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Abstract: The world energy sector is experiencing many challenges, such as maintaining a demand–
supply balance with continuous increases in demand, reliability issues, and environmental concerns.
Distributed energy resources (DERs) that use renewable energy sources (RESs) have become more
prevalent due to environmental challenges and the depletion of fossil fuel reserves. An increased
penetration of RESs in a microgrid system facilitates the establishment of a local independent system.
However, these systems, due to the uncertainties of RESs, still encounter major issues, like increased
operating costs or operating constraint violations, optimal power management, etc. To solve these
issues, this paper proposes a stochastic programming model to minimize the total operating cost and
emissions and improve the operational reliability with the help of a generalized normal distribution
optimization (GNDO). A day-ahead demand response is scheduled, aiming to shift loads to enhance
RES utilization efficiency. Demand-side management (DSM) with RESs is utilized, and battery
energy storage systems in low-voltage and medium-voltage microgrids are shown. Mathematical
formulations of each element in the microgrids were performed. Optimal and consumer-friendly
solutions were found for all the cases. Environmental concerns based on the amount of harmful
emissions were also analyzed. The importance of demand response is demonstrated vividly. The aim
is to optimize energy consumption and achieve optimum cost of operation via DSM, considering
several security constraints. A comparative analysis of operating costs, emission values, and the
voltage deviation was carried out to prove and justify their potential to solve the optimal scheduling
and power flow problem in AC/DC microgrids.

Keywords: battery energy storage systems; demand-side management; generalized normal distribution
optimization; microgrid; solar energy; wind energy

1. Introduction

Demand-side management (DSM) represents a set of widely used strategies for sat-
isfying the electricity demand of consumers such that their cost of energy consumption
is minimized. The demand of the consumers under a DSM can be scheduled given time-
varying electricity prices (e.g., day-ahead market prices). This DSM approach will be
referred to as a demand response (DR) program. Alternatively, the demand of the con-
sumers under a DSM can be satisfied by combining the power bought from the grid and the
power locally produced/stored by the consumers [1]. This DSM approach will be referred
to as a renewable energy sources (RESs) deployment problem. In this paper, we develop
and analyze novel DSM strategies for residential and industrial owners.

In recent years, the issue of minimizing the cost of energy consumption for electricity
consumers has emerged as an important research topic. The strategies for reducing the
energy consumption cost for consumers can be broadly classified as demand response (DR)
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programs and the deployment of renewable energy sources (RESs). These strategies can be
collectively referred to as demand-side management (DSM) [2].

The present paper concentrates on the usage of DSM in various aspects, viz., in
residential, commercial, and industrial areas of low- and medium-voltage MGs. The impact
of DR is evaluated under different conditions. The intelligent charging of BESSs is also
shown. An environmentally friendly and customer-comfort-centric analysis is presented.
All these evaluations were carried out using appropriate optimization algorithms, and the
capability of the algorithms has been validated.

1.1. Literature Review

Microgrid analysis is mainly focused on control and energy management strategies,
both in the islanding and grid-connected modes. The study also includes the integration of
generators, renewables, storage systems, and various loads, along with their uncertainties
and design modeling [2]. Energy management includes the optimal dispatch of energy,
scheduling, modeling, and their solving methods [3]. Meanwhile, the control problem
includes the voltage, frequency, and power as crucial variables [4]. In some cases, the impact
of the unique components of the grid is also investigated. In particular, for sustainable
microgrid implementation, the influence of BESSs was reviewed in a cost-effective and
efficient way. Also, various uncertainties have been considered, along with their analytical
and approximation techniques to observe the renewables’ impact on system control and
monitoring [5]. Thus, it has been observed that the development of the microgrid is
primarily influenced by the energy DSM, renewable energy penetration, and its integration
into the utility grid. In [6], a standalone microgrid was developed economically with
renewable and energy storage systems for remote communities. However, the islanding
system’s development issues and challenges were analyzed in regard to the utility power
grid [7], whereas with residential loads, a demand response strategy was implemented with
a grid-connected microgrid [8]. The inclusion of renewable energy sources (RESs), BESSs,
demand-side management (DSM), and SPVs are addressed with economic assessment in
these initiatives.

