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Abstract: (1) Background: Vegetation is an important component of ecosystems. Investigating the
spatio-temporal dynamic changes in vegetation in various Shaanxi Province regions is crucial for the
preservation of the local ecological environment and sustainable development. (2) Methods: In this
study, the KNDVI vegetation index over the 20-year period from 2003 to 2022 was calculated using
MODIS satellite image data that was received from Google Earth Engine (GEE). Sen and MK trend
analysis as well as partial correlation analysis were then utilized to examine the patterns in vegetation
change in various Shaanxi Province regions. This paper selected meteorological factors, such as
potential evapotranspiration (PET), precipitation (PRE), and temperature (TMP); human activity
factors, such as land-use type and population density; and terrain factors, such as surface elevation,
slope direction, and slope gradient, as the influencing factors for vegetation changes in the research
area in order to analyze the driving forces of vegetation spatio-temporal changes. These factors were
analyzed using a geo-detector. (3) Results: The vegetation in the research area presented a growth
trend from 2003 to 2022, and the area of vegetation improvement was 189,756 km2, accounting for
92.15% of the total area. Among them, the area of significantly improved regions was 174,262 km2,
accounting for 84.63% of the total area, and the area of slightly improved regions was 15,495 square
kilometers, accounting for 7.52% of the total area. (4) Conclusions: The strengthening of bivariate
factors and nonlinear enhancement were the main interaction types affecting vegetation changes.
The combination of interaction factors affecting vegetation change in Shaanxi Province includes
PRE ∩ PET as well as TMP ∩ PET. Therefore, climate conditions were the main driving force of
KNDVI vegetation changes in Shaanxi Province. The data supported by this research are crucial for
maintaining the region’s natural ecosystem.

Keywords: KNDVI; trend analysis; MODIS; driver analysis

1. Introduction

A crucial component of ecosystems, vegetation, is essential to the global atmospheric
and energy cycles, as well as to the flow of carbon and water [1]. It also plays an important
role in global change monitoring, providing essential information for research on material
cycles, biodiversity, land use, and climate change, as well as being a scientific basis for
environmental protection and sustainable development. Thus, one of the hottest subjects in
regional and global change study is tracking the dynamics of vegetation [2–4].

Currently employed as one of the vegetation indices, NDVI (Normalized Difference
Vegetation Index) [5] is a useful predictor of vegetation growth state, biological activity,
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and geographical distribution [6]. It may accurately reflect the information about changes
in land surface vegetation and has a strong link with measures such as aboveground
biomass [7], leaf area index [8], chlorophyll fluorescence produced by sunlight [9], and
GPP [10]. It has been applied by many scholars in monitoring vegetation dynamics. Using
NDVI, Beck et al. [11] examined how the vegetation changed dynamically in high-latitude
regions, while Pettorelli et al. [12] used NDVI to examine how plants react to changes in
their environment. The Nenjiang River Basin’s vegetation dynamic changes in response to
multiscale drought stress were examined by Zhu Guanglei et al. [13]. The Brazilian Amazon
region’s main vegetation underwent dynamic changes, which were examined by Raquel
Carvalho et al. [14]. Moreover, both natural and man-made causes have an impact on
vegetation alterations. The growth and spread of plants are strongly correlated with several
environmental elements, including terrain, climate, and others [15–18]. Among climate
factors, temperature and precipitation have a significant impact on vegetation. For instance,
Zhou et al. [19] discovered that in some high-latitude regions of the northern hemisphere,
precipitation is the primary factor influencing variations in plant cover. According to
Suzuki et al. [20], rising temperatures have been shown to lengthen the growth season
and increase vegetation production. Regarding human influences, they frequently affect
vegetation dynamics in both good and bad ways. For instance, Ma Haiyun et al. [21]
discovered that changes in southwest China’s plant cover are positively impacted by
human activity. According to Wang et al. [22], ecological initiatives such as converting
farms back into forests and grasslands may greatly expand the amount of vegetation in
an area. According to Maeda et al. [23] and Nunes et al. [24], local vegetation cover will
be significantly reduced as a result of land development, urbanization, excessive forest
logging, and other human activities.

The current research mainly focuses on the impact of single factors (such as climate,
topography, human activities, etc.) on vegetation. The effect of human and environmen-
tal causes on vegetation is not as well studied. When monitoring vegetation dynamics,
commonly used vegetation indices such as NDVI and NIRv are often used as monitoring
indicators. Nevertheless, photosynthesis itself is not reflected in the nonlinear, saturated
connection between NDVI and aboveground biomass. Interactions between human and
natural elements frequently affect vegetation [25,26]. A skewed interpretation of vegetation
changes and an overestimation of the significance of the elements under research may
result from focusing solely on the response of vegetation to a particular factor and ignoring
the causes that induce vegetation changes. Therefore, in addition to considering traditional
climate factors, the driving forces of vegetation changes must also comprehensively con-
sider the influence of natural elements such as topography and human activities. In the
past, techniques including trend analysis, partial correlation analysis, and residual analysis
were mostly utilized in the investigation of the mechanisms behind changes in vegetation.
Nevertheless, complex nonlinear interactions may also be a part of the process of driving
variables for vegetation changes, in addition to a straightforward linear connection [27].
The nonlinear linkages between many influencing elements, particularly the one between
human causes and climate change, cannot be explained by the aforementioned approaches.
Wang Jinfeng et al. [28] proposed a statistical method called geographic detector, which
can quantitatively identify the driving forces of single factors, the interaction between two
factors, and risk zone detection. This method does not assume linearity and can better
explain the interaction between factors and analyze variables. Currently, this model has
been widely used in the study of vegetation NDVI driving mechanisms [29–33]. For exam-
ple, Yao Bo et al. [34] examined the spatial patterns and underlying causes of vegetation
dynamics in the Chongqing region of the Yangtze River Basin using geographic detector
analysis. The results indicate that the locations experiencing trends in vegetation growth
are largely found in the Chong-qing urban areas of the Wuling Mountain region and the
Three Gorges Reservoir region. The three main factors influencing vegetation changes
were human activity, climate, and geography. The factors that had the most influence
were elevation, the average annual temperature, and the amount of light present at night.
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Pei Hongze et al. [35] used geographic detector to study the net ecosystem productivity
(NEP) of the Loess Plateau region between 2000 and 2020, with a particular emphasis on
the factors that drive it and its spatio-temporal structure. The results showed that the
main reasons of NEP in the west, center, and east sub-regions of the research area had
distinct geographical differentiation features. Precipitation, relative humidity, and other
moisture conditions were the main climatic factors affecting the central and western regions.
Combinations of geography, climate, and human activity most impacted the eastern area,
with land use serving as the most prominent human component.

GEE is a cloud platform for planetary-scale geospatial analysis in terms of data
gathering [36]. It significantly cuts down on the time needed for the collecting and pro-
cessing of remote sensing data by offering rich open-source data and robust computer
resources for regional and global change studies. For these reasons, the study constructed a
time series of KNDVI spanning from 2003 to 2022 for the province of Shaanxi and used the
Google Earth Engine platform to gather monthly NDVI datasets for the study region. The
vegetation dynamics and changes in the research region over a 20-year period were then
examined using the Sen and MK trend analysis techniques. In order to offer a theoretical
foundation and methodological reference for the vegetation dynamics, evaluation, and
ecosystem preservation in Shaanxi Province, partial correlation analysis and geographic
detector were then employed to examine the driving forces behind the temporal variations
in KNDVI data.

