Set the number of stations n.
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Algorithm 1 Cont.

9 Initialize the initial pheromone concentration τij (t).
10 Initialize the taboo list to record visited nodes.
11 Initialize the list of accessible nodes (allowed).
12 Step 2—Pathfinding:
13 For each ant:
14 Start from the origin point (O) and add it to the taboo list.
15 Calculate path node selection transition probabilities using
16 Equations (15) and (18).
17 Use roulette wheel selection to choose the next node for path
18 searching.
19 Add the selected node to the taboo list for the current iteration.
20 Repeat the above steps until the task is completed or all demand service
21 points are satisfied.
22 Step 3—Task Completion Check:
23 For each ant:
24 Check whether all demand service points have been satisfied.
25 If the task is completed, return to the origin point (O).
26 If the task is not completed, return to step 2.
27 Step 4—Selection of Subsequent Ants:
28 Check whether all ants have completed their path searches.
29 If all ants have completed them, proceed to step 5.
30 If some ants have not completed them, select the next ant and return to
31 step 2.
32 Step 5—Pheromone Update and Iteration Termination:
33 Update the pheromones on the paths based on Equations (22)–(24).
34 Check whether the current iteration exceeds itermax.
35 If it does, terminate the algorithm and output the current best
36 solution.
37 If it does not, clear the taboo list and return to step 2 for continued
38 iteration.
39 Output the optimal solution.

Within the IACO algorithm, significant enhancements have been made to the rules gov-
erning route node transitions and pheromone updates, markedly improving the efficiency
and accuracy of pathfinding. The specific improvements are as follows.

4.4.1. Improved Route Node Selection Transition Rules

The savings technique is introduced, incorporating a quantity µij to enhance the
ant’s transition probability selection. µij is introduced into the ant’s path node transition
probability formula, optimizing the selection of path nodes while favoring higher vehicle
load rates. The improved node selection transition probability formula is as follows:

Pk
ij(t) =


[τij(t)]

α ·[ηij(t)]
β ·[µij]

ρ

∑
i∈allowed

[τij(t)]
α ·[ηij(t)]

β ·[µij]
ρ , i f i ∈ allowed

0, else

(15)

ηij(t) =
1

dij
(16)

dij =
{(

xi − xj
)2

+
(
yi − yj

)2
}0.5

(17)

µij = di0 + dj0 − dij (18)

where Equation (15) Pk
ij(t) represents the improved path node selection transition proba-

bility formula, indicating the probability of ant k selecting node i to node j at time t. This
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probability is influenced by the pheromone concentration
[
τij(t)

]α, the heuristic function
ηij(t), the pheromone increment µij, and whether node i belongs to the accessible node
set allowed. Equation (16) represents the heuristic function, denoting the visibility be-
tween nodes i and j, which is usually the reciprocal of the distance between nodes. In
Equation (17), dij represents the distance function, denoting the Euclidean distance be-
tween nodes i and j, and Equation (18) is the savings function µij, which is the sum of route
lengths for separate deliveries to two workstations minus the route length when visiting
both workstations simultaneously. Here, α is the pheromone factor, β is the heuristic
function factor, and ρ is the pheromone evaporation factor.

4.4.2. Improved Pheromone Update Rules

The core idea behind this rule is that ants update pheromones along their path as they
search, guiding them in choosing paths to find the best solutions based on specific problem
constraints and objectives. The standard pheromone update formula is as follows:

τij(t + 1) = (1− ρ)τij(t) + ∆τij(t) (19)

∆τij(t) = ∑m
k=1 ∆τk

ij(t) (20)

∆τk
ij(t) =

U
Lk

(21)

where, in Equation (19), τij(t + 1) represents the pheromone concentration function for
nodes i and j at time t + 1, influenced by the pheromone concentration τij(t) at the previous
time t and the pheromone increment ∆τij(t) (as shown in Equation (20)). Pheromone con-
centration gradually evaporates (1− ρ) while being influenced by rewards and penalties
from ant paths. In Equation (21), ∆τij(t) is calculated based on the traveling path length Lk
of a single ant k and the pheromone constant U, representing the increase in pheromone
concentration from node i to node j.