DSM is a powerful tool to facilitate the process of transforming traditional microgrids
(MGs) into green systems [9]. MGs, which are self-sufficient energy systems that serve
a small geographical area’s energy needs, are generally discussed in association with
renewable energy sources (RESs). DSM with MGs allows the grid managers to observe the
difference in the performance of conventional MGs to those powered by renewable energy.
It helps with the instability of RESs. DSM allows the grid managers to observe and carry out
the efficient utilization of RESs and an economic consumption of power by the consumers.
The inclusion of RESs helps in meeting growing power demand and reducing emissions,
which eventually make the system sustainable and environmentally friendly, respectively.
DSM promotes generation through distributed energy resources (DERs), as it facilitates the
avoidance of long-distance transport. Locally generated energy may be consumed by local
loads, immediately. DERs majorly include RESs, battery energy storage systems (BESSs),
and controllable loads, which benefit both electricity consumers and the electric utility
if the integration is properly engineered. BESSs help mitigate the volatility of RESs and
reduce additional stress on the grid. Industrial experts refer to DSM-coupled BESSs as the
bare bones of smart grids. Time-of-use pricing with storage helps in flattening the load
curve, while the strategic installation of BESSs saves significant costs for operators [10,11].

The deployment of AC/DC microgrids has become an emerging area of research.
Energy trading with locally generated power by consumers has been discussed in the
literature [12]. There has been tremendous support for the installation of PV units and BESS
units in several countries [13,14]. This helps consumers reduce their cost of energy con-
sumption. Residential consumers have opportunities to share their common rooftop areas
to install solar units and BESSs. Many works in the literature have focused on the problem
of energy trading (including demand scheduling) using PV generation (e.g., [15,16]). In
these works, it was assumed that PV generation was available. In other words, PV units
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were pre-installed at the consumer premises. The objective of energy sharing is to minimize
the cost incurred for buying power minus the revenue from selling locally generated/stored
power (referred to as the net cost) over an operating day. However, it is important to find
the optimal number of PV units and BESS units to be installed in order to satisfy the energy
requirements of the consumers and achieve annual cost savings for the consumers. In
other words, the real advantages of energy trading by the consumer will be realizable
only when the investment problem and the energy trading problem are jointly considered.
Hence, the combination of microgrid investments and energy-sharing options becomes an
important research topic. In recent years, few works have dealt with investments in PV
generation or BESSs for reducing the expected energy consumption costs incurred during
the investment period. The majority of the works have considered a single consumer’s
investment problem (e.g., building owner [17], microgrid operator [18]). Very few works
have considered the shared investment model combined with the energy trading problem
for multiple consumers based on only BS units [18,19].

A two-stage SMIP for determining the optimal capacities of the energy storage system
and fuel-based generation for an islanded microgrid was proposed in [19]. The operational
cost under different random scenarios was minimized based on the year of installation of
the BESS. Owing to binary variables in both stages, a new decomposition method was de-
veloped for finding a sub-optimal solution. A two-stage stochastic program was proposed
to design an energy hub consisting of energy storage, photovoltaic power, combined heat
and power generator, and various heat and electricity loads in [20]. In [21], a microgrid
operator determined the optimal capacities of renewable energy resources such as solar
power and wind power, and capacity of energy storage based on the predicted values of the
meteorological data. A two-period stochastic linear problem was proposed for this purpose
in [21]. In the first period, the investment decisions were found, whereas in the second pe-
riod, supply demand matching within the microgrid was performed. The operator bought
power from the grid whenever the harvested energy plus stored energy was insufficient in
real-time. Online DSM has been utilized in [22] to study the effects of uncertainties in MG
for DSM. A framework has been developed in [23] to control and optimize an MG with a
photovoltaic (PV) system, load, electrical vehicle (EV) charging stations, and a storage unit
while using model predictive control. For a non-deferrable load facility with the ability to
harvest and store renewable energy, a demand management strategy was suggested in [24].
In [25] have proposed a two-stage price-based DR strategy for the coordination of DG. The
model has been framed considering hourly operation, customer bills, and demand energy
quantity and voltage regulation to maximize customer benefits.

A DSM framework has been designed in [26] that acknowledges the interconnection
of smart users, non-controllable loads, energy, and comfort-based controllable loads, and
individual PEVs. In [27], the authors have modelled hybrid MG by utilizing the concept
that each home has to be equipped with more solar PVs than are required for normal
operation. In [28], the authors have introduced a DSM model specifically for rural areas.
Renewable energy’s inherent stochastic behavior and the difficulty in predicting electric
load have been tackled in [29] for the proposed DSM modelling. In [30], the authors have
analyzed different of DSM approaches to shift the AC devices optimally in the presence
of DC MG. In [31], the authors have proposed a feeble power handling scheme in hybrid
MG where AC and DC loads have been bifurcated and are supplied by utility and PV
along with a battery, respectively. Optimization algorithms provide a large premise for
solving several engineering problems. In [32], the authors used PSO for energy scheduling
of the IEEE 14-bus system in the form of virtual power plant which constitutes RESs
integrated MGs. In [33], compared several optimization algorithms such as binary PSO,
wind-driven optimization, GA, ant colony optimization, and bacterial foraging algorithm
while analyzing energy management systems for residential areas. In [34], the authors
used a hybrid of GA, PSO, and wind-driven optimization algorithms to design appliance
schedulers and energy management controllers. Robust optimization methods proposed
in [35–40] to solve practical engineering problems consider uncertainties.
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1.2. Research Gap and Scope