2. Study Area

Shaanxi Province is located in central China in the center of the Yellow River. It borders
the higher levels of the Jialing River in the Qinba Mountain region as well as the southern
portion of the Han River Basin, which is a Yangtze River tributary. Sichuan Province and
Chongqing Municipality to the south, Hubei Province and Henan Province to the southeast,
Ningxia Hui Autonomous Region and Gansu Province to the west, Shanxi Province to
the east across the Yellow River, and Inner Mongolia Autonomous Region to the north
are its borders. There are 206,000 square kilometers in all. The province is mostly made
up of several types of topography, with a tendency toward higher elevations in the north
and south and lower elevations in the center. These terrains include plains, mountains,
plateaus, and basins. The climate of Shaanxi Province’s north and south varies significantly,
as do the kinds and amounts of flora in each region. Northern Shaanxi, Guanzhong, and
southern Shaanxi are the province’s three naturally occurring geographical areas, separated
by variations in terrain, landforms, and flora types. Shaanxi spans three climatic zones, with
the northern part of northern Shaanxi and along the Great Wall belonging to the temperate
zone, southern Shaanxi belonging to the northern subtropical zone, and Guanzhong and
most of northern Shaanxi belonging to the warm temperate zone. The province’s yearly
mean temperature ranges from 0 to 16 ◦C, progressively dropping from east to west and
from south to north. The province experiences between 340 and 1240 mm of precipitation
on average every year, with the south receiving more precipitation than the north. The
regions of Guanzhong, northern Shaanxi, and southern Shaanxi are semi-arid, semi-humid,
and humid, respectively. There are large disparities in the distribution of the province’s
complex and varied flora types. The region north of the Great Wall in Shaanxi’s northern
region is near the desert, where desert plants predominate and there is little vegetation. The
southern part of Yulin and the northern part of Yan’an, south of the Great Wall, are typical
loess plateau regions where soil erosion is severe and vegetation coverage is low, mainly
consisting of shrubs. The Beishan Mountains are distributed with deciduous broad-leaved
forests, with higher vegetation coverage. The Guanzhong region is characterized by a
large number of agricultural fields, and urban development has led to lower vegetation
coverage. The Qinling Mountains and the northern part of southern Shaanxi are dominated
by warm temperate deciduous broad-leaved forests, while the Bashan region has evergreen
broad-leaved forests and deciduous broad-leaved forests, with good vegetation coverage.
Figure 1 depicts the study area’s location, land-use types, and elevation distribution, where
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Figure 1A indicates the location, Figure 1B illustrates the distribution of land-use types in
the study area in 2022, and Figure 1C depicts the distribution of surface elevation in the
study area.
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3. Materials and Methods
3.1. Data Preprocessing and Acquisition

This article selects monthly MODIS data from 2003 to 2022 as the data source for
calculating the KNDVI vegetation index. The Loess Plateau branch of the NESS Data
Center (htxxp://loess.geodata.cn, accessed on 31 December 2022) provided the monthly
average temperature (TMP) and monthly average precipitation (PRE), specifically the 1 km
resolution average temperature and monthly precipitation datasets for China from 1901
to 2022. East View Cartographic contributed the population density data (PD), which
come from the LandScan global population dataset created by ORNL (Oak Ridge National
Laboratory, Oak Ridge, TN, USA). LandScan is the most accurate and reliable global popu-
lation dynamic statistical analysis database based on geographic location, using innovative
methods such as remote sensing and GIS, and it has the best resolution and distribution
models (htxxps://landscan.ornl.gov/, accessed on 31 December 2022). The 1 km monthly
potential evapotranspiration dataset for China from 1901 to 2022 is sourced from the Na-
tional Tibetan Plateau Data Center (data.tpdc.ac.cn, accessed on 31 December 2022). The
yearly China Land Cover Dataset (CLCD), which is a 30 m yearly land cover dataset and
its dynamics in China from 1985 to 2022 (zenodo.org, accessed on 31 December 2022), was
created by Huang Xin et al. from Wuhan University using 335,709 scenes of Landsat data
on Google Earth Engine as the basis for the land-use dataset [37]. The DEM data is derived

htxxp://loess.geodata.cn
htxxps://landscan.ornl.gov/
data.tpdc.ac.cn
zenodo.org
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from the Geographic Spatial Data Cloud’s 90 m resolution SRTM data. Table 1 displays the
particular parameters of each dataset.

Table 1. Data sources and description.

Satellite Data Parameter Unit Spatial Resolution/m

MOD13Q1 Vegetation Indices / 250
CLCD Land Cover / 30
DEM Digital Elevation Model m 90

Landscan/PD Population Density Population density/km2 1000
PET Potential Evapotranspiration mm 1000
PRE Precipitation mm 1000
TMP Temperature ◦C 1000

The GEE platform database is the source of the MODIS data that was previously
discussed. Through the use of an internet database, we were able to obtain the MODIS data
and resample it to a spatial resolution of 1000 m. Each month’s KNDVI is computed, and
the yearly KNDVI data are then obtained by performing the maximum value synthesis.
In order to match the spatial resolution of other data, the DEM data’s spatial resolution
is resampled to 1000 m and utilized to compute the research area’s slope and aspect
information. The ArcGIS closest neighbor approach is used to resample the CLCD land-use
type data to a geographic resolution of 1000 m. A uniform projection transformation is
applied to all data in order to guarantee coordinate systems consistency.

Figure 2 shows the mean distribution of temperature, precipitation, and potential
evapotranspiration (PET, PRE, and TMP, respectively) in the study area over a period of
20 years. Panels (a)–(c) depict the 20-year average distribution of potential evapotranspira-
tion (PET), precipitation (PRE), and temperature (TMP), respectively. From Figure 2, it is
evident that the spatial distribution of the three meteorological factors exhibits significant
heterogeneity. In Panel (a), the 20-year mean of potential evapotranspiration ranges from
45.79 mm to 105.98 mm. The central region (Guanzhong) has higher values of evapotranspi-
ration, while values are smaller in northern and southern Shaanxi. Panel (b) illustrates that
the 20-year mean precipitation ranges from 26.93 mm to 97.88 mm. The southern Shaanxi
region has the highest precipitation, followed by the Guanzhong region, and the lowest is
in northern Shaanxi, especially in the northwest region, which, being close to the desert,
has low vegetation coverage and scarce precipitation. Panel (c) reveals that the 20-year
mean temperature ranges from −0.98 ◦C to 16.83 ◦C. The northern Shaanxi region has the
lowest average temperature, while the Guanzhong and southern Shaanxi regions have
relatively higher average temperatures. The urbanized Guanzhong region, characterized
by a high proportion of impervious surfaces, exhibits elevated temperatures, while the
southern Shaanxi region, boasting high elevation and abundant sunlight, also experiences
higher temperatures.