In this study, we introduced an improved pheromone update rule that accelerates the
algorithm’s convergence by using a reward and penalty strategy. Specifically, during the
process of ants searching for paths, ants that fail to complete routes correctly are eliminated,
and only ants that successfully reach the target endpoint with a valid path are retained.
For these qualified paths, we introduced a reward and penalty strategy for pheromone
updates. Assuming there are m ants in total, for the top n ants with the shortest travel path
lengths, we increased the pheromone concentration released by these ants, i.e., rewarding
them. For the remaining m − n ants (i.e., those ranked below the top n ants), we reduced
the pheromone concentration on their paths, i.e., penalizing them. The specific formula for
the improved pheromone update rule is shown in Equations (22) and (23), where lnowbest

represents the current iteration’s best solution, and lnowworst represents the worst solution
of the current iteration. To ensure that the pheromone concentration fluctuates within a
certain range, avoiding excessive growth or reduction, as well as preventing the algorithm
from getting stuck in local optima prematurely or stagnating during the search process, we
set the pheromone concentration τij as shown in Equation (24).

τij(t + 1) = (1− ρ)τij(t) + ρ
n ·Q

lnowbest

(22)

τij(t + 1) = (1− ρ)τij(t)− ρ
(m− n) ·Q

lnowworst

(23)

τij =


τmax, τij ≥ τmax

τij, τmin ≤ τij ≤ τmax

τmin, τij ≥ τmin

(24)
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5. Case Study
5.1. Case Background and Parameter Setting

To validate the excellence and effectiveness of the DT-based material distribution
scheduling strategy, we implemented a DT-based material distribution system in a col-
laborative enterprise. This material distribution system fully utilizes AGVs to execute
distribution tasks, with the average travel time of AGVs determined through DT simula-
tion, an average speed of 1 m/s, and a maximum vehicle load of 180 kg. We calculated the
fixed costs of AGVs and the distribution costs per unit transportation distance based on
historical operating data within the workshop. The assembly workshop comprises three
mixed-model assembly lines, and we incorporated actual site data, including the coordi-
nates of material storage areas and various workstations. Table A2 provides vehicle-related
data and basic parameters of IACO. Table A3 displays the coordinates of the workstations.
In this study, we selected the material demand data for different workstations during
one cycle of material distribution in the mixed-model assembly workshop, as shown in
Table A4, the sources of which are shown in Tables A2–A4 in Appendix A.

5.2. Results Analysis
5.2.1. Verification of Algorithm Superiority

Traditional material distribution scheduling schemes rely on manual experience and
often fall short of achieving optimal operations, especially in highly dynamic mixed-model
production environments. Hence, this study employed an IACO algorithm to address the
material distribution scheduling optimization problem. Numerical simulation experiments
were conducted using MatLab R2016a on Alibaba cloud servers, with real data sourced
from our collaborative enterprise. We conducted coding and problem-solving with a
genetic algorithm (GA), particle swarm optimization (PSO), ACO, and IACO to evaluate
the performance of each algorithm. Each algorithm was run 50 times for each test case to
ensure the stability of the results, and the average of the best values obtained from these
50 runs was taken as the final outcome.

Figure 6a presents a comparative simulation result of these algorithms. We observed
that GA, PSO, ACO, and IACO required 50, 42, 51, and 38 iterations, respectively, to
converge to the optimal operational cost, with costs of 117.1, 117.1, 133.5, and 117.1 (unite:
$), respectively. In terms of running time, these algorithms required 15, 10, 25, and 4,
respectively. Furthermore, to achieve the shortest distribution route, they required 55, 42,
60, and 39 iterations, with travel distances of 976, 976, 1062, and 976, respectively.

These results reveal a key finding: Compared to the ACO, our proposed IACO al-
gorithm demonstrated significant advantages in terms of problem-solving quality. More
importantly, IACO exhibited a similarity with GA and PSO in converging to the same
optimal solutions, which validates the effectiveness of our proposed algorithm. Meanwhile,
in the critical metric of solution speed, our IACO algorithm showed a remarkable lead.
These results not only confirm the superiority of our algorithm in the stability of its solving
quality but also highlight its efficiency in terms of solution speed. These findings provide
essential guidance for algorithm selection and performance optimization.