DSM (demand-side management) in a microgrid is considered for both the utility side
as well as the consumer’s side. Along with DSM, BESS is reviewed with renewable energy
sources in the literature. SPV and BESS application to home energy management as both
load and source are considered. In this paper, DSM is also considered along with renewable
energies in a microgrid environment. The major shortcomings are as follows; (i) Microgrid
energy management is much more focused on supply-side management. So, operational
constraints such as voltage and losses are taken as the primary objective. The load control is
to be performed from the utility side; (ii) Pricing schemes designed for system control rather
than customer feedback interpretation; (iii) BESS are mostly categorized in home loads, and
the charging scenario is considered. BESSs are to be analyzed in a microgrid environment;
(iv) Simultaneous coordination between RESs and BESSs is missing. The impact of one on
another is not addressed yet; (v) Many researchers are focused on the one-way direction
optimization of solar PV. PV can be addressed to mitigate the effect of BESS injection.
However, the reverse is not quantified; (vi) Home load energy management is only focused
on consumption pattern. A gap is established between home and grid interaction.

The following scope of research has been framed as objectives of the research work:
(i) A bidirectional mode of operation is established for DSM. The demand response is
designed for valley filling and peak clipping methods. BESS with solar PV is used to
fulfil the above scenarios for maintaining the flat demand profile. The effect of SPVs inclu-
sion conditions along with the BESSs is considered simultaneously in load management.
(ii) Primarily, the impression of RESs integrations into the microgrid system is analyzed
with proper BESS load modeling in order to incorporate the research objective. The SPVs
and BESSs are considered, and their impact on the grid is analyzed with different levels
of penetration. The integration is also characterized by its position in the grid. The use
of photo-voltaic power generation is also coordinated to integrate BESSs that retain the
stability of the system with a minimum incurred cost. (iii) A metaheuristic search approach
has been adopted for DSM setup to schedule smart appliances with minimum energy
bills by utilizing the bidirectional energy flow of BESS. This study mainly includes two
issues: (a) a framework is proposed in a decentralized manner to schedule the loads using
DSM, and (ii) the population-based optimization algorithm is applied to find optimized
perdurance. The method with a reduced bill for the customer along with their comfort and
BESS integration in a microgrid is also implemented in this case.

1.3. Contributions

The futuristic needs of MGs and their demand management have inspired the author
to explore opportunities for potential consumers. The motivation behind the proposed work
is to analyze the operation of an interconnected AC/DC microgrid when DGs are connected
to it, and when DR is applied to the same, DR helps in covering up the uncertainties of PV.
The motive is to provide a cost-effective solution to the consumers through the usage of the
generalized normal distribution optimization (GNDO) algorithm. The GNDO algorithm
has been chosen as it is robust, simpler to implement and does not require any specific
tuning parameters, unlike contemporary algorithms. The prime contribution of the paper
is to introduce an intelligent solution for the DSM problem for different modes of MGs
through metaheuristic optimization techniques. The specific contributions of the present
research work are as follows:

• This paper provides the complete scheduling of the grid-connected AC/DC microgrid.
The response has been evaluated after imposing DR on the system. This is to assess the
potential of the generalized normal distribution optimization (GNDO) algorithm in the
process of determining the optimal operating cost of AC/DC MG. The GNDO has been
used for the first time for the chosen power system-related optimization problem, as it
is the most recent optimization algorithm and does not require any tuning parameter.
A comparative hourly cost analysis has been conducted for the test system between
contemporary algorithms and GNDO. Generation and load demand balance and
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active power constraints have been maintained for the AC/DC MG test system. A
reduction in the amount of CO2, SO2, and NOx emissions has been presented.

• Unlike the existing works, the proposed shared RES investment problem deals with
the sharing of PV units. Further, the proposed shared investment problem also deals
with the sharing of BESS units. The proposed problem optimally determines the
virtual share of every residential consumer in the co-owned BESS units and PV units.

