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Abstract: Recently, traffic flow prediction has gained popularity in the implementation of intelligent
transportation systems. Most of the existing models for traffic flow prediction focus on increasing the
prediction performance and providing fast predictions for real-time applications. In addition, they can
reveal the integrity of a prediction when an actual value is provided. However, they cannot explain
prediction uncertainty. Uncertainty has recently emerged as an important problem to be solved in
deep learning. To address this issue, a Monte Carlo dropout method was proposed. This method
estimates the uncertainty of a traffic prediction model. Using 5,729,640 traffic data points from Seoul,
the model was designed to predict both the uncertainty and measurements. Notably, it performed
better than the LSTM model. Experiments were conducted to show that the values predicted by
the model and their uncertainty can be estimated together without significantly decreasing the
performance of the model. In addition, a normality test was performed on the traffic flow uncertainty
to confirm the normality, through which a benchmark for uncertainty was presented. Following
these findings, the inclusion of uncertainty provides additional insights into our model, setting a new
benchmark for traffic predictions, and enhancing the capabilities of intelligent transportation systems.
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1. Introduction

With the development of intelligent traffic systems, traffic flow prediction has become
an important and challenging topic of research in both academia and industry. The objective
of intelligent traffic systems is to increase the efficiency of traffic operations and alleviate
traffic congestion [1]. It is also used as an important reference for vehicle route planning [2]
and an important topic of discussion for intelligent transportation systems [3]. Traffic flow
prediction serves as a crucial foundation for traffic demand policies in intelligent trans-
portation systems. It enables the prediction of traffic flow in congested areas, facilitating the
efficient utilization of traffic resources and contributing to sustainable traffic development
at an economic level [4]. Furthermore, the deployment of ITS technology for traffic flow
prediction can aid in reducing pollution emissions that result from traffic energy consump-
tion and congestion. This is achieved by promoting the use of public transportation and
providing transportation services to those who are transportation disadvantaged.

However, traffic flow prediction is not an easy task. Traffic flow must reflect both
temporal and spatial features in the presence of various variables and many uncertain
factors [5]. Therefore, it has numerous inflection points. In addition, traffic flow values
may differ from the expected values because of special events (e.g., traffic accidents). An
inaccurate prediction can lead to the mismanagement of traffic, potentially resulting in
safety hazards [6]. Particularly in scenarios such as traffic congestion or special events,
a slight misjudgment can escalate into significant safety concerns [7]. As such, extensive
research on the prediction of traffic flow using deep learning has been conducted because it
is difficult to express the values using specific formulas [8–10]. With rapid urbanization and
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an increase in vehicular traffic, ensuring the safety of road users has become paramount [11].
Accurate traffic flow prediction not only aids in efficient traffic management, but also plays
a crucial role in enhancing road safety by anticipating and mitigating potential traffic
hazards [12].

Recent studies have highlighted approaches that fall into three predominant categories
based on the techniques, as depicted in Figure 1: traditional techniques, machine learning,
and deep learning. These techniques are representative of the conventional strategies that
are deeply anchored in knowledge-driven processes.
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Before the advent of machine and deep learning, traffic flow was primarily predicted
using traditional methodologies. These primarily encompass time series models, such as
autoregressive integrated moving average (ARIMA) models [13], simulation models [14],
and the Kalman filtering technique [15]. Head [14] used a simulation model to predict
traffic, highlighting that proactive methods can be used to generate conventional real-time
responses [14], and Necula [16] also used a simulation model based on GPS data [16]. These
traditional methodologies are the basis for traffic flow prediction; however, they are less
accurate than other current methods [17]. Although they can extract temporal features from
a time series, they have difficulty expressing spatial relationships in traffic flow prediction
tasks [18]. Several researchers have proposed a combination of these methods and artificial
intelligence (AI) models to address these problems.

Moreover, with advancements in machine learning and the growth in computing power,
researchers have attempted to predict traffic flow using various machine learning-based
models [19], including support vector regression [20] and K-nearest neighbor (KNN) [21].
Tempelmeier et al. [21] utilized the KNN algorithm to introduce a map model that captures
the spatial and temporal dependencies in traffic flow data, considering the frequency of
events [21].