5.2.2. Scheduling Results Comparison

To comprehensively evaluate the excellence and effectiveness of the DT-based dynamic
scheduling (DT-DS) strategy proposed in this paper, we introduced a traditional manual
scheduling (TMS) strategy as a comparative benchmark. Under the TMS strategy, material
distribution plans are manually devised by planners based on their expertise. In contrast,
the DT-DS strategy proposed in this paper makes use of an improved ACO algorithm to
make decisions within the DT environment.

Figure 6b displays a comparison of the two scheduling optimization results. Using the
TMS strategy, six AGVs were required, covering a total distance of 2124, with a total cost
of 484.4 and an average AGV load rate of only 88.5%. In contrast, by adopting the DT-DS
strategy, the number of AGVs was reduced to five, the total travel distance decreased to
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1897, and the total distribution cost was significantly lowered to 289.7. Additionally, the
average load rate of AGVs improved markedly to 95.2%. Compared to the TMS strategy,
the DT-DS approach resulted in a reduction of one AGV, a 10.7% decrease in travel distance
(227), an improvement of about 93% in station satisfaction (saving 26.5), a 72% reduction in
carbon emissions costs (saving 130), and a 40% decrease in total distribution costs (saving
194.7), while enhancing the average load rate of AGVs by approximately 7.6%.
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These findings clearly demonstrate that our proposed DT-DS strategy significantly out-
performed the TMS strategy in enhancing resource utilization efficiency, reducing operating
costs, and mitigating environmental impact. Notably, in supporting cleaner production, this
strategy offers substantial benefits in reducing resource consumption and carbon emissions,
thus making a significant contribution to sustainable production practices.

5.3. Sensitivity Analysis

To delve into the impact of changes in logistics resources and emerging demand on
the performance of material distribution scheduling systems, this study considered three
relevant and typical scenarios related to the context of sustainable development and cleaner
production: sensitivity analysis under different vehicle load (type) configurations, various
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vehicle quantity configurations, and different dynamic distribution demand volumes.
These sensitivity analyses offer valuable insights into logistics management in mixed-
model assembly workshops of similar enterprises, including the reduction of operational
costs, resource and energy consumption, and carbon emissions, in order to enhance the
economic and environmental sustainability of manufacturing companies.

5.3.1. Scenario 1—Sensitivity Analysis of Different Vehicle Model Configurations

Based on real distribution vehicles in a specific workshop and baseline distribution de-
mand data for a given period, three different vehicle model configurations were considered:
a lightweight vehicle (LV, 140), a mediumweight vehicle (MV, 180), and a heavyweight
vehicle (HV, 230).

Figure 7a presents an analysis of simulation results based on different vehicle configu-
rations, focusing on three main aspects:

• Impact of different vehicle configurations on average loading rate: As depicted by the
blue line in Figure 7a, the mediumweight vehicles, owing to their higher maximum
load capacity, could carry more materials per distribution, resulting in the highest
average loading rate (94.22%). In contrast, although the heavy vehicles had a larger
load capacity, their loading rate was lower (73.76%) when carrying the same quantity of
materials. The average loading rate for the lightweight vehicles (86.53%) fell between
that of the mediumweight and heavyweight vehicles.

• Impact of different vehicle configurations on the number of vehicles required: As
indicated by the red line in Figure 7a, to meet the same material transportation needs,
both medium- and heavyweight vehicle configurations required five vehicles each,
whereas lightweight vehicles necessitated seven vehicles. This discrepancy is likely
due to the load limitations of lightweight vehicles, necessitating more vehicles to
complete the same distribution tasks.

• Impact of different vehicle configurations on total distribution cost: As shown by the
green line in Figure 7a, lightweight vehicles, requiring more vehicles and trips for
distribution, incurred the highest total cost (143.1). Mediumweight vehicles, with their
efficient loading rates and fewer vehicle requirements, had the lowest total cost (122.6).
The cost for heavyweight vehicles was between the two.