• This paper demonstrates a day-ahead DSM through the use of the load shifting
technique and presents the novel GNDO algorithm, as an efficient tool for optimizing
cost in the context of demand management on SG framework. The efficacy of the
proposed GNDO algorithm is demonstrated in comparison to contemporaries for the
present application.

The framework of this paper is carried forward as follows: grid-connected AC/DC
microgrid is presents in Section 2; modelling of DSM is reported in Section 3; the formu-
lation of problems with security constraints are presented in Section 4 with a subsection
for the different cost model of power–generating units, the renewable uncertainties cost
model of solar, and BESS; the objective functions and several types of security constraints
for the proposed model are reported in Section 4; the optimization algorithm GNDO and
its implementation process is described in Section 5; the simulation results of study systems
with different cases and findings are discussed in Section 6; and finally, concluding remarks
are presented in Section 7.

2. AC/DC Microgrid System

The AC/DC MG system shown in Figure 1 consists of two AC and one DC intercon-
nected microgrids and is connected to a 69 KV grid sub-system through PCC, which is
similar to the IEEE 14-bus distribution system. The first AC microgrid (AC MG 1) consists
of a 3 MW diesel generator (DE-SG) which is coupled through 13.8 KV/2.4 KV, 3.5 MVA
transformer to the system. The second AC microgrid (AC MG 2) consists of a 725 KW solar
system (SPV-2) and a battery energy storage system1 (BESS-2). SPV-2 is coupled through a
480 V/250 V grid converter and 250 VV/13.8 KV, 1 MVA transformer to the system. BESS-
2 (3 nickel-metal-hydride, 650 V) is connected through a bi-directional converter and a
900 VV/220 V transformer to the system. The DC microgrid (DC MG) consists of a 10.5 KW
solar system (SPV-1) and a battery energy storage system1 (BESS-1). SPV-1 is coupled
through a 150 V/300 V grid converter and 220 VV/1150 V, 15 KVA transformer to the
system. BESS-1 (lithium-ion battery, 120 V) is connected through a bi-directional converter
to the system. The operational frequency of the system is 60 Hz. The whole system consists
of 7 transformers, 14 power lines, 14 AC buses (some buses are low voltage, and some buses
are medium voltage, as shown in Figure 1), and 1 DC bus. The AC/DC MG is designed
according to [41–43]. The line data and load data are given in Tables 1 and 2, respectively.

Table 1. Line data of AC/DC microgrid.

Line No. R(Ω) X(Ω) Length (km)

@1 0.0297 0.016335 0.15
@2 0.0396 0.02178 0.2
@3 0.0297 0.016335 0.15
@4 0.0792 0.04356 0.4
@5 0.0792 0.04356 0.4
@6 0.0792 0.04356 0.4
@7 0.0198 0.01089 0.1
@8 0.788 0.2336 2
@9 2.364 0.7008 6
@10 2.364 0.7008 6
@11 1.182 0.3504 3
@12 2.364 0.7008 6
@13 1.182 0.3504 3
@14 0.788 0.2336 2
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Figure 1. AC/DC microgrid system.

Table 2. Load data of AC/DC microgrid [35].

Bus No. Load High Load (kVA) Low Load (kVA) Power Factor

<#2> PL − 2 40 12 0.9
<#3> PL − 3 30 9 0.85
<#4> PL − 4 50 15 0.9
<#10> PL − 10 320 96 1
<#11> PL − 11 800 240 0.8
<#12> PL − 12 400 120 0.8
<#13> PL − 13 800 240 0.8
<#15> PL − 15 1600 480 0.8
<DC> PL − DC 2 0.6 0.9
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2.1. Battery Energy Storage System

It is difficult for renewable energy to meet the consistent load demand because its
output reacts slowly and has a limited duration and availability. By adding a storage device,
a hybrid energy system can become more efficient and capable. In an AC/DC microgrid
system, excess power produced by the systems is stored in the battery, which can be used
when the systems are not producing energy. When an MG system’s power generation is
insufficient, battery energy is used to support energy consumption.

In the case of renewable energy, the charging phenomena of the batteries require
more energy generation than the daily energy requirement. For this study, nickel metal
hydride (NMH) and lithium-ion batteries were selected since they are well known for their
suitability for storage of renewable energy resources. Their battery storage has a voltage
rating of 650V and 120V DC and a capacity rating of 1.5 and 800 Ah. Depending on the
type of battery storage, their rated efficiency values are between 20% and 80% [44]. The
BESS data are given in Table 3. The charging and discharging operation of the NMH and
Li-IO batteries can be represented [45] as follows

EC,NMH = E0 − p
(

Q
|Q∗| − 0.1Q

)
î− p

(
Q

Q−Q∗

)
Q∗ + et; î < 0 (1)

EDC,NMH = E0 − p
(

Q
Q−Q∗

)
î− p

(
Q

Q−Q∗

)
Q∗ + et; î > 0 (2)

EC,LI−IO = E0 − p
(

Q
|Q∗| − 0.1Q

)
î− p

(
Q

Q−Q∗

)
Q∗ + Ae(−Bit); î < 0 (3)

EDC,LI−IO = E0 − p
(

Q
Q−Q∗

)
î− p

(
Q

Q−Q∗

)
Q∗ + Ae(−Bit); î > 0 (4)

Table 3. BESS data.