Recently, several models have been introduced to reflect the time series features of
traffic, such as recurrent neural networks, long short-term memory (LSTM), and gated
recurrent units (GRUs) based on deep learning, including models of graphs and convolu-
tional neural networks (CNNs), such as temporal graph convolutional networks [22] and
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diffusion convolutional recurrent neural networks [23], which have been used to reflect
spatial information. The emergence of these models has improved the performance of traffic
flow prediction [22–25]. In the case of CNNs, traffic flow prediction is achieved by incorpo-
rating spatial characteristics via filters. Although they demonstrated effective performance
in short-term predictions, they struggled to capture time series characteristics as effectively
as they did spatial characteristics, leading to limitations in long-term predictions [26]. To
address these limitations, RNN-based models that reflect time series characteristics have
been developed. However, traditional RNN models face a vanishing gradient problem.
As a solution, LSTM and GRU models have been developed to counteract this issue [27].
Lu et al. [28] identified the shortcomings in prevailing traffic flow prediction models that
fail to capture high-level temporal patterns. To address this, they integrated stacked LSTM
blocks with convolutional blocks [28]. The introduction of GRUs has further mitigated the
vanishing gradient challenge. R. Fu et al. [19] conducted an experiment on short-term traffic
flow prediction using LSTM and GRUs, revealing that the deep learning approach, based
on current neural networks, such as RNN, surpassed traditional time series models such as
ARIMA in capturing temporal nuances [19]. Nonetheless, because traffic flow prediction
encompasses both spatial and temporal properties, there is a demand for models that can
effectively represent both dimensions. To this end, a temporal convolution network was
designed to reflect both time series and spatial features. This model efficiently addresses
the issues of computational time and the vanishing gradient problem inherent to traditional
RNNs, and its performance can be optimized by adjusting the layer count and tweaking
the parameters. It outperformed the traditional LSTM, GRU, and RNN models [29].

Consequently, a plethora of models are continually being developed to enhance predic-
tion accuracy and streamline traffic flow forecasting. However, most studies on traffic flow
prediction have focused on prediction accuracy. However, they did not provide information
regarding the reliability of the prediction. The performance of the model is evaluated using
various evaluation metrics, such as the root mean square error (RMSE) and R-squared; how-
ever, they only indicate the performance of the average for past data. They did not provide
information on the reliability of the predicted value through the model at the prediction
stage through the actual model. This can lead to misjudgment, thus acting as an obstacle
to better decision making and deviating from the ultimate goal of deep learning models.
In previous studies, this problem was solved using uncertainty [30–32]. Uncertainty is the
reliability of the model in regard to the predicted result value. The higher the uncertainty,
the lower the reliability of the predicted value, and the higher the uncertainty, the higher
the reliability of the predicted value [30]. By addressing the uncertainty in traffic flow pre-
dictions, the aim is to provide more accurate predictions and safer road conditions [11]. A
reliable model that can provide both accurate and trustworthy predictions is a step forward
in ensuring road safety using intelligent traffic systems [7]. Recent advancements in various
domains have highlighted the significance of deep learning for uncertainty estimation. For
instance, in the realm of MRI imaging, Sherine Brahma et al. [33] emphasized the use of
deep learning algorithms to enhance image reconstruction, while stressing the importance
of obtaining a metric to identify artifacts [33]. Similarly, Choubineh et al. [34] applied
Monte Carlo dropout to assess the reliability of several CNN models in the context of
subterranean fluid flow modeling, emphasizing the importance of considering the uncer-
tainty in deep learning models [34]. In the domain of EEG-based predictions, Li et al. [35]
introduced a patient-specific seizure prediction framework that considers model uncer-
tainty and proposed a modified Monte Carlo dropout strategy to enhance the reliability
of DNN-based models [35]. Murad et al. [36] underscored the importance of quantifying
model uncertainty in data-driven air quality forecasts by applying state-of-the-art tech-
niques on uncertainty quantification in real-world settings [36]. These studies provide fresh
insights into quantifying the uncertainty of deep learning models and their applicability
in real-world scenarios. Transitioning from general deep learning applications to more
specific domains, it is evident that the principles of uncertainty are crucial in fields such as
traffic flow prediction.
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Two recent examples demonstrate the importance of uncertainty in deep learning.
Such misclassifications or misjudgments in traffic flow predictions can have dire conse-
quences, leading to unsafe road conditions or accidents [12]. Ensuring the reliability of
the predictions is not only about accuracy, but is also about ensuring the safety of all road
users [6]. The use of an assisted driving system resulted in the first death in May 2016,
which was caused by the system confusing the white side of a trailer with a bright sky.
In addition, in a recent image classification, Africans were classified as gorillas, resulting in
social issues [31]. The reason for the occurrence of the above phenomenon in deep learning
is that the models derive result values through the learning process and blindly trust
the corresponding result values. Current general deep learning models cannot indicate
whether the value is relatively certain or unreliable based on the reliability of the result
value [31], and the models always trust the result value. It is important for the models to
convey that they do not know what they do not know, like the human brain.