In summary, the results in Figure 7a underscore the critical role of selecting suitable
vehicle types to optimize the material distribution scheduling system. Under the conditions
of this study, medium-weight vehicles demonstrated optimal performance due to their
higher loading rates and lower total costs. Although lightweight vehicles had certain
limitations in load capacity, they can still be a viable option under specific conditions.
As for heavyweight vehicles, despite their lower load rates, they might be suitable in
certain scenarios.

From this sensitivity analysis, valuable management insights can be derived:

• Managers need to balance distribution costs and efficiency in logistics operations.
The size of a vehicle’s payload impacts the overall material distribution scheduling
system’s performance when the quantity of materials remains constant. Overly large
payloads can lead to lower load rates, reduced vehicle utilization, and increased total
costs. Conversely, excessively small payloads, despite improving average load rates,
necessitate more vehicles, increasing maintenance costs. Therefore, the choice of
mediumweight vehicles may help firms to strike an optimal balance between cost and
efficiency while at the same time reducing their consumption of logistics resources,
thus enhancing the economic and environmental sustainability of manufacturing
companies.

• Managers should consider the alignment of production modes with vehicle configura-
tions. In high-volume production modes, where material demand is significant, using
vehicles with larger payloads can better meet the high-volume material distribution
requirements and reduce transportation costs. On the other hand, in multi-variety,
low-volume production modes where materials vary but are relatively small in quan-
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tity, selecting vehicles with smaller payloads can better meet flexibility requirements
and improve load rates.

• Managers need to find a balance between flexibility and efficiency. High-volume pro-
duction modes often prioritize efficiency, and therefore, using larger-payload vehicles
can reduce costs. However, multi-variety, low-volume production modes prioritize
flexibility, and thus, smaller-payload vehicles can better accommodate diverse ma-
terial needs. In practice, managers must consider production demands, customer
requirements, and the availability of logistics resources in their decision-making.
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5.3.2. Scenario 2—Sensitivity Analysis of Different Vehicle Quantity Configurations

In the context of sustainable logistics management, an analysis was conducted based
on distribution demand data for a specific production batch, considering different quantities
of mediumweight distribution vehicles, ranging from 5 to 11 vehicles. This analysis
aimed to find the optimal vehicle configuration to reduce carbon emissions and resource
consumption while maintaining efficient logistics operations.

The results presented in Figure 7b reveal a dynamic relationship between the total
distribution cost and the number of mediumweight distribution vehicles, a relationship
that shows three distinct phases:
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• High-cost phase with fewer vehicles: The stage where the number of vehicles was
limited to five corresponded to the highest distribution cost, which peaked at 747.6.
This was mainly attributed to the insufficiency of vehicles, burdening each vehicle with
excessive transportation tasks and thereby necessitating frequent trips and escalating
wear and tear as well as maintenance costs. Furthermore, a lack of sufficient vehicles
may lead to an inability to meet material demands during peak periods, adversely
impacting the overall efficiency of deliveries.

• Cost reduction phase with moderate increase in vehicles: An increment in the number
of vehicles to eight led to a significant drop in total costs, reaching the lowest point
at 679.3. This suggests that a moderate increase in the vehicle count can effectively
distribute the workload across each vehicle, diminishing the wear and tear and mainte-
nance expenses while simultaneously enhancing distribution efficiency and avoiding
extra costs associated with delayed material deliveries.

• Cost increase phase with excessive vehicles: Further augmentation of the vehicle count
to 11 paradoxically resulted in an uptick in total costs, elevating them to 724.5. This
could be due to the escalated additional management costs, parking space constraints,
and costs associated with vehicle idling, caused by an overabundance of vehicles.

The comprehensive analysis of Figure 7b revealed a trend where total distribution costs
initially decreased and then increased with the varying number of vehicles, underscoring
the critical importance of optimal vehicle configuration in diminishing the total costs of the
material distribution scheduling system. Under the parameters of this study, an optimal
configuration of eight mediumweight distribution vehicles emerged as the most effective
strategy. Both the scenarios of under-configuration and over-configuration of vehicles
could lead to an unnecessary escalation in costs. An optimum number of vehicles is not
only instrumental to efficiently managing resources and fuel expenses but also to ensuring
the timely distribution of materials and the efficacy of logistics operations.