3.2. KNDVI Calculation

The most used indicator for tracking vegetation changes is the NDVI; however, it
has two main drawbacks. First, there is a nonlinear and saturating relationship between
NDVI and green biomass [38]. The enhanced vegetation index (EVI) and other indices
have attempted to use additional band information to construct vegetation indices to
compensate for this issue, but the saturation phenomenon still exists. Second, when
constructing vegetation indices, they respond to the presence of green leaves but do not
directly reflect the process of photosynthesis in green vegetation. This means that GPP
can decrease without leaf loss (i.e., reduced LAI) or a decrease in leaf chlorophyll [39]. In
2021, scholars from multiple countries proposed a non-linear vegetation index, KNDVI, in
SCIENCE ADVANCES [40]. This index maximizes the utilization of spectral information
and employs a machine-learning perspective, using kernel analysis to linearize NDVI and
effectively prevent its saturation and sluggish response to photosynthesis. It addresses the
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long-standing problem of satellite observation of the terrestrial biosphere and can more
accurately reflect the dynamic changes between land carbon sources and sinks. Compared
to traditional NDVI, NIRv, and other vegetation indices, this method demonstrates greater
stability and robustness. The method is shown in Equations (1)–(4).

KNDVI =
k(n, n)− k(n, r)
k(n, n) + k(n, r)

(1)

The reflectance of the red band is denoted by r in the equation, the reflectance of the
near-infrared band by n, and the correlation between the bands is represented by k(n,n)
and k(n,r).
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Furthermore, a radial basis function (RBF) is used to describe the correlation between
the bands.

k(n, r) =
exp(−(n− r)2)

2σ2 (2)

The near-infrared and red bands’ separation from one another is determined by the
equation’s parameter σ.

KNDVI =
1− k(n, r)
1 + k(n, r)

= tanh((
n− r

2σ
)

2
) (3)

The average distance between the red and near-infrared bands, or σ = 0.5(n + r), is
fixed as the length scale parameter σ in order to further simplify the index. The index
functions well in practice thanks to this simplification, which enables it to be adaptable for
every pixel. Equation (4) displays the outcome of the final computation.

KNDVI = tanh(NDVI2) (4)



Sustainability 2023, 15, 16468 7 of 25

3.3. Methods

Theil-Sen Median and Mann-Kendall trend analysis techniques have been used in
the quantitative study of vegetation change trends in Shaanxi Province over the previous
20 years using temporal KNDVI data. This study used elevation, slope, and aspect as
environmental parameters and land-use type and population density as anthropogenic
elements in accordance with previous research [41–45]. The meteorological parameters that
were selected included the yearly average temperature, the annual average precipitation,
and the annual average potential evapotranspiration. The association between the KNDVI
data and each component was examined and evaluated using the partial correlation analysis
approach. The reactions and underlying causes of interannual vegetation changes to each
condition were also examined using the geo-detector. The study’s flowchart is displayed in
Figure 3.
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3.3.1. Trend Analysis

Sen’s slope estimation, sometimes referred to as the Theil-Sen median method, is a
reliable non-parametric statistical approach for determining trends. The technique is less
susceptible to outliers and measurement mistakes and has a very high computing efficiency.
It is frequently used to examine trends in data from lengthy time periods [46–48].

SKNDVI = mean(
xj − xi

j− i
), (∀j > i) (5)

In the equation, SKNDVI represents the slope of vegetation change and xi and xj rep-
resent long time-series KNDVI data. SKNDVI > 0 and SKNDVI < 0 indicate vegetation
improvement and degradation trends, respectively. Mann–Kendall is a commonly used
method for non-parametric statistical testing. Its advantages are that it does not require the
measured values to follow a normal distribution, does not assume a linear trend, and is not
affected by missing values and outliers. It has been widely used in the trend significance
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testing of long time-series data [49–52]. For a time series Xi,j = 1, 2, . . ., i, . . ., j, . . ., n, the
standardized test statistic, Z, is defined as

Z =



S√
Var(S)

, (S > 0)

0 , (S = 0)
S + 1√
Var(S)

, (S < 0)

(6)

S =
n−1

∑
i=1

n

∑
j=i+1

sign(xj − xi) (7)

sign(KNDVIi − KNDVIj) =


−1 , i f (KNDVIi − KNDVIj) < 0
0 , i f (KNDVIi − KNDVIj) = 0
1 , i f (KNDVIi − KNDVIj) > 0

(8)

In the formula, n represents the number of data points, while xi and xj stand for long
time-series KNDVI data. In this work, we examined 20 years’ worth of Shaanxi Province
vegetation KNDVI data, where n is greater than or equal to 8. With mean and variance, the
test statistic S has an approximation normally distributed distribution:

E(S) = 0 (9)

Var(S) =
n(n− 1)(2n + 5)

18
(10)

At the significance level α, if |Z| > Z1−α/2, it indicates a significant change trend in
the time-series data. Z1−α/2 represents the value corresponding to the standard normal
distribution function at a confidence level of α. Based on the significance testing method and
referring to relevant literature [53–55], |Zs| = 1.96 is chosen as the criterion for significance
division. When |Zs| ≤ 1.96, it indicates that the vegetation change is not significant, and
when |Zs| > 1.96 it indicates that the vegetation change is significant.

3.3.2. Partial Correlation Analysis

In order to assess the correlations between land use, population density, annual aver-
age temperature, yearly average precipitation, annual average potential evapotranspiration
(which are regarded as five parameters), and KNDVI, this study used the partial correlation
analysis approach. The link between each component and KNDVI was examined inde-
pendently by adjusting for other factors. The relationship between land use, population
density, annual average temperature, yearly average precipitation, annual average potential
evapotranspiration, and KNDVI is shown by the positive or negative value of the partial
correlation coefficient [56–58].

rxy =

n
∑

i=1
[(xi − x)(yi − y)]√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2
(11)

reflects the correlation between variables x and y in the equation, where sample number is
denoted by i. The vegetation’s KNDVI value for the i-th year is represented by the symbol
xi, and one of the contributing elements, such as the annual average temperature or the
annual average precipitation for the corresponding time, is represented by the symbol
yi. x represents the average value of KNDVI for the study area from 2003 to 2022 and y
represents the value of the influencing factor for the corresponding time period.
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3.3.3. Analysis by Geographic Detector

Wang Jinfeng et al. created the Geodetector statistical technique, which can be used to
analyze geographical differentiation and identify its causes [59]. By using the viewpoint
of spatial stratified heterogeneity, it ascertains how comparable the spatial distributions
of two variables are [60–63]. Four components make up the Geodetector framework:
factor detection, interaction detection, ecological detection, and danger detection. We used
Geodetector’s factor and interaction detection features in this investigation.

The spatial differentiation of the dependent variable (Y), which in this study is the
KNDVI, and the explanatory power (q) of the driving factors (X), which in this study are the
KNDVI, potential evapotranspiration, annual temperature, precipitation, and CLCD, on
the spatial differentiation of the dependent variable, are investigated using factor detection.
Its goal is to investigate how driving factors affect the KNDVI’s spatial variation and
differentiation. Equations (12) and (13) present the computation formulas:

q = 1−

L
∑

h=1
Nhσ2

h

Nσ2 = 1− SSW
SST

(12)

SSW =
L

∑
h=1

Nhσ2
h , SST = Nσ2 (13)

Higher q values in the equation signify a factor’s stronger explanatory power; the q
value ranges from [0, 1]; L represents the strata of the dependent variable Y or the factor X;
Nh and N represent the number of units in stratum h and the entire region, respectively; σ2

h
and σ2 represent the variance of Y values in stratum h and the entire region, respectively;
and SSW and SST represent the sum of within-stratum variances and the total variance of
the entire region.