Unit No. of Battery Initial SOC (%) Rated Capacity (Ah) Nominal Voltage (V)

BESS-1 1 80 800 120
BESS-2 3 80 1.5 650

Here, EC,NMH & EDC,NMH indicate the charging and discharging of nickel metal hydride
batteries, respectively; EC,LI−IO & EDC,LI−IO indicate the charging and discharging of lithium-
ion batteries, respectively; E0 is the constant voltage; p is the polarization constant (Ah−1);
Q is the highest rated capacity (Ah); Q∗ is the taken-out capacity (Ah); î is the filtered small-
frequency current (A); A&B are the exponential voltage (V) and capacity (Ah)−1.

2.2. Diesel Generator

The diesel generator is used as a backup unit to fulfil the load demand when an
AC/DC microgrid system or battery storage device’s power output cannot meet the load
requirement. A diesel generator’s size should be determined primarily by its peak load
demand. The rated capacity of DE-SG is 3 MW. The generator capacity is calculated by
multiplying the maximum demand by 10% (maximum demand plus 10%). A DE-SG plays
a critical role in the setup and operation of the AC/DC microgrid system. While analyzing
the power production of AC/DC microgrid system systems, the duty factor is one of the
most important factors to be considered [46]. The aggregate of fuel consumed by the DE-SG
relates to its output power at time intervals [47] and can be represented as follows

DE f (t) = xDEPDE(t) + yDEPDE,R (5)

Here, DE f is the fuel consumption hourly of the DE-SG; xDE and yDE are the coeffi-
cients; and PDE,R is the rated power of DE-SG.
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2.3. Solar PV System

Solar PV systems generate electricity from sunlight by using the photovoltaic effect.
When semiconducting materials are exposed to light, they generate voltage and current.
Electrical characteristics of solar cells alter in response to light, and this property of solar
cells has been exploited for real-world applications. Depending on the desired value of
voltage/current, series or parallel connections are made between the panels. PV cells are
composed of polycrystalline or monocrystalline silicon. These are commercially available
as solar modules or solar panels, which are basically groups of solar cells crammed into a
metal frame. In a PV system, the solar panel receives sunlight and converts incident photons
into electrical energy. As PV is an unregulated dc power source, DC-to-AC conversion
in required for usage of power in day-to-day applications. Thus, solar inverter becomes
an integral part of the system. The maximum power point technique tracks and captures
the maximum energy possible. This work uses solar photovoltaics for hybrid energy
production. Therefore, the mathematical modelling of the solar PV component becomes
more relevant. The characteristics data of the considered polycrystalline SPV array are
shown in Table 4. The fundamental cell temperature and irradiance dependent equation
are used to calculate the output power of a PV generator. The SPV system’s power output
PSPV can be represented as follows [48,49]

PSPV = PSPV,R fSPV

(
G

Gre f

)[
1 + 0.001 ∗ αp

(
θcell − θcell,re f

)]
(6)

Table 4. Solar energy system parameters and PDF parameters.

Array of
Solar Unit

Current at
MPPT
(Amp)

Maximum
Power (W)

Open
Circuit
Voltage
(V)

Short-
Circuit
Current
(Amp)

Voltage
at MPPT
(V)

ZC
SPV(
w/m2

) ZSt
SPV(
w/m2

) Pmax
SPV,k

(KW)
Pmin

SPV,k
(KW)

Log-Normal
PDF Cost Coefficients

∂ σ ζSPV,k CUE
SPV,k COE

SPV,k

SPV-1
(42 modules) 8.59 251 37.6 8.59 30.6 180 800 10.5 0 5.2 0.6 1.70 1.65 3

SPV-2
(1750 modules) 5.59 414.9 85.4 6.11 71.9 185 1000 725 0 5.1 0.6 1.70 1.65 3

Here, G represents the irradiation, and α indicates the temperature coefficient. The
solar PV system (SPV-1 and SPV-2) data are given in Table 4.