Crucial management insights can be drawn from this sensitivity analysis:

• Managers need to strike a balance between penalty costs and idle costs. The number
of distribution vehicles, under consistent vehicle types, affects the efficiency of the
entire material distribution scheduling system. Having too few vehicles may lead
to high penalty costs, whereas having too many vehicles can result in excess idle
costs. Therefore, a balance needs to be struck between avoiding penalty costs and
maximizing resource utilization. Managers should actively introduce advanced infor-
mation technology and scheduling algorithms for real-time monitoring and intelligent
decision-making to ensure that distribution vehicles meet demand without being
underutilized while reducing environmental impacts.

• Managers should dynamically and adaptively allocate logistics resources. When an
enterprise faces consistent production demand, optimizing the number of vehicles can
improve economic efficiency. However, in actual logistics operations, disruptions such
as dynamic insertions or equipment failures may require an open, flexible scheduling
system that can dynamically lease external logistics resources (such as vehicles) based
on real-time demand, forming a flexible logistics resource pool that optimally allocates
vehicle resources to adapt to various uncertainties. This flexibility not only improves
logistics efficiency but also helps to reduce resource waste and environmental burdens.

5.3.3. Scenario 3—Sensitivity Analysis of Different Dynamic Distribution Demand Volumes

Different dynamic distribution demand quantities can challenge the logistics resources
and scheduling strategy of the material distribution system while at the same time placing
new demands on environmental sustainability. When adopting scheduling strategies,
managers need to consider their environmental impacts in addition to cost and efficiency.
Typical disruptions of a dynamic nature, such as increased demand and vehicle breakdowns,
not only affect costs and efficiency but can also lead to increased energy consumption
and carbon emissions. A representative dynamic scenario—the increase in demand—was
analyzed in this section. The additional distribution demand began at time 60 and gradually
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increased in increments of 10, reaching light dynamic (LD, 10), moderate dynamic (MD,
20), and heavy dynamic (HD, 30). The distribution time for all additional demands was set
at 240.

Figure 8 shows the results of a sensitivity analysis under varying dynamic material
distribution demands, comparing the cost-control performance of the DT-DS strategy with
the TMS strategy. The findings reveal key insights:

• Under the TMS strategy, as material transportation demands increased, distribution
costs escalated from 1200 to 1602, reflecting an increase in transportation frequency
due to heightened demand and subsequently increasing the distribution costs. The
cost of failing to meet distribution time windows climbed from 70 to 131, indicating
the vehicles’ inability to effectively meet time constraints, leading to higher penalty
costs. Carbon emission costs increased from 39 to 68, signifying an increase in vehicle
emissions due to more frequent material transportation. Consequently, the total
distribution cost under the TMS strategy also rose from 1309 to 1702.

• In contrast, under the DT-DS strategy, distribution costs gradually increased from 825
to 1050, showcasing a significant trend of cost reduction and demonstrating the DT-DS
strategy’s efficacy in controlling distribution costs. Costs related to time window
penalties initially rose from 52 to 98 and then dropped to 72, showing improved adapt-
ability to time window constraints. Although carbon emissions costs rose from 29 to
54, they remained significantly lower compared to with the TMS strategy, highlighting
the DT-DS strategy’s advantage in reducing carbon emissions. The total distribution
cost increased from 900 to 1424 before dropping to 1176, which was overall lower than
with the TMS strategy, thereby underscoring the superior performance of the DT-DS
strategy in managing demand fluctuations and overall cost control.
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The analysis from Figure 8 clearly demonstrates the significant advantages of the DT-
DS strategy over the TMS strategy in terms of distribution costs, penalties for time window
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violations, carbon emissions, and overall distribution costs. Particularly when responding
to demand variability, the DT-DS strategy exhibited higher adaptability and efficiency.
These findings provide valuable insights for manufacturing enterprises in selecting material
distribution scheduling strategies and offer effective solutions for achieving the dual
objectives of cost-effectiveness and environmental sustainability.