To solve the above problem, the researchers in this study have attempted to represent
uncertainty using Bayesian neural networks, which have been used for the first time in
deep learning. Bayesian neural networks can model the weights of the post-probability of
the network to obtain information on the standard deviation of the predicted values and
estimate uncertainty [32]. However, one of the drawbacks to this network is the high learn-
ing cost. Gal [30] proposed the Monte Carlo dropout, demonstrating that sampling alone
by applying dropout can approximate the Bayesian inference in the Gaussian process [30].
This allowed us to estimate uncertainty with a lower computing cost and showed better
performance than traditional Bayesian neural networks. Various other methods have been
proposed to estimate uncertainty [37]. Balaji Lakshminarayan and two others from the
DeepMind Laboratory went beyond the existing sampling methods to obtain non-Bayesian
uncertainty through deep ensembles for uncertainty estimation. Deep ensembles have
been used to address the problem of the slow learning speed of existing Bayesian neural
networks and facilitate parallel processing [38]. Extensive research has been conducted in
various fields to solve the problems associated with the existing Bayesian neural networks.
Gregory Kahn conducted collision prediction based on uncertainty in their study through
reinforcement learning. When a collision is predicted, the reward is lowered, and the
uncertainty is added to this predictive model [39].

Research on the uncertainty and reliability of this model is ongoing [30,32,37,38]. Even
when predicting traffic flow through AI, it is necessary to determine the uncertainty of the
predicted value. In addition, there were limited resources for decision making; therefore, it
is important to distribute resources wisely. Recently, traffic control systems have changed
from real-time to proactive responses. Accurate predictions are required for proactive
responses. To distribute resources to events that have not yet occurred, it is necessary to
determine the reliability of the predicted values through uncertainty estimation. That is, the
accuracy of the predicted values is important; however, if an uncertain value is obtained,
the model must be capable of showing the resulting value that can be reflected in the
decision [31]. Hence, a benchmark for the size of the uncertainty is essential. Researchers
can represent uncertainty through various uncertainty estimation methodologies; however,
the benchmark for how large a value can be, used as an indicator that can be reflected in
decision making, is still insufficient.

This study reflects the spatiotemporal characteristics of traffic through temporal con-
volutional networks (TCNs) reflecting the spatiotemporal characteristics, showing better
performance than existing time series, deep learning models, LSTM and GRU, and spatial
CNN models. In addition, the uncertainty predicted through Monte Carlo dropout can
express the reliability of the predicted traffic value, which will enable decision-making
support for real-time predictions. Therefore, the Monte Carlo dropout TCN (M-TCN) is
proposed, which combines the Monte Carlo dropout (MCDO) and the TCN to express both
the predicted values for multiple traffic measurement points in Seoul and the uncertainty of
the prediction value. The M-TCN uses the TCN to predict multiple points by considering



Sustainability 2023, 15, 16204 5 of 18

complex temporal factors and samples, using the MCDO to extract the uncertainty of each
point prediction value and confirm the reliability of the model prediction value.

Second, this study proposes a benchmark that can help in decision making through
the correlation between uncertainty and error. Through this, it is possible to grasp the
predicted value and the degree of uncertainty for multiple points, and make safer and more
reliable decisions by reflecting them in the decision-making process.

To solve the above-mentioned problems, this study proposes a new traffic forecasting
model, the M-TCN, to check the uncertainty in traffic forecasting. The contributions from
this study are as follows:

(1) In this study, the MCDO was applied to the TCN models to effectively predict the
traffic flow. Through this, it is possible to express the uncertainty of the model that
cannot be expressed in the existing traffic model; thus, it is effective not only in
predicting traffic, but also in various other places.

(2) In this study, the effect of the model’s uncertainty on the error was confirmed, and a
normal distribution was used to present a benchmark for the uncertainty value.

(3) In this study, the MCDO was applied to various traffic prediction models, and the
results were compared to identify differences in the resulting values and to propose
an appropriate uncertainty estimation model for traffic flow prediction.

2. Methodology
2.1. Monte Carlo Dropout

In this study, the MCDO was applied to a traffic prediction model to estimate the traffic
prediction uncertainty. The Bayesian model used for the initial uncertainty measurement
computes the posterior distribution using a Gaussian distribution and measures the uncer-
tainty. In the existing general deep learning model, the weight is not fixed through learning;
however, the probability distribution of the weight is determined. This is equivalent to
implementing multiple neural networks because various values may emerge instead of
one [40]. However, one of the disadvantages of the Bayesian model is the increased com-
puting costs. To solve this problem, Gal [30] attempted to measure uncertainty with a lower
computing cost by applying dropout. Dropout is commonly used in natural networks
as a regularization method to prevent model overfitting [41]. This method is generally
applied in the training process. However, in the method proposed by Gal [30], dropout was
applied before the weight layer. This allows neural networks to learn by randomly omitting
some neurons in the input or hidden layer according to the dropout rate and expressing
neural networks with different weights. This is the effect of implementing multiple neural
networks, and has the same features as a Bayesian neural network. It was shown that deep
learning models eventually approximate Bayesian inferences in Gaussian processes and
are available in various networks [30].