3. Demand-Side Management Modelling

For microgrid consumers, the daily electricity rates are scheduled one day in advance.
Consumers are anticipated to alter their load demand in accordance with the pricing,
following the price-elastic demand attributes, specified in these electricity costs. The
equation that accounts for the responding load demand PD to switching power prices Pe

r
is [50].

PD = φ× Pe
r (7)

Here, φ is constant and using historic load information, and an individual may deter-
mine the price elasticity of load demand (e). After demand response implementation, the
anticipated actual and reactive energy use of loads can be calculated as follows

_
P

DP

i,t =

[
T

∑
t=1

J

∑
j=1

γj,tR, j

]
_
P

D

i,t (8)

_
Q

DP

i,t =

[
T

∑
t=1

J

∑
j=1

γj,tR, j

]
_
Q

D

i,t (9)
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Here, load demand with demand response is expressed by
_
P

DP

i,t , &
_
Q

DP

i,t ; and without

demand response, it is
_
P

D

i,t, &
_
Q

D

i,t. Binary selection γj,t and the rate of DR on the cost status

R, j.
(
_•
)

are unpredictability factors. Power grid dynamics are positively impacted by the
introduction of battery energy storage systems (BESS) in combination with distributed gen-
eration (DG). BESS helps maintain the equilibrium between the irregular power generated
by renewable systems and the load demand that uses the power, supporting the stability of
the grid network. By supporting grid network operations like voltage stability control, load
shifting, load levelling, and peak shaving, BESS facilitates the demand-side management
(DSM) process. Customers who use BESS benefit from the ability to store electricity and
discharge it as needed. The quantity of extra electricity required from the grid eventually
decreases. SoC and DoD are two scientific abbreviations commonly used to describe the
BESS state. The DoD is computed with BESS power PBESS,k,t as follows

DoD =
(∣∣PBESS,k,t

∣∣t)/(Ecap,k

)
(10)

Here, Ecap,k is capacity of BESS. In [51], it is stated that the following might be used to
express the connection between the BESS cycle life and DoD.

L(DoD) = x× (DoD)−yexp(−z× DoD); x, y, z > 0 (11)

Here, x, y, z are factors and L(DoD) is BESS life cycle function. The cost of battery
degradation for the DoD is calculated as

CFder(DoD) =
CFBESS,k

∣∣PBESS,k,t
∣∣t

2L(DoD)EcapDoDηcηd
(12)

Here, CFBESS,k is BESS substitute price, ηc, ηd is efficiency of charging and discharging,
and CFder(DoD) is a function of DoD to compute the degradation price of BESS. The
conceptual framework for the overall BESS operating limitations is as follows:

c,k,tPc,k,min,t ≤ Pc,k,t ≤ c,k,tPc,k,max,t; t ∈ T, k ∈ NBESS (13)

d,k,tPd,k,min,t ≤ Pd,k,t ≤ d,k,tPd,k,max,t; t ∈ T, k ∈ NBESS (14)

c,k,t + d,k,t ≤ 1; t ∈ T, k ∈ NBESS (15)

PBESS,k,t = Pc,k,tηc −
(

Pd,k,t

ηd

)
; t ∈ T (16)

EBESS,k,t = EBESS,k,t−1 + PBESS,k,t; t ∈ T, k ∈ NBESS (17)

SoCBESS,down,t ≤
(
EBESS,t/Ecap,t

)
≤ SoCBESS,up,t; t ∈ T, k ∈ NBESS (18)

EBESS,k,24 = EBESS,k,o; k ∈ NBESS (19)

Here, the charge–discharge of the kth battery in time t judgment is indicated by c,k,t,
d,k,t; Pc,k,min,t, Pd,k,max,t, Pd,k,min,t, and Pc,k,max,t, are the min–max discharge–charge limits;
SoCBESS,down,t, SoCBESS,up,t are the lower and upper limits of state of charge; EBESS,k,o is the
starting stored charge in the kth BESS unit; EBESS,k,24 is the remnant power in the final time
interval; and EBESS,k,t denotes the BESS energy.