From this sensitivity analysis, the following meaningful management insights can
be derived:

• Managers need to enhance control of planning execution and demand forecasting
and management. The increase in demand volume is positively correlated with
the total distribution costs. Therefore, businesses should improve the stability of
production plan execution and accurately predict dynamic demand through advanced
logistics operation management strategies and precise demand forecasting models
while considering environmental impacts to mitigate the negative impacts of unstable
demand on the system and the environment.

• Managers should proactively adopt intelligent scheduling systems based on advanced
technology. When faced with dynamic demand, employing dynamic scheduling
strategies based on real-time information can effectively address various dynamic
disruptions and, as a result, reduce various operational costs and environmental im-
pacts. Furthermore, when internal resources are insufficient to meet dynamic demand,
the timely introduction of flexible, high-quality, economical, and environmentally
friendly external logistics resources ensures that the system can respond rapidly while
reasonably controlling the usage costs of external resources to support sustainable
business development.

6. Discussion

In the field of production logistics management, this study developed an innovative
dynamic material distribution scheduling optimization model and strategy based on DT [9].
Compared to traditional material distribution models in the existing literature [13–15,32],
our model not only considers the economic and environmental sustainability indicators
of the material distribution system but also implements an integrated system of real-time
operational data and data-driven dynamic decision-making and execution control through a
DT-based dynamic material distribution scheduling optimization framework. This provides
crucial support for manufacturing enterprises at the initial stage of informatization to
implement sustainable intelligent decision-making. Additionally, this research is the first
to apply an IACO algorithm to the field of material distribution scheduling optimization,
significantly enhancing the efficiency of path selection and pheromone updating [26,28].
Numerical experiments with cooperating enterprises showed that the proposed DT-DS
strategy significantly outperformed the TMS strategy in reducing distribution costs, delay
penalties, carbon emissions costs, and overall distribution costs. This strategy enhances
material distribution efficiency and reduces environmental impact, offering new solutions
for the field of sustainable material distribution scheduling.

Despite the achievements in theoretical models and practical applications, this research
has certain limitations. Firstly, the material distribution scheduling optimization model
lacks in-depth analysis of decision-making details in the production phase, which may
limit its effectiveness in complex production processes. Secondly, the model’s description
of utilizing multi-source real-time data is not detailed enough, limiting its potential in
data-driven decision-making. Moreover, the model’s universal applicability may be limited,
as it primarily relies on data from specific enterprises.

Future research can further focus on the following aspects: (1) Integration of mate-
rial distribution and final assembly production: Delve deeper into how to more closely
integrate final assembly production with material distribution scheduling, achieving real-
time collaborative decision-making and control for “material distribution–final assembly
production”, thereby enhancing the efficiency and effectiveness of the overall production
logistics system. (2) Mining and analysis of manufacturing big data: Explore how to effec-
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tively utilize real-time data from various sources, particularly in a big data environment, to
enhance the accuracy and timeliness of intelligent decision-making solutions in intelligent
manufacturing workshops. (3) Generalization and validation of the optimization model:
Expand the research scope to include manufacturing enterprises with different production
modes and validate the universality and adaptability of the optimization model.

The model and strategies proposed in this study have significant practical implications
for the logistics management practices of manufacturing enterprises. With the model
proposed in this study, manufacturing enterprises can more effectively respond to dynamic
changes in logistics operations, optimize logistics resource allocation, and consider en-
vironmental impacts. This facilitates enhancing production efficiency while advancing
manufacturing systems towards sustainable development. Especially in the context of
current global environmental challenges and resource pressures, the solutions provided
by this research are of great significance in promoting green production and sustainable
development in enterprise manufacturing systems.

7. Conclusions

In the context of the continuous global pursuit of sustainable manufacturing, this study
successfully explores and demonstrates the great potential of digital twin technology for
application in modern industrial environments, especially in the optimization of material
distribution scheduling in the smart shop floor of manufacturing companies. The study
encompasses, firstly, the establishment of a material distribution optimization model that
comprehensively considers distribution costs, penalty costs, and carbon emission costs,
and secondly, the proposal of a DT-based material distribution scheduling optimization
decision framework, along with a detailed description of its system components and
operational mechanisms. Additionally, this research introduces a DT-based dynamic
material distribution scheduling optimization strategy to address disturbances in logistics
execution and designs an improved ant colony algorithm to enhance the precision and
speed of intelligent algorithms. Numerical experiment results indicate that our proposed
DT-DS strategy showed significant advantages in a dynamic operational environment,
reducing distribution costs, delay penalties, and carbon emissions while increasing material
distribution efficiency and loading rates, which can be simultaneously economically and
environmentally sustainable.