Moreover, ŷ is defined as the output value of the neural network with L layers, the
weight parameters are set to w = {W1, . . . , WL}, x∗ is defined as the input vector, and
y∗ is an observation of x∗. When a given dataset is defined as X = {x1, . . . , xN} and
Y = {y1, . . . , yN}, the predicted distribution may be expressed as follows:

p(y∗ | x∗, X, Y) =
∫

p(y∗ | x∗, w)p(w|X, Y)dw, (1)

where p(y∗|x∗, w) is the likelihood and p(w|X, Y) is the posterior probability. To calculate
the posterior probability, the prior probability and likelihood must be defined and mul-
tiplied; however, the process for calculating the likelihood through the prior probability
is intractable. In this study, q(w) is arbitrarily defined as having a distribution similar
to the posterior probability. The above distribution is called variational distribution, and
to approximate it to posterior probability, the posterior probability and Kullback–Leiber
divergence (KL-d) of q(w) are minimized. Minimizing the KL-d minimizes the difference
between the two distributions, and if the difference between the two distributions decreases,
eventually q(w) can be used instead because it is close to the posterior probability; that is,
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it becomes a problem that minimizes the corresponding KL-d. The predicted distribution is
estimated using the variational reference process, as follows:

q(y∗|x∗) =
∫

p(y∗|x∗, w)q(w)dw. (2)

Referring to [29], the approximation of the posterior probability q(w) is expressed as
the distribution for a matrix randomly set to 0, according to the Bernoulli distributions in
(4) and (5), where pi is the dropout rate and Mi represents the variational parameters.

Wi = Mi·diag
([

zi,j
]Ki

j=1

)
(3)

zi,j ∼ Bernoulli(pi) f or i = 1, . . . , L, j = 1, . . . , Ki−1 (4)

Therefore, in the Bernoulli distribution, T, which is the vector set of the sample, is
defined as

{
Wt

1, . . . , Wt
L,
}t

t=1

}
. Therefore, the predicted mean and uncertainty can be

expressed as:

Eq(y∗|x∗)(y∗) ≈
1
T ∑T

t=1 ŷ∗
(
x∗, Wt

1, . . . , Wt
L
)
= pMC(y∗|x∗), (5)

uncertainty(y∗, x, {W1, . . . , WT}) ≈

√
1
T ∑T

t=1 ŷ∗(x∗, Wt)
2 −

(
1
T ∑T

t=1 ŷ∗(x∗, Wt)

)2
. (6)

The predicted values and uncertainties shown through the MCDO eventually indicate
the average and standard deviation of the resulting values predicted, by providing input
into many neural networks created through the dropout. The sum of the predicted values
of various neural networks and their average becomes the predicted value of the model
to which the MCDO is applied, and the standard deviation of the corresponding values
represents the uncertainty. A large uncertainty means that the standard deviation of several
neural networks from the dropout is large, and the reliability of the predicted value is small.

2.2. Temporal Convolutional Networks

To understand the method implemented in this study, the mechanisms of the TCN
used are briefly introduced below. Time series data, from 1 January 2014 to 30 November
2018, were used as the traffic flow data in this study. The time series data consist of input
variables for each time step, along with the extracted time series features through RNN-
based models specialized in sequential data processing. However, RNN-based models
experience a vanishing gradient problem in backpropagation when the distance between
the relevant Information and the perceptron is significantly reduced in regard to the learning
ability. To overcome this problem, a TCN-based model study was conducted [24]. The
TCN obtains the output value using a casual convolution filter for the input value, which
limits the convolution operation to the region of the time step before the current time point.
Unlike conventional CNNs, the TCN receives information from a previous time zone and
passes it back to the next time zone. However, computations using casual convolution
filters require numerous layers to widen the receptive field. This is problematic for many
computations using time series data that require sequential data processing. To compensate
for this, Oord et al. [42] proposed a dilated convolutional filter. The filter was adjusted
to simplify the calculation and secure the accommodation area covering each input by
prioritizing the casual filter as much as the dilation. Thus, it is possible to stack layers
effectively to obtain time series features.
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2.3. Monte Carlo Temporal Convolutional Networks