The purpose of interaction detection is to determine whether the various influencing
factors, Xs, work in concert to affect the dependent variable Y. It assesses whether there is
a difference in the explanatory power of the dependent variable Y when different factors
interact compared to when they act individually. This is done by separately calculating the
q(X1) and q(X2) for different factors such as X1 and X2 on the dependent variable Y and
then calculating their interaction term q(X1 ∩ X2). Finally, q(X1), q(X2), and q(X1 ∩ X2) are
compared. Various types of interactions are shown in Table 2.

Table 2. Information on interaction types.

Description Interaction

Weaken, nonlinear q(X1 ∩ X2) < min[q(X1), q(X2)]
Weaken, uni- min[q(X1), q(X2)] < q(X1 ∩ X2) < max[q(X1), q(X2)]
Enhance, bi- q(X1 ∩ X2) > max[q(X1), q(X2)]
Independent q(X1 ∩ X2) = q(X1) + q(X2)

Enhance, nonlinear q(X1 ∩ X2) > q(X1) + q(X2)

4. Results
4.1. Temporal Analysis of Mean Value of KNDVI

The average KNDVI of Shaanxi Province and its geographical sub-regions between
2003 and 2022 was subjected to statistical analysis; the findings are displayed in Figure 4.
The figure shows that Shaanxi Province’s average KNDVI varied between 0.42 and 0.52
over the given period. The spatial distribution of KNDVI was categorized into three
groups based on earlier research [64–66]: medium-low (0.2~0.4), medium (0.4~0.6) and
medium-high (0.6~0.8). Medium-low and medium vegetation cover categories were the
most common in Shaanxi Province. The average KNDVI in the southern Shaanxi region
was greater than in other parts of the province, followed by the Guanzhong region and
the northern Shaanxi region, based on the geographic sub-regions. The average KNDVI
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ranged from 0.58 to 0.61 in southern Shaanxi from 2003 to 2022, from 0.46 to 0.53 in the
Guanzhong area, and from 0.24 to 0.42 in northern Shaanxi. The amount of vegetation
varied clearly by region, with the cover falling toward the north. Shaanxi Province and
every geographic sub-region had positive slopes in the linear regression analysis on the
annual KNDVI values, suggesting an overall trend toward increased plant cover. The
regression function’s slope was 0.0046 throughout Shaanxi, 0.0073 in northern Shaanxi,
0.0027 in the Guanzhong region, and 0.003 in southern Shaanxi. This suggests that the
northern Shaanxi region had the highest rate of vegetation cover expansion, followed by
the Guanzhong region and the southern Shaanxi region.

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 26 
 

then calculating their interaction term 1 2( )q X X . Finally, q(X1), q(X2), and 1 2( )q X X  
are compared. Various types of interactions are shown in Table 2. 

Table 2. Information on interaction types. 

Description Interaction 
Weaken, nonlinear 1 2 1 2( ) min[ ( ), ( )]q X X q X q X<  

Weaken, uni- 1 2 1 2 1 2min[ ( ), ( )] ( ) max[ ( ), ( )]q X q X q X X q X q X< <  

Enhance, bi- 1 2 1 2( ) max[ ( ), ( )]q X X q X q X>  

Independent 1 2 1 2( ) ( ) ( )q X X q X q X= +  

Enhance, nonlinear 1 2 1 2( ) ( ) ( )q X X q X q X> +  

4. Results 
4.1. Temporal Analysis of Mean Value of KNDVI 

The average KNDVI of Shaanxi Province and its geographical sub-regions between 
2003 and 2022 was subjected to statistical analysis; the findings are displayed in Figure 4. 
The figure shows that Shaanxi Province’s average KNDVI varied between 0.42 and 0.52 
over the given period. The spatial distribution of KNDVI was categorized into three 
groups based on earlier research [64–66]: medium-low (0.2~0.4), medium (0.4~0.6) and 
medium-high (0.6~0.8). Medium-low and medium vegetation cover categories were the 
most common in Shaanxi Province. The average KNDVI in the southern Shaanxi region 
was greater than in other parts of the province, followed by the Guanzhong region and 
the northern Shaanxi region, based on the geographic sub-regions. The average KNDVI 
ranged from 0.58 to 0.61 in southern Shaanxi from 2003 to 2022, from 0.46 to 0.53 in the 
Guanzhong area, and from 0.24 to 0.42 in northern Shaanxi. The amount of vegetation 
varied clearly by region, with the cover falling toward the north. Shaanxi Province and 
every geographic sub-region had positive slopes in the linear regression analysis on the 
annual KNDVI values, suggesting an overall trend toward increased plant cover. The re-
gression function’s slope was 0.0046 throughout Shaanxi, 0.0073 in northern Shaanxi, 
0.0027 in the Guanzhong region, and 0.003 in southern Shaanxi. This suggests that the 
northern Shaanxi region had the highest rate of vegetation cover expansion, followed by 
the Guanzhong region and the southern Shaanxi region. 

 
Figure 4. The research area’s yearly average KNDVI values from 2003 to 2022. Shaanxi Province is 
represented by SX, whereas the areas of Guanzhong, northern Shaanxi, and southern Shaanxi are 
represented by GZ, NS, and SS, respectively. 

Figure 4. The research area’s yearly average KNDVI values from 2003 to 2022. Shaanxi Province is
represented by SX, whereas the areas of Guanzhong, northern Shaanxi, and southern Shaanxi are
represented by GZ, NS, and SS, respectively.