4. Problem Formulation

In the optimum problem solving situation, several state variables involving slack
bus power Pslack, load bus voltage VL,PQ, reactive power delivered by the DE-SG unit
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QDE−SG,NDE−SG , solar unit QSPV ,NSPV , BESS unit QBESS,NBESS , and line loading SL,T L are
identified as follows

ST =

[
Pslack, VL,1, . . . , VL,NPQ , QDE−SG,1, . . . , QDE−SG,NDE−SG , QSPV ,1, . . . ,
QSPV ,NSPV , QBESS,1, . . . , QBESS,NBESS ,SL,1, . . . ,SL,NT L

]
(20)

In addition, control variables involving DE-SG generator real power output PDE−SG,NDE−SG
excluding the slack bus, power of the solar PV units PSPV ,NSPV , power of the BESS units
PBESS,NBESS , generator bus voltage VG,PV , and transformer tap setting TNT are identified
as follows

CT =

[
PDE−SG,2, . . . PDE−SG,NDE−SG , PSPV ,1, . . . , PSPV ,NSPV ,
PBESS,1, . . . , PBESS,NBESS , VG,1, . . . , VG,NPV , T1, . . . , TNNT

]
(21)

Here, NPQ indicates the number of load buses, NPV indicates the generator buses,
NT L indicates the power lines, and NNT indicates the tap changing transformers in the
system. Also indicated are the total number of power-generating units of DE-SG units
NDE−SG , solar units NSPV , and BESS units NBESS .

The first objective of the work is to find the optimum total operational cost of AC/DC
MG. The work focuses on the grid-connected mode of operation of MGs, which is also
connected to DE-DG, SPV, and BESS for fulfilling the power demand. The objective function
examines the hourly demand management by scheduling the generated power from the
AC/DC MG power sources and utility optimally and economically. An objective function
to be minimized, i.e., the optimum total operational cost, which comprises the minimum
hourly generation cost and operational and maintenance (O&M) cost of power sources, can
be represented as follows

Obj,1 = min CF(P) =
T
∑
t=1

[
CFDE �SG(PDE �SG,k) + CFSPV (PSPV ,k)+
CFBESS (PBESS ,k) + CFGrid(PGrid)− CFrev(Prev)

]
(22)

Here, CF denotes the price or income of various microgrid components; PDE �SG,k,
PSPV ,k, PBESS ,k, PGrid, and Prev are the output power of DE-SG, SPV, BESS, Grid, and
reserve, respectively. The DE-SG cost function can be represented as follows

CFDE−SG(PDE �SG,k) =
NDE �SG

∑
k=1

(
ak + bkPDE �SG,k + ckP2

DE �SG,k

)
(23)

The renewable uncertainties cost model can be described by two cost models, the
underestimation model and the overestimation model. A surplus of solar generation
because of underestimation may create a problem relating to utility, like transmission line
crowding, which tends to solar generator power restriction during routine operation. As
per electricity market structure, solar farm operators are compensated, which is known
as the underestimated cost. The overestimation of solar costs occurs when the real wind-
generated energy is undersized with respect to the planned solar energy. As a consequence,
there is insufficient electricity to meet the load’s requirement. A spinning reserve can be
used to meet that need, whereas the underestimation of solar costs occurs when the real
solar-generated energy is oversized with respect to the scheduled or planned solar energy.
The system must be balanced to accommodate this additional energy. The cost functions
are formulated as

CFSPV (PSPV ,k) = DCF(PSPV ,k) + UCFUE
SPV ,k + OCFOE

SPV ,k(PSPV ,k) (24)

min DCF(PSPV ,k) =
NSPV

∑
k=1

[DCF(PSPV ,k)] =
NSPV

∑
k=1

[ζSPV ,k × PSPV ,k] (25)

UCFUE
SPV ,k(PSPV ,k) = CUE

SPV ,k

(
PA

SPV ,k − PS
SPV ,k

)
(26)
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UCFUE
SPV ,k(PSPV ,k) = CUE

SPV ,k

∫ PR
SPV ,k

PS
SPV ,k

(
PSPV ,k − PS

SPV ,k

)
SPV (PSPV ,k)dPSPV ,k (27)

OCFOE
SPV ,k(PSPV ,k) = COE

SPV ,k

(
PS

SPV ,k − PA
SPV ,k

)
(28)

OCFOE
SPV ,k(PSPV ,k) = COE

SPV ,k

∫ PR
SPV ,k

PS
SPV ,k

(
PS

SPV ,k − PSPV ,k

)
SPV (PSPV ,k)dPSPV ,k (29)

Here, DCF(PSPV ,k), PSPV ,k, and ζSPV ,k are described as the direct cost function of solar
PV, generated solar PV power, and uncertainties cost coefficient of the kth PV unit of solar
farm, respectively. UCFUE

SPV ,k(PSPV ,k) is the stated underestimation cost; OCFOE
SPV ,k(PSPV ,k)

is the stated overestimation cost of kth solar PV unit; CUE
SPV and COE

SPV define the uncertain-
ties cost factors; PS

SPV ,k, PSPV ,k, PR
SPV ,k and PA

SPV ,k define the scheduled, generated, rated,
and exciting PV power of the kth solar PV unit, respectively. Lognormal distribution ac-
curately describes the distribution of irradiance (ZSPV ). To model the solar irradiation
uncertainty, the Log-Normal probability distribution function is used which is function of
solar irradiation ZSPV can be indicated by following equation