There are two methods for achieving the goal of predicting traffic flow. First, the traffic
flow was predicted for various future points based on past traffic flow information. Second,
the uncertainty of the model was extracted for the predicted values using Monte Carlo
sampling. The overall process is illustrated in Figure 2.
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In this study, the experimental model was divided into preprocessing and processing
stages. In the preprocessing stage, the dataset was divided into training, validation, and
testing after identifying the missing values in the collected traffic data and performing
interpolation and formatting operations. Then, in the processing stage, the model was
trained based on the training data, verified using the validation dataset, and tested with
the test dataset. The traffic flow was considered as the input to obtain the prediction and
uncertainty through the TCN and Monte Carlo sampling. In the test process, the model
does not immediately proceed to the prediction stage, unlike the other models, but predicts
various values sampled through the Monte Carlo sampling process and calculates the
predicted value and uncertainty by calculating the average and standard deviation of the
values. Finally, the threshold was measured based on the calculated uncertainty, and all
the processes were terminated. The M-TCN model, which is important for executing this
process, is shown in Figure 3.

The model consists of three residual blocks, each with a dilation of 1, 2, and 4, to
expand the receive field. As shown in Figure 3a, the structure of each residual block
consists of dilated casual convolution, batch normalization, and activation rectified linear
unit (ReLU) functions, dropout, and dilated casual convolution, which are connected
through a skip connection and are finally derived from the dense layer. The result value is
a prediction for 132 points for one time point and is in the form (1,132). For the learning
model, the distribution of the result value is obtained through 500 Monte Carlo samplings,
through which the mean and standard deviation of the sampling values are obtained.
Here, the µ(prediction) is the mean of sampling values, and the σ(uncertainty) is standard
deviation of sampling values. The larger the uncertainty value of the model, the less
confident and more unreliable the model is regarding the resulting value. The proposed
model can provide an additional predicted value of uncertainty, compared with existing
models that represent only the predicted value.
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2.4. Models for Comparison

The LSTM is commonly used for sequential data processing, such as speech or text.
The LSTM model was used for predictions based on recent time series data. In this study,
the researchers combined several other methods to develop a novel prediction model [43].
The LSTM model was used as a comparative model for the M-TCN prediction model by
applying the MCDO. CNNs are hierarchical neural network-based algorithms designed to
handle multidimensional array data. When a CNN receives multidimensional array data, a
weighted array known as a “convolutional filter” operates on the input array and generates
the final output through a nonlinear function [44].

2.5. Hypothesis Test Metrics

Correlation analysis and Kolmogorov–Smirnov tests were conducted to verify the
additional hypotheses in the experiment. Correlation analysis is a numerical value that
quantifies the linear correlation between two variables, by dividing the covariance between
the variables by the product of the standard deviation of each variable. In this study, Pearson
correlation analysis was performed to confirm the relationship between the uncertainty
and the error for the predicted value of the model, and the Pearson correlation used was −1
to +1 using the Cozy–Schwartz inequality, with +1 for a perfect positive linear relationship,
−1 for a perfect negative linear relationship, and 0 for no relationship [45].

The Kolmogorov–Smirnov test was conducted to test the normality of whether the
probability distribution of the population would follow the normal distribution curve,
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using estimated uncertainty as a sample group. It is a representative nonparametric test
method for determining the specific distribution that a population follows [46].

2.6. Evaluation Metrics

The RMSE is calculated by averaging the sum of the squares of deviations, which is
the difference between the predicted and actual values, and then taking the square root.

RMSE =

√√√√ 1
N

N

∑
i=1

(
Yι − Ŷi

)2 (7)

Here, N denotes the number of predicted values, Yι denotes the actual value, and Ŷi
denotes the predicted value. That is, the difference between the predicted and actual values
was squared and averaged, and the root was applied to the RMSE. The closer the RMSE is
to 0, the smaller the magnitude of the squared deviation between the predicted and actual
values of the model, and it exhibits better performance. The evaluation index is the most
frequently used indicator for regression problems.

3. Experiments

The data used in this study were traffic flow data from Seoul, the capital of Korea,
from 1 January 2014 to 30 November 2018, provided by the Seoul traffic information system.
The traffic flow dataset for Seoul is described as Table 1 below. The major highways and
urban highways were divided into 132 nodes, and the number of vehicles passing through
them per hour was measured. Loop, image, and geomagnetic detectors were used for
the measurement.

Table 1. Traffic flow descriptive statistics.