4.2. Trend Analysis of KNDVI

The temporal KNDVI data slopes were estimated using the Theil–Sen median method,
as shown in Figure 5. The analysis reveals an overall improvement in vegetation cover
in Shaanxi Province, with localized areas exhibiting a declining trend. Urban regions
such as Xi’an, Baoji et al. in the Guanzhong urban cluster, significant cities in southern
Shaanxi such as Hanzhong and Ankang, and urban areas in northern Shaanxi such as Yulin
and Yan’an are the main locations of vegetation degradation. The area with improved
vegetation growth covers 189,756 km2, accounting for 92.15% of the total area; the area
with stable vegetation growth covers 3977 km2, accounting for 1.93% of the total area; and
the area with deteriorating vegetation growth covers 12,184 km2, accounting for 5.92% of
the total area. In terms of geographic regions, the area with improved vegetation growth
has the highest proportion in the northern Shaanxi region, accounting for 98.92% of the
northern Shaanxi area, followed by the southern Shaanxi region, accounting for 95.71% of
the southern Shaanxi area, and finally the Guanzhong region, accounting for 78.08% of the
Guanzhong area. The area with stable vegetation growth has the highest proportion in the
Guanzhong region, accounting for 4.58% of the Guanzhong area, followed by the southern
Shaanxi region, accounting for 1.32% of the southern Shaanxi area, and finally the northern
Shaanxi region, accounting for 0.61% of the northern Shaanxi area. In the Guanzhong
region, the area with declining vegetation growth makes up the largest proportion (17.34%),
followed by the southern Shaanxi region (2.98%) and the northern Shaanxi region (0.47%)
of the Guanzhong region.
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Figure 6 illustrates the results of the MK significance test. It is evident from the
figure that the vegetation growth throughout Shaanxi Province shows significant spatial
heterogeneity, with degradation primarily concentrated in urban areas, particularly in large
cities such as Xi’an and Xianyang. Consistent with earlier study findings, the improvement
in vegetation growth is greatest in the northern and southern parts of Shaanxi and least in
the center region. By statistically analyzing the area of different trends in vegetation change,
the area showing an improvement trend is 189,757 km2, of which the area of significant
improvement is 174,262 km2, accounting for 84.63% of the total area. The area of slight
improvement is 15,495 km2, accounting for 7.52% of the total area. The area of stable and
unchanged vegetation is 3977 km2, accounting for 1.93% of the total area. The area showing
a degradation trend is 12,184 km2, of which the area of slight degradation is 5767 km2,
accounting for 2.8% of the total area, and the area of significant degradation is 6417 km2,
accounting for 3.12% of the total area. In terms of different geographical regions, for the
northern region of Shaanxi, the area of improvement accounts for 98.92% of the total area,
of which the area of significant improvement accounts for the highest proportion, 93.06%
of the total area, followed by the area of improvement, accounting for 5.86% of the total
area. In the central region, the area of deterioration makes up 17.34% of the whole area,
with the area of considerable degradation being 5126 km2, and the area of improvement
is 78.08% of the total area, with the area of improvement being 36,321 km2. In Shaanxi’s
southern region, the area of improvement makes up 95.71% of the total area, while the area
of deterioration makes up 2.98%.
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4.3. Partial Correlation Analysis of Influencing Factors

Due to different hydrothermal conditions in different regions, human activities have
varying effects and degrees of impact on nature, resulting in spatial variations in vegetation
growth. In this study, the corresponding KNDVI data were used as the dependent variable
for a partial correlation analysis, and the land-use types (a), population density (b), annual
average potential evapotranspiration (c), annual average precipitation (d), and annual av-
erage temperature (e) data from 2003 to 2022 were used as independent variables. Figure 7
presents the findings. The KNDVI ranges from −0.97 to 0.98 for population density data,
from −0.82 to 0.91 for yearly average potential evapotranspiration, from −0.95 to 0.88 for
yearly average precipitation, and from −0.92 to 0.83 for yearly average temperature. The
partial correlation coefficients between land-use types and KNDVI range from −0.99 to 0.95.

The significant pixel area at the significance level for all land-use categories in the
province is 73,944 km2. Of this total area, 48.35% is made up of positively correlated pixels,
while 51.65% is made up of negatively correlated pixels. According to population density,
the relevant pixel area at the significance level is 73,944 km2, of which 37.26% and 62.74%
are positively correlated and negatively correlated, respectively, of the entire area of this
kind of pixel. At the significance level, the yearly average potential evapotranspiration
has a significant pixel area of 73,908 km2. Of this type of pixel, the positively correlated
pixel area makes up 50.35% of the entire area, while the negatively correlated pixel area
makes up 49.65%. The relevant pixel area for yearly average precipitation at the significance
level is 73,908 km2, of which the positively correlated pixel area makes up 27.95% and
the negatively correlated pixel area accounts for 72.05% of the total area of this type of
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pixel. At the significance level, the yearly average temperature has a significant pixel size
of 73,908 km2. Of this type of pixel, the positively correlated pixel area makes up 24.7% of
the overall area, while the negatively correlated pixel area makes up 75.3%.
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For different geographical regions, the proportion of the area where KNDVI is neg-
atively correlated with land-use types in the northern Shaanxi and Guanzhong regions
(23.68%, 17.81%) is greater than the proportion of the area where it is positively correlated
(20.7%, 13.01%). In contrast, in southern Shaanxi, the proportion of the area where KNDVI
is positively correlated with land-use types (17.04%) is greater than the proportion of
the area where it is negatively correlated (13.28%). KNDVI is negatively correlated with
population density in the northern Shaanxi, Guanzhong, and southern Shaanxi regions,
with the proportions being 30.69%, 20.11%, and 15.17%, respectively. KNDVI is positively
correlated with annual average potential evapotranspiration in northern Shaanxi (29.33%),
while it is negatively correlated in the Guanzhong and southern Shaanxi regions (18.43%,
20.52%). There is a negative correlation between each region and annual average precipi-
tation, with the proportions being northern Shaanxi (33.82%), Guanzhong (21.59%), and
southern Shaanxi (20.2%). Additionally, there is a negative association between the yearly
average temperature and each region; the proportions are as follows: Guanzhong (16.01%),
southern Shaanxi (24.21%), and northern Shaanxi (37.23%).
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Figure 8 computes and displays the annual count of interactions between different
variables from 2003 to 2022. Bivariate enhancement and nonlinear enhancement are two ex-
amples of the interactions between influencing elements that are depicted in the graph. In
graph (a), the interaction effects among influencing factors leading to changes in vegetation
KNDVI in Shaanxi Province were relatively balanced between the two types from 2003
to 2011. However, from 2012 to 2022, the number of bivariate enhancement interaction
types exceeds that of nonlinear enhancement. From graph (b), it can be seen that, in the
northern Shaanxi region, the number of nonlinear enhancement interaction types between
influencing factors is greater than that of bivariate enhancement. From graph (c), it can
be seen that, in the Guanzhong region, the bivariate enhancement is the dominant type of
interaction between influencing factors. From graph (d), it can be seen that, for the southern
Shaanxi region, the interaction types between influencing factors are similar to those in the
Guanzhong region, with bivariate enhancement being the main type.
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5. Discussion
5.1. Response of KNDVI to Influencing Factors

In this study, the relationship between the eight influencing factors—land-use type
(CLCD), elevation (DEM), slope (Slope), aspect (Aspect), population density (Landscan/PD),
annual average potential evapotranspiration (PET), annual average precipitation (PRE), and
annual average temperature (TMP) and the changes in the KNDVI in Shaanxi Province from
2003 to 2022 was examined using the Geographic Detector. Figure 9 displays the findings of
the Geographic Detector’s single-factor study. Among them, (a), (b), (c), and (d) represent
the single-factor detection results for Shaanxi Province, northern Shaanxi, Guanzhong, and
southern Shaanxi, respectively. From Figure 9a, it can be seen that there are significant
differences in the contribution values (q values) of each factor to the KNDVI of vegetation in
the entire province of Shaanxi. By calculating the average q values for each factor over the
years and sorting them, the ranking is as follows: CLCD (0.655) > PRE (0.584) > PET (0.423)
> Slope (0.382) > TMP (0.133) > DEM (0.093) > Landscan (0.023) > Aspect (0.007).
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The changes in land-use type have caused significant variations in vegetation KNDVI,
which may be related to anthropogenic factors such as urban expansion, afforestation, and
reforestation. Precipitation is the most important climate factor affecting vegetation KNDVI
changes, as adequate rainfall can promote vegetation growth. When analyzing the effects of
different factors on vegetation KNDVI changes, we found that the year 2015 (q = 0.678) had
the greatest impact of land-use type changes on vegetation k-NDVI values, 2003 (q = 0.117)
for surface elevation, 2017 (q = 0.406) for slope, 2022 (q = 0.01) for aspect, 2022 (q = 0.085)
for population, 2005 (q = 0.53) for annual potential evapotranspiration, 2004 (q = 0.789) for
annual average precipitation, and 2007 (q = 0.176) for annual average temperature.