This research not only enhances the real-time visibility and transparency of the mate-
rial distribution process but also provides new insights into dynamic material distribution
decision-making within sustainable manufacturing. The main contributions include (1) ex-
tending the standard digital twin control architecture and proposing a novel DT-based dy-
namic material distribution scheduling optimization decision framework oriented towards
mixed-flow assembly workshops. This framework employs a “cloud–edge” computing
architecture, augmenting the system’s ability to process and respond to dynamic, complex
real-time data and thereby enhancing the overall performance of the material distribution
scheduling system. (2) Developing a DT-based dynamic material distribution scheduling
optimization strategy and supporting dynamic adjustments of the material distribution
scheduling system in various disruptive environments. (3) Constructing a comprehen-
sive material distribution scheduling optimization model considering distribution costs,
workstation satisfaction, and carbon emissions that balances economic and environmental
sustainability indicators. (4) Improving the ant colony algorithm, enhancing the efficiency
of path node selection probabilities and pheromone update rules, and validating the al-
gorithm’s solution accuracy, speed, and stability through comparative experiments. (5)
Testing the application effectiveness of the proposed decision framework, dynamic schedul-
ing strategy, optimization model, and algorithm through case studies with cooperating
enterprises, providing useful references for similar manufacturing enterprises in material
distribution scheduling optimization.

Future research, building on the outcomes of this study, plans to explore the following
directions: (1) conducting in-depth analysis and organization of material distribution
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scheduling needs of different types of manufacturing enterprises, summarizing dynamic
material distribution scheduling strategies and optimization models to form more general
research results, and refining the decision framework presented in this paper. (2) Expanding
research scope to the final assembly production phase, which is closely related to material
distribution, and exploring synchronous decision-making of “material distribution–final
assembly production” in real-time information environments, which would further enrich
and perfect the theoretical system and practical applications in this field to continually
drive the development of sustainable manufacturing.

Author Contributions: Conceptualization, Z.Z. and T.Q.; supervision, T.Q., K.Z. (Kuo Zhao) and
G.Q.H.; validation, Z.Z.; writing—original draft, Z.Z.; writing—review and editing, T.Q., K.Z. (Kuo
Zhao), K.Z. (Kai Zhang), L.L., J.W. and Y.Z. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (52375498),
the National Key Research and Development Program of China (2021YFB3301701), the 2019 Guang-
dong Special Support Talent Program—Innovation and Entrepreneurship Leading Team (China)
(2019BT02S593), the 2018 Guangzhou Leading Innovation Team Program (China) (201909010006), the
Science and Technology Development Fund (Macau SAR) (0078/2021/A), the Guangdong Basic and
Applied Basic Research Foundation (No. 2023A1515011712), and the Outstanding Innovative Talents
Cultivation Funded Programs for Doctoral Students of Jinan University (No. 2022CXB030).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The experimental data in this paper were obtained from a well-known
air-conditioner manufacturer in China. The actual data were modified to some extent to protect their
trade secrets. Some relevant data used in the case study of this paper are detailed in Appendix A.

Acknowledgments: We also appreciate the sponsorships from the industry, including but not limited
to Carpoly Chemical Group Co., Ltd.; Guangzhou Ink Stone Technology, Inc.; Sendwant Logistic Ltd.;
Zhuhai Top Cloud Tech Co., Ltd.; and the Guangdong International Cooperation Base of Science and
Technology for GBA Smart Logistics by the Department of science and technology of Guangdong
Province, thanks to which the international collaboration was effectively conducted.

Conflicts of Interest: Author Jun Wang was employed by the company Guangdong Sanpu Garage
Shares Co., Ltd. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

Appendix A

The tables specifically show the relevant symbols and data for this article.