Observed Min Median Mean Max Standard
Deviation

5,729,640 1.25 34.62 39.89 229.58 19.58

As shown in Figure 4, the data were collected from 132 traffic measurement nodes
in Seoul, which provided only single traffic data on an hourly basis. The data had a total
of 5,729,640 observations, with an average of 39.89 and a standard deviation of 19.58. A
total of 23,864 values were missing, accounting for approximately 0.5% of the total. For the
missing values, the corresponding values were interpolated using a linear interpolation
technique. The interpolated data were divided into train, validation, and test data at a ratio
of 6:2:2. The training data were used to teach the model, the validation data to verify the
model, and the test data to predict the traffic and evaluate its performance.

In this study, a traffic flow prediction model using the MCDO, which reflects the time
series features of the traffic and can estimate the uncertainty, was proposed. The experiment
was conducted by applying a timestep of lag 1,12,24 and 6,12,24 to check and compare the
short- and long-term prediction performance of the models, with and without the MCDO.
Based on previous studies, two models, the LSTM and GRU, were used to predict traffic
flow and compare the uncertainty patterns exhibited when models other than those with
the MCDO were applied. The timestep and lag were calculated in the same environment as
in the above experiment. After the learning stage was completed, Monte Carlo sampling
was performed 500 times. In this experiment, four Titan RTX graphics processing units
(GPUs) were used, and a total of 850 learning epochs were conducted.
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The MCDO was combined in three models that are frequently used in traffic man-
agement. For the 6,12,24 timestep and 1,12,24 lag, the result values are summarized as
(a), (b), and (c) in Table 2. (a) The RMSE of the nine result values obtained by applying
the MCDO to the TCN was at least 4.68, or a maximum of 6.51, with an average RMSE
value of 5.77, and the uncertainty was at least 0.15, or a maximum of 2.42, with an average
of 1.21. (b) When the MCDO was applied to the LSTM, the RMSE was at least 4.76, or a
maximum of 8.07, with an average RMSE value of 6.51, and the uncertainty was at least
1.94, or a maximum of 3.35, with an average of 2.77. (c) In the case of the CNN, when the
MCDO was applied, the RMSE was at least 6.37, or a maximum of 9.03, with an average
value of 7.42, and the uncertainty was at least 6.29, or a maximum of 7.33, with an average
of 6.82. Overall, the larger the RMSE of the model, the greater the tendency for uncertainty
to appear. To verify this in detail, the relationship between the error for the entire test data,
as well as the predicted uncertainty must be understood.
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Table 2. Comparison of the mean of the uncertainty and RMSE using the Seoul traffic flow dataset
for various models. (a) Traffic flow predicted using the M-TCN, (b) Traffic flow predicted using the
M-LSTM, (c) Traffic flow predicted using the M-GRU.

(a)

Timestep Lag

Model

M-TCN

Uncertainty RMSE

6
1 0.37 4.79

12 1.29 6.51
24 1.25 6.22

12
1 0.15 4.75

12 1.33 6.01
24 1.10 6.45

24
1 1.11 4.68

12 2.42 6.09
24 1.83 6.41

(b)

Timestep Lag

Model

M-LSTM

Uncertainty RMSE

6
1 3.35 4.76

12 2.75 6.39
24 3.14 6.28

12
1 3.08 6.40

12 2.69 6.65
24 2.66 8.07

24
1 2.82 6.00

12 1.94 6.22
24 2.53 6.83

(c)

Timestep Lag

Model

M-GRU

Uncertainty RMSE

6
1 6.98 7.94

12 6.36 9.03
24 6.29 8.74

12
1 7.12 6.75

12 6.52 7.24
24 6.81 7.00

24
1 6.97 6.37

12 6.89 7.04
24 7.33 6.67

The cases with and without the MCDO have the same neural network structure,
and the only difference occurs depending on whether dropout is also applied in the test
phase. For the dropout model, 500 samples were sampled, and their average was set as the
predicted value. According to Table 3, the short- and long-term prediction performance of
the model show a difference of approximately 1% in the RMSE for Lag1, and there is both
high and low performance when the MCDO is used. In addition, the difference according
to the change in the timestep and lag is approximately 2% and, as in the above case, there
is no one-sided performance difference according to the model. It was confirmed that even
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if the MCDO is applied in the traffic flow prediction model, uncertainty can be exhibited
without significantly impairing the performance.

Table 3. Comparison of RMSE with and without MCDO using the Seoul traffic flow dataset.