Different climatic conditions, natural environments, and vegetation types in different
geographical regions result in varying effects of different influencing factors on vegetation
KNDVI changes. For the northern Shaanxi region, the relationship of the effects of different
influencing factors on regional vegetation KNDVI changes is as follows: CLCD (0.538) >
PRE (0.524) > PET (0.386) > Slope (0.1) > TMP (0.098) > DEM (0.03) > Aspect (0.006) >
Landscan (0.001). The year 2003 (q = 0.669) was found to have the greatest influence of
land-use type changes on vegetation k-NDVI values, 2016 (q = 0.04) for surface elevation,
2012 (q = 0.118) for slope, 2022 (q = 0.008) for aspect, 2022 (q = 0.002) for population, 2003
(q = 0.587) for annual potential evapotranspiration, 2021 (q = 0.829) for annual average
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precipitation, and 2012 (q = 0.182) for annual average temperature. Thus, it can be seen
that land-use type and precipitation are the most important influencing factors causing
vegetation k-NDVI changes in the northern Shaanxi region.

For the Guanzhong region, the relationship of different influencing factors on regional
vegetation KNDVI changes is as follows: CLCD (0.621) > DEM (0.587) > PET (0.496) > TMP
(0.429) > Slope (0.342) > PRE (0.277) > Aspect (0.041) > Landscan (0.01). In the year 2022,
land-use type, surface elevation, and slope were found to have the greatest influence on
vegetation KNDVI changes, with the respective q values of 0.676, 0.658, and 0.408. The
year 2019 (q = 0.051) had the greatest influence of aspect on vegetation KNDVI changes,
2007 (q = 0.016) for population, 2003 (q = 0.557) for annual potential evapotranspiration,
2005 (q = 0.351) for annual average precipitation, and 2012 (q = 0.495) for annual average
temperature. Thus, it can be seen that land-use type, elevation, and evapotranspiration
are the most important influencing factors causing vegetation KNDVI changes in the
Guanzhong region.

For the southern Shaanxi region, the relationship of different influencing factors on
regional vegetation KNDVI changes is as follows: DEM (0.43) > CLCD (0.378) > PET, PRE
(0.217) > Slope (0.215) > TMP (0.068) > Landscan (0.041) > Aspect (0.021). The year 2020
(q = 0.452) was found to have the greatest influence of land-use type changes on vegetation
KNDVI values, 2006 (q = 0.502) for surface elevation, 2022 (q = 0.262) for slope, 2014
(q = 0.025) for aspect, 2020 (q = 0.071) for population, 2003 (q = 0.338) for annual potential
evapotranspiration, and 2011 (q = 0.123) for annual average temperature. Thus, it can be
seen that elevation, land-use type, evapotranspiration, and precipitation are important
influencing factors causing vegetation KNDVI changes in the southern Shaanxi region.

5.2. Examination of the Factors Influencing Vegetation KNDVI

The dynamic and multifaceted process of vegetation change is impacted by a wide
range of variables. China has been implementing ecological measures since 2000, such
as preserving natural forests and converting farms back to forests and grasslands. These
actions have increased the amount of plant cover and promoted beneficial ecological
growth [67–69]. According to this study, there is a general tendency toward improvement
as the KNDVI values of the vegetation in Shaanxi Province steadily rise from north to south.
Shaanxi’s northern region, which makes up 98.92% of the territory’s total land, has seen the
greatest increase in vegetation. The southern region, which makes up 95.71% of the region’s
total area, is next in line. Lastly, 78.08% of its land is made up of the Guanzhong region.
The northern Shaanxi region has shown the greatest improvement in vegetation, which
is in line with earlier research [70–72]. The primary factors impacting the development of
vegetation are slope, evapotranspiration, precipitation, and land use. Shaanxi Province’s
environment has become warmer and more humid over time, which might be good for the
growth and recovery of vegetation [73–76].

From 2003 to 2022, the areas in Shaanxi Province with higher KNDVI values are
mainly located in high-altitude regions such as the Qinling Mountains. These areas have
suitable temperatures, sufficient rainfall, low human activity intensity, predominantly
forest vegetation types, strong resistance to natural disasters such as soil erosion, and good
vegetation stability, exhibiting low fluctuation. Therefore, these areas exhibit high KNDVI
values. The areas with lower vegetation KNDVI values are primarily located in urban areas
with intensive human activities, such as the Guanzhong urban agglomeration, including
cities such as Xi’an, Xianyang, and Baoji, or in environmentally harsh desertification areas,
such as regions near the Mu Us Desert in northern Shaanxi.

This work maps the findings of the interactions among numerous factors in Shaanxi
Province, as shown in Figure S1 (see Supplementary Materials), in order to analyze the
interactions between different factors in different years. With less noticeable interactions with
elevation, slope, aspect, and population density, the figure shows a substantial association
between land-use categories, yearly average precipitation, annual average evaporation, and
annual average temperature. To elaborate, the association with other parameters like DEM,
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Slope, Aspect, and PD is less prominent, even if the correlation with CLCD, PRE, PRE, and
TMP is strong. The strongest interacting factors for different years are summarized in Table 3.

Table 3 shows that TMP ∩ PET and PRE ∩ PET are the main interaction variables
influencing the vegetation KNDVI variations in Shaanxi Province. Over the 20-year period,
there were 6 years of interaction between annual precipitation and annual potential evapo-
transpiration, and 9 years of interaction between annual average temperature and annual
potential evapotranspiration. The statement makes it abundantly evident that the research
area’s plant KNDVI fluctuations are mostly caused by the local climate.

The climate conditions vary in different regions of Shaanxi Province, with significant
differences in vegetation types. This results in noticeable variations in the influencing
factors among different natural geographical zones. Therefore, an analysis of the influ-
encing factors and driving forces of vegetation KNDVI changes in different geographical
zones is conducted. Figure S2 (see Supplementary Materials) illustrates the interactions of
influencing factors in different geographical zones from 2003 to 2022.

Table 3. Maximum Interaction of Influencing Factors in Shaanxi Province from 2003 to 2022.

Year Max Value Type Year Max Value Type

2003 0.892 PRE ∩ PET 2013 0.732 TMP ∩ CLCD
2004 0.89 PRE ∩ PET 2014 0.83 TMP ∩ PET
2005 0.899 PRE ∩ PET 2015 0.824 TMP ∩ PET
2006 0.791 TMP ∩ PET 2016 0.782 TMP ∩ PET
2007 0.805 TMP ∩ PET 2017 0.791 TMP ∩ PET
2008 0.789 TMP ∩ PET 2018 0.744 TMP ∩ PET
2009 0.811 PRE ∩ PET 2019 0.795 PRE ∩ CLCD
2010 0.83 PRE ∩ CLCD 2020 0.809 PRE ∩ PET
2011 0.834 PRE ∩ PET 2021 0.853 PRE ∩ CLCD
2012 0.786 TMP ∩ PET 2022 0.761 PRE ∩ CLCD

The land-use type (CLCD), elevation (DEM), annual average precipitation (PRE),
annual average evapotranspiration (PRE), and annual average temperature (TMP) show
rather substantial interactions with other affecting elements, as shown in Figure S2 (see
Supplementary Materials). Conversely, the relationships between population density (PD),
aspect (Aspect), and slope (Slope) are less strong. Table 4 provides a summary of the most
influential elements for each year.