Table A1. Symbols used in the proposed model.

Symbol Description

I The set of points representing workstation buffer areas, including n workstations
and a material distribution center (i = 0), I = {0, 1, 2, · · · , n}

K The number of distribution AGVs, K = {1, 2, · · · , m}
Q Maximum load capacity of each AGV
F A very large positive number

Dij Distance from station i to station j
qi Quantity of materials required at workstation i, with max qi ≤ Q
ai The earliest time materials are required at workstation i
bi The latest time materials are required at workstation i
Ci Penalty cost per unit time for early arrival of materials at workstation i
Cd Transport cost per unit distance for distribution AGVs
Co Fixed start-up cost for each distribution AGV
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Table A1. Cont.

Symbol Description

Ctax Cost per unit of carbon emissions
δ Penalty cost per unit of time for material delivered earlier than the time window
β Penalty cost per unit of time for material delivered later than the time window
tij Travel time for a distribution AGV to move from workstation i to j
ti,k Unloading time of the kth distribution AGV at workstation i
tk
i Moment of the arrival of the kth distribution AGV at workstation i

EC Power consumption per unit distance
di,j Distribution AGV transportation distance from station i to station j
η Battery charging efficiency
π Carbon emissions factor in the production of electrical energy

yik ∈ {0, 1} Binary variable, 1, workstation i is serviced by the kth AGV; 0, otherwise

xijk ∈ {0, 1} Binary variable, 1, the kth distribution AGV traveling from workstation i to
workstation j; 0, otherwise

Table A2. Vehicle-related data and basic parameters of the ant colony algorithm.

Symbol Parameter Name Value Unit

n Number of workstation buffer zones 40 /
Q Maximum load capacity of the AGV 180 Kg

Ci
Penalty cost per unit time window for material

delivery AGV to station i 0.5 USD/s

Cd Distribution cost per unit distance of the AGV 0.1 USD/m
Co Fixed start-up cost of a single AGV 5 USD/vehicle/times

Ctax Cost per unit of carbon emissions borne 0.15 USD/kg
EC Power consumption per unit distance for AGVs 0.2 kWh/km
η Battery charging efficiency 0.05 kWh/min

π
Carbon emissions factor in the production of

electrical energy 0.624 kg(CO2)/kg

m Number of ants 20 Individuals
α Pheromone factor 1 /
β Heuristic function factor 3 /
ρ Pheromone volatilization factor 0.25 /

itermax Maximum number of iterations 100 /

Table A3. Material distribution center and coordinates of each workstation.

No. X Y No. X Y

0 5 20 17 25 20
1 15 4 18 25 29
2 15 8 19 25 34
3 15 17 20 29 34
4 15 24 21 29 31
5 15 30 22 29 23
6 15 34 23 29 16
7 19 36 24 29 9
8 19 32 25 29 5
9 19 26 26 27 2
10 19 20 27 35 7
11 19 16 28 35 11
12 19 10 29 35 20
13 18 2 30 35 25
14 25 4 31 35 31
15 25 8 32 35 33
16 25 13
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Table A4. The time window for material requirements and their unloading times.

Workstation
No.

Expected
Earliest Time (s)

Expected Latest
Time (s)

Distribution
Quantity (kg)

Unloading
Time (s)

1 70 180 25 15
2 250 355 33 20
3 125 225 30 20
4 195 310 25 15
5 200 295 36 15
6 58 170 20 20
7 152 250 18 15
8 90 188 30 20
9 138 250 15 25
10 180 280 35 15
11 108 200 20 15
12 45 160 20 15
13 215 330 25 20
14 145 250 30 25
15 89 200 35 20
16 140 238 30 30
17 95 210 28 25
18 238 360 23 20
19 20 138 19 20
20 178 280 31 15
21 195 298 38 20
22 265 370 28 25
23 144 256 22 15
24 239 350 30 15
25 95 195 18 20
26 102 205 26 20
27 225 330 29 25
28 75 185 19 20
29 100 205 25 15
30 250 350 35 20
31 150 265 32 25
32 130 240 18 20
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