SPV (ZSPV ,k) =

 1

ZSPV

√
2π ∗ ln

(
1 + ∂2

σ2

)
exp

−0.5


ln(ZSPV )− ln(σ) + 0.5ln

(
1 + ∂2

σ2

)
√

ln
(

1 + ∂2

σ2

)


2 ; {ZSPV > 0} (30)

Here, ∂ and σ represent the mean and standard deviation, respectively, which are
specified in Table 4. The solar PV output power PSPV ,k is described by the following
equation for irradiation ZSPV

PSPV ,k =


PR

SPV ,k ×
(ZSPV )

2

ZSt
SPV×ZC

SPV
;
(
0 < ZSPV < ZC

SPV
)

PR
SPV ,k

(
ZSPV
ZSt

SPV

)
;
(
ZSPV ≥ ZC

SPV
) (31)

Here, ZSt
SPV and PR

SPV ,k define the standard solar irradiation and rated power of the kth

solar PV unit, which are specified in Table 2. ZC
SPV is a certain irradiance select as 180 w/m2.

For the estimation of solar power probabilities, the following equation are used

Pr(PSPV ,k) =
0.5√

PR
SPV ,k×PSPV ,k

ZSt
SPV×ZC

SPV

PrZ

√√√√PSPV ,k × ZSt
SPV × ZC

SPV
PR

SPV ,k

+ PrZ

−
√√√√PSPV ,k × ZSt

SPV × ZC
SPV

PR
SPV ,k

 (32)

The BESS cost function can be represented as follows

CF(PBESS ) =
NBESS ,k

∑
k=1

[BBESS ,k × χBESS ,k × PBESS ,k] (33)

Here, χBESS ,k indicate the status of BESS; BBESS ,k is the bid for BESS.

T CF(PBESS ) =
CFBESS ,max

365

[
R(1 +R)LT

(1 +R)LT − 1
CFBESS + MCFBESS

]
(34)

The total cost per day of BESS is again an essential component of an optimum cost
function. Here, BESS cost has been formulated by the fact that the cost of BESS depends
on two essential elements. The first is the fixed cost of BESS, which includes the price of
small battery blocks for setting up BESS and is only taken into consideration once. Annual
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maintenance cost (MC) is the second element that varies directly with BESS’s size. The cost
function complies with the concepts mentioned above to calculate the total cost of BESS
(in USD/day). CFBESS ,max is the size of BESS, which is subsequently optimized during the
process, and LT is the lifetime, whileR is the rate of interest for financing the installed BESS.

The cost function of the utility grid can be represented as follows

CFGrid(PGrid) =
T

∑
t=1

[
CFbuy
Grid(t)Plac

Grid(t)− CFsell
Grid(t)Pexs

Grid(t)
]

(35)

The cost function of the reserve power can be represented as follows

CFrev(Prev) =
T

∑
t=1

I

∑
i=1

J

∑
j=1

[
CFr,j(t)PD

i,t γj,tR, jt
]

; γj,t ∈ {0, 1}∀j, t (36)

CFrev(Prev) ≤
T
∑
t=1

I
∑
i=1

[
CFr,0(t)PD

i,t t
]

(37)

T

∑
t=1

I

∑
i=1

J

∑
j=1

[
PLD

i,t γj,tR, jt
]
≥

T

∑
t=1

I

∑
i=1

[
PD

i,t t
]

(38)

Pi+1,t = Pi,t − Plat
i,t −

_
P

DP

i,t − Pch
i,t − Pdis

i,t +
_
P

SPV

i,t ; ∀i, t (39)

Qi+1,t = Qi,t −Qlat
i,t −

_
Q

DP
; ∀i, t (40)

Vi+1,t = Vi,t −
Ri,Pi,,t + XiQi,,t

V0
; ∀i, , t (41)

P1,t = Pde f
t − Psur

t ; Pde f
t ≥ 0; Psur

t ≥ 0; ∀t (42)

P2
i,t + Q2

i,t ≤ S2
i ; ∀i, t (43)

Here, CFbuy
Grid and CFsell

Grid denote the cost of buying/selling power from/to the utility
grid. CFr,0 is authentic cost for consumers without DSM. Plac

Grid and Pexs
Grid are the lack of and

excess power of AC/DC MG. Plat