For the northern part of Shaanxi, the primary interacting factors affecting vegetation
KNDVI changes are TMP ∩ PET and PRE ∩ PET. Over the 20-year period, there were
6 years of interaction between annual precipitation and annual potential evapotranspiration
and 6 years of interaction between annual average temperature and annual potential
evapotranspiration. This suggests that climatic conditions are the most significant driving
force for vegetation KNDVI changes in the northern region.

The primary interacting elements affecting vegetation KNDVI changes in the Guanzhong
area are DEM ∩ CLCD. There was 18 years of interaction between land-use type and eleva-
tion throughout the 20-year timeframe. This suggests that the main factors influencing plant
KNDVI variations in the Guanzhong region are elevation and human activity.

The combination of elevation and land-use type was the largest interaction element
during the 20-year period, with DEM ∩ CLCD being the key variables impacting vegetation
KNDVI changes for the southern half of Shaanxi. This statement implies that elevation and
human activity are the main drivers of vegetation KNDVI changes in the southern area.
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Table 4. Strongest interacting factors and interaction types in different geographical zones from 2003
to 2022.

Northern Shaanxi

Year Max Value Type Year Max Value Type

2003 0.856 PRE ∩ PET 2013 0.638 TMP ∩ CLCD
2004 0.863 PRE ∩ CLCD 2014 0.746 TMP ∩ PET
2005 0.869 PRE ∩ PET 2015 0.64 TMP ∩ PET
2006 0.673 TMP ∩ CLCD 2016 0.654 TMP ∩ PET
2007 0.708 TMP ∩ CLCD 2017 0.676 TMP ∩ PET
2008 0.696 TMP ∩ CLCD 2018 0.621 TMP ∩ PET
2009 0.677 PRE ∩ PET 2019 0.651 PRE ∩ PET
2010 0.721 PRE ∩ CLCD 2020 0.68 PRE ∩ PET
2011 0.669 PRE ∩ CLCD 2021 0.797 PRE ∩ PET
2012 0.655 TMP ∩ PET 2022 0.61 PRE ∩ CLCD

Guanzhong

Year Max Value Type Year Max Value Type

2003 0.667 DEM ∩ CLCD 2013 0.696 DEM ∩ CLCD
2004 0.681 DEM ∩ CLCD 2014 0.73 DEM ∩ CLCD
2005 0.701 DEM ∩ CLCD 2015 0.727 DEM ∩ CLCD
2006 0.676 DEM ∩ CLCD 2016 0.707 DEM ∩ CLCD
2007 0.65 DEM ∩ CLCD 2017 0.739 DEM ∩ CLCD
2008 0.681 DEM ∩ CLCD 2018 0.755 DEM ∩ CLCD
2009 0.68 DEM ∩ CLCD 2019 0.739 DEM ∩ CLCD
2010 0.707 PET ∩ CLCD 2020 0.732 DEM ∩ CLCD
2011 0.731 PET ∩ CLCD 2021 0.74 DEM ∩ CLCD
2012 0.749 DEM ∩ CLCD 2022 0.774 DEM ∩ CLCD

Southern Shaanxi

Year Max Value Type Year Max Value Type

2003 0.539 DEM ∩ CLCD 2013 0.557 DEM ∩ CLCD
2004 0.585 DEM ∩ CLCD 2014 0.553 DEM ∩ CLCD
2005 0.543 DEM ∩ CLCD 2015 0.629 DEM ∩ CLCD
2006 0.612 DEM ∩ CLCD 2016 0.608 DEM ∩ CLCD
2007 0.533 DEM ∩ CLCD 2017 0.629 DEM ∩ CLCD
2008 0.565 DEM ∩ CLCD 2018 0.593 DEM ∩ CLCD
2009 0.596 DEM ∩ CLCD 2019 0.599 DEM ∩ CLCD
2010 0.478 DEM ∩ CLCD 2020 0.661 DEM ∩ CLCD
2011 0.569 DEM ∩ CLCD 2021 0.628 DEM ∩ CLCD
2012 0.578 DEM ∩ CLCD 2022 0.643 DEM ∩ CLCD

5.3. Changes in Land Use and Their Effects on Vegetation KNDVI

In order to investigate the effects of land-use changes in Shaanxi Province during the
previous 20 years on vegetation KNDVI changes, this research used land-use data from the
years 2003, 2013, and 2022 as the data source. The land cover scenario for the years 2019,
2020, and 2021 is shown in Figure 10.

Table 5 illustrates that, between 2003 and 2013, the greatest area of land in Shaanxi
Province that was converted to other land uses was agricultural land, accounting for
24,881 km2. Of them, 11,371 km2 was the greatest area converted to grassland, making
up 45.7% of the total area transformed in that category. At 90,339 km2, or 43.9% of the
entire area, the province’s forest area was the greatest in 2013. The area covered by forests
grew by 16,409 km2 in comparison to 2003. Table 6 presents an examination of land-use
categories in Shaanxi Province from 2013 to 2022.
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Figure 10. The land cover distribution in Shaanxi Province for the years 2003, 2013, and 2022, where
(a–c) represent the years 2003, 2013, and 2022, respectively.

Table 5. Land-use transition matrix for Shaanxi Province from 2003 to 2013.

2013CLCD

2003CLCD Barren Cropland Forest Grassland Impervious Shrub Water SUM/km2

Barren 90 85 0 1538 13 0 12 1738
Cropland 15 34,704 10,309 11,371 2817 46 323 59,585

Forest 0 7081 73,930 2924 104 314 51 84,404
Grassland 123 9827 5146 40,025 409 42 162 55,734

Impervious 1 1515 129 231 1029 0 55 2960
Shrub 0 96 746 99 0 17 0 958
Water 7 196 79 59 61 0 137 539

SUM/km2 236 53,504 90,339 56,247 4433 419 740 205,918

Table 6. Land-use transition matrix for Shaanxi Province from 2013 to 2022.

2022CLCD

2013CLCD Barren Cropland Forest Grassland Impervious Shrub Water SUM/km2

Barren 72 30 0 120 8 0 6 236
Cropland 1 45,897 3325 3304 913 1 63 53,504

Forest 0 1269 89,026 19 1 24 0 90,339
Grassland 115 5220 2506 48,223 159 16 8 56,247

Impervious 0 4 0 0 4383 0 46 4433
Shrub 0 20 287 36 0 76 0 419
Water 10 95 1 6 55 0 573 740

SUM/km2 198 52,535 95,145 51,708 5519 117 696 205,918
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Table 6 shows that 8024 km2 was the largest amount of grassland in Shaanxi Province
that was changed to other land-use categories between 2013 and 2022. Of all of them,
65.1% of the total conversion area fell into the group where the largest area was turned
into cultivated land. With 95,145 km2 of forest covering 46.2% of the province’s total area
in 2022, it was the largest in the province. The amount of forest land grew by 6119 km2

in comparison to 2013. According to the aforementioned conclusions, the province’s total
forest covering has increased, which has raised vegetation KNDVI values in line with
earlier research.