Timestep Lag

Base Model

With MCDO Without MCDO

RMSE Uncertainty RMSE Uncertainty

6
1 4.79 O 4.76 X
12 6.51 O 6.39 X
24 6.22 O 6.28 X

12
1 4.75 O 4.73 X
12 6.01 O 6.37 X
24 6.45 O 6.13 X

24
1 4.68 O 4.62 X
12 6.09 O 6.02 X
24 6.41 O 6.18 X

As shown in Table 3, the models without and with the MCDO show a difference in
the performance of approximately 2%; however, there is a difference in the amount of
information expressed. Figure 5 shows a graph of the 116th point for both models; the
RMSE is 2.49 without the MCDO and 2.51 with the MCDO. (a) Without the MCDO, only
the information about the predicted and actual values is shown, whereas (b) with the
MCDO 99% of the uncertainty is provided using Monte Carlo sampling. The larger the
corresponding interval, the more difficult it is for the model to trust the current value. The
uncertainty is shown in Figure 6.
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Figure 6 shows an enlarged graph of the 175–200 time interval in Figure 5b, which
shows large uncertainties and errors. From 195 to 200 h, the RMSE was 4.27, 71% larger than
the RMSE without the MCDO and 70% larger than that with the MCDO. The uncertainty
calculated in this section is 2.3 times larger than the average in the other section and
contains information indicating that the prediction is less reliable. When using the actual
model, if only the performance through the evaluation index for the existing model is
considered because the actual value is unknown, the value shows more than 70% variation
from the actual value when making decisions.

In addition, Figure 6 shows that the error widened significantly at the inflection point
of the box section, and the uncertainty also tended to increase. The uncertainty value in
the section showed a difference of 8.8 to 15.7 times, compared to the 30 h time before the
section. Based on this, a hypothesis that there may be a correlation between uncertainty
and error was established and verified.

To verify the new hypothesis, the mean absolute error (MAE) and mean standard
error (MSE) were obtained through prediction and correlation analyses, with uncertainty
additionally performed. As a result of the experiment, the MAE had a positive correlation,
with an uncertainty of 34.3% and a p-value of 0.003. The MSE had a positive correlation,
with an uncertainty of 31.3% and a p-value of 0.000, confirming that the MAE and the MSE
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had a positive correlation with uncertainty within the set significance level of 0.05. This
means that the greater the uncertainty, the higher the probability that the value predicted
by the model differs from the actual value.

Based on this experiment, the uncertainty was correlated with the error. In an actual
scenario the predicted value can be inferred; however, the actual value is unknown until
a corresponding event occurs. Thus, the performance and predicted value of the model
must be used in decision making. However, the use of a specific model will allow uncer-
tainty, which involves a positive correlation between the error and difference between the
actual and predicted values, to be identified before the actual value, which may help in
decision making.

However, to incorporate this into decision making, it is crucial to have a clear un-
derstanding of the level of uncertainty. To simplify decision making, it was imperative
to ascertain whether the uncertainty approximated a normal distribution. Hence, the
Kolmogorov–Smirnov test was performed. The outcome of this test indicated a test statistic
of 0.365 and a p-value of 0.001, confirming that the distribution of uncertainty, with a 99%
confidence level, adhered to a normal distribution.

For additional tests, the skewness and kurtosis of uncertainty for a total of 8592 h were
analyzed for 132 points. As a result of the analysis, the skewness was 1.53 and the kurtosis
was 5.66. Uncertainty follows a normal distribution because the criterion for skewness does
not exceed an absolute value of 3, and kurtosis does not exceed an absolute value of 8–10.
Based on the test, the reference point according to the magnitude of the uncertainty can
be presented through the mean and standard deviation of the uncertainty. Based on the
average of the uncertainties, the values of the first standard deviation range were set to be
normal uncertainty, low and high for ±2 standard deviations, and very low and very high
for ±3 standard deviations, which were determined as outliers. Therefore, it is possible
to determine the reliability of the predicted values and use them as indicators to reflect
uncertainty in decision making.

4. Discussion

In this study, uncertainty prediction using the MCDO was employed for traffic pre-
diction. Whereas previous studies mainly aimed to enhance predictive performance, this
research introduced the M-TCN model, which infers uncertainty. This approach aligns with
the growing prominence of explainable AI and increasing significance of model reliability.
The uncertainty values predicted by this model serve as a tool to gauge the trustworthiness
of the prediction, and a positive correlation between the uncertainty and error was con-
firmed through correlation analysis. Furthermore, this research proposes a benchmark that
facilitates the application of predicted uncertainty values in real-world decision making,
thereby enhancing the efficacy of uncertainty considerations.

In reflecting on the methodologies and results of this research, it is imperative to ac-
knowledge several inherent limitations that might shape the interpretation and application
of our findings. First, the analytical framework of our study was anchored predominantly
to hourly traffic flow data. This granularity, while providing a broad overview, might not
capture the intricacies and fluctuations that are evident in shorter timeframes. Delving into
more detailed datasets, specifically those segmented by intervals such as 1 min or 10 min
durations, could offer a richer and more nuanced understanding of traffic patterns. Second,
our predictive model, in its current iteration, was heavily reliant on a singular variable:
traffic flow. While this variable is central to our research focus, the multifaceted nature
of traffic dynamics suggests that a broader spectrum of determinants can be considered.
Factors such as weather conditions and specific days of the week may further refine our
understanding and predictions of traffic flow. Finally, the data sources used in this study
were primarily confined to traffic flow metrics.
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5. Conclusions

In this study, the M-TCN model is proposed to estimate the predicted values of traffic
flow measurement and the uncertainty of the predicted values in traffic flow prediction.
The M-TCN is a combination of the MCDO and the TCN, which is slightly different from
the existing model. The experiment conducted in this study was divided into three stages,
and the results were as follows. First, even if the MCDO is applied to a traffic model, it
does not necessarily degrade the performance of the existing model. For instance, cases of
increased performance have also been recorded. Second, a correlation analysis between the
error and uncertainty was conducted based on the results obtained by applying the MCDO
to the comparison group model and analyzing the uncertainty and RMSE. Consequently,
a positive correlation between error and uncertainty was confirmed. Finally, a normality
test for uncertainty was conducted to present a benchmark for uncertainty, so that it can be
used in decision making. As a result of the test, it was found that uncertainty followed a
normal distribution, and a benchmark was set for each standard deviation from ±1 to 3,
indicating that uncertainty could be used for decision making. Based on the above results,
this study has the following implications.

First, implementing the MCDO does not necessarily degrade the performance of the
existing M-TCN model. According to the study results, there was no significant difference
in the performance between the models with and without the MCDO and, in some cases,
the performance increased. As shown in Table 3, the prediction performance of the model
shows a difference of approximately 1% in the RMSE with Lag1, and the performance
varies when the MCDO is implemented. This suggests that uncertainty can be inferred by
adjusting only part of the existing AI model, without compromising its overall performance.
Such uncertainty can be crucial in scenarios where the reliability of real-time predictions
is paramount, as it indicates the trustworthiness of the model beyond simply providing
an outcome.

Second, numerous studies have emphasized the importance of considering uncertainty
during the decision-making process and post-prediction. There is a correlation between
the error and the uncertainty value, signifying the difference between the predicted and
actual values of the model. It was verified how the uncertainty derived from the M-TCN
model correlates with the actual outcome, allowing its incorporation into the decision-
making phase. In real-world scenarios, the immediate acquisition of the actual value is not
always feasible; hence, the error in the predicted value remains undetermined. However,
experiments have confirmed a positive correlation between uncertainty and error. This
suggests that the reliability of the predicted value can be ascertained even when the actual
data are not yet available. Decisions can be based on predicted values with high certainty.
If the predicted reliability is low, decisions should be approached with caution, considering
various possible outcomes, without placing undue trust in the predicted value.

Finally, to incorporate traffic flow uncertainty into the decision-making processes,
reference points were introduced to determine the acceptable level of uncertainty for
decision makers. Although predicting uncertainty is essential for practical applications,
establishing standards for the ideal response based on the magnitude of the predicted
uncertainty is equally critical. This study verified that uncertainty adheres to a normal
distribution, as determined by a normality test. Subsequently, a benchmark based on
standard deviation was proposed.

In conclusion, our study delved into traffic flow dynamics using deep learning, focus-
ing on both point and interval predictions. Although the hourly traffic data is primarily
used, the results highlight the potential for more detailed insights in future research. This
narrow focus, while intentional for the purpose of this research, hints at the potential bene-
fits of a more expansive analytical approach in future research. By integrating additional
data sources, such as real-time feedback from traffic signalling systems and analytics from
traffic CCTV systems, future research could achieve a more comprehensive understanding
of traffic dynamics.
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The shift from point to interval predictions in deep learning is evident, and our
research provides valuable insights into this evolving area. Furthermore, our findings have
implications beyond the technical aspects. They can influence broader areas, such as the
social sciences and traffic policy making. The traffic flow prediction model in this study
can be used to establish a traffic demand management plan for sustainable transportation
through accurate and reliable prediction, and can contribute to reducing traffic congestion.
It will also contribute to improving overall social mobility, reducing energy consumption,
and reducing air pollution emissions. As demonstrated in this study, the use of AI can
offer new ways to shape traffic policies and decisions. This will lay the groundwork for
subsequent research, fostering a more profound comprehension of the nexus between AI,
traffic trends, and policy formulation.
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