This article calculates the land-use transition matrix for the northern Shaanxi, Guanzhong,
and southern Shaanxi areas from 2003 to 2022 in order to assess changes in land use in various
geographical locations, as indicated in Table 7.

Table 7. Land-use transition matrix for different geographical regions in Shaanxi Province from 2003
to 2022.

NS 2022CLCD

2003CLCD Barren Cropland Forest Grassland Impervious Shrub Water SUM/km2

Barren 52 182 0 1463 26 0 13 1736
Cropland 12 5583 1135 9192 180 1 45 16,148

Forest 0 799 10,040 995 18 22 4 11,878
Grassland 121 8326 3341 36,817 460 6 135 49,206

Impervious 3 78 15 168 84 0 7 355
Shrub 0 18 197 42 1 0 0 258
Water 7 44 6 51 19 0 62 189

SUM/km2 195 15,030 14,734 48,728 788 29 266 79,770

GZ 2022CLCD

2003CLCD Barren Cropland Forest Grassland Impervious Shrub Water SUM/km2

Barren 0 0 0 0 0 0 2 2
Cropland 1 21,946 2514 1093 2930 5 156 28,645

Forest 0 1518 17,907 549 26 21 6 20,027
Grassland 1 2223 1696 839 70 1 12 4842

Impervious 1 1187 26 10 950 0 37 2211
Shrub 0 32 108 6 0 0 0 146
Water 0 81 15 5 33 0 47 181

SUM/km2 3 26,987 22,266 2502 4009 27 260 56,054

SS 2022CLCD

2003CLCD Cropland Forest Grassland Impervious Shrub Water SUM/km2

Cropland 5834 8298 91 468 4 97 14,792
Forest 4108 47,932 276 101 43 39 52,499

Grassland 306 1262 92 13 9 4 1686
Impervious 154 108 1 124 0 7 394

Shrub 53 479 17 0 5 0 554
Water 63 66 1 16 0 23 169

SUM/km2 10,518 58,145 478 722 61 170 70,094

From 2003 to 2022, the northern Shaanxi region witnessed substantial land-use changes,
notably the conversion of 8326 km2 of grassland to cultivated land, representing the largest
transformation. By 2022, this region encompassed 48,728 km2 of grassland, constituting
61.1% of its total area.

Between 2003 and 2022, Guanzhong saw the most land-use type conversion area,
which was the conversion of cultivated land to other land-use types. Of these, 2930 km2

accounted for 43.7% of the total conversion area in that category. This is connected to
the Guanzhong region’s rising rate of urbanization and urban growth. With 48.1% of
Guanzhong’s total area under cultivation in 2022, the Guanzhong region possessed the
most amount of land.
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From 2003 to 2022, the land-use type in southern Shaanxi that had the greatest area
conversion was the conversion of cultivated land to other land uses, with 8298 km2 of that
land changed to forest land, or 92.6% of the total area converted in that category. In 2022,
the southern Shaanxi region possessed the most area of forest land, with 58,145 km2, or
83% of the region’s entire area.

In 2022, the total amount of vegetation, which included grassland, shrubland, and
forests, was calculated for various geographic locations; 79.6%, 44.2%, and 83.7% of the total
area in each region were represented by the areas for the northern Shaanxi, Guanzhong, and
southern Shaanxi regions, which were 63,491 km2, 24,795 km2, and 58,684 km2, respectively.
It is evident that different geographic locations have varying levels of plant covering, which
results in various KNDVI values. In line with the earlier findings, the Guanzhong area has
the lowest vegetation coverage, while the southern and northern Shaanxi regions have the
greatest coverage.

The Guanzhong region’s densely populated urban cluster is seeing a notable growth
rate in its urban regions due to the accelerating urbanization process. This expansion
is accompanied by a notable rise in building land and a decrease in the area of existing
agriculture. Both urban and rural regions see an increase in water demand when there is a
concentration of people. The Guanzhong region’s vegetation covering is growing slowly,
which is explained by the significant influence of human activity on this cover.

The Guanzhong area has seen tremendous expansion in both agricultural and indus-
trial development throughout the last 20 years. The region’s vegetation sustainability has
been significantly impacted by this development. Consequently, the explanation of the
Guanzhong region’s vegetation sustainability will be the main goal of this research.

Firstly, the Guanzhong region’s vegetation cover has been trending downward as a
result of increased industrial and agricultural activity. There is a decline in the amount
of woodland and grassland regions as a result of the extensive land usage for farming
and factory construction. As a result, the environment is under strain, endangering the
preservation and protection of biodiversity. Numerous plant species have been harmed,
upsetting the ecological equilibrium.

Second, both the survival and growth of plants have been adversely impacted by
water contamination resulting from industrial and agricultural operations. Groundwater
and surface water have been contaminated by the release of wastewater from factories and
the use of chemical pesticides and fertilizers on agricultural land. This has tainted plant
water supplies, limiting the development of the plants. Certain delicate plant species might
not be able to withstand this environmental stress, which would cause their populations to
decline or perhaps go extinct.

In addition, climate change has had an impact on the Guanzhong region’s capacity to
sustain its flora. Changes in temperature and precipitation patterns brought forth by global
warming might affect plant lifecycles and growth seasons. There might be a decline in the
population of some plant species if they are unable to adjust to these changes.

Future population growth, economic expansion, and the resulting increased demand
for land and water resources might present the Guanzhong area with ever-greater issues.
These elements may make water pollution and deforestation worse. The viability of the
vegetation may also be further jeopardized by worsening climate change, which might
expose the area to increasingly frequent and severe extreme weather events such as floods
and droughts. The area’s capacity to preserve its vegetation has been weakened throughout
the last 20 years of rapid industrial and agricultural growth. Reduced vegetation covering
and the adverse impacts of water pollution and climate change on plant development
and survival are possible outcomes. Implementing sustainable agriculture techniques,
strengthening land conservation initiatives, and raising environmental awareness are all
necessary to address these problems.
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6. Conclusions

While certain localized locations in Shaanxi Province are showing a deteriorating
trend, overall, the province’s vegetation covering is improving: 92.15% of the entire area,
or 189,756 km2, is covered by the enhanced vegetation growth area; 3977 km2, or 1.93% of
the total area, are covered by areas with steady vegetation growth; while 12,184 km2, or
5.92% of the total area, are covered by areas with falling vegetation growth. This research
shows that although plant growth has improved over a large region of the province, there
has been a dramatic decrease in vegetation cover in a smaller but important area.

The types of interaction factors include two categories: bivariate enhancement and
nonlinear enhancement. The main interactive factors affecting the variation of vegetation
k-NDVI in Shaanxi Province are TMP∩PET and PRE∩PET. Climatic conditions serve as the
primary driving force for the variation of vegetation k-NDVI in Shaanxi Province.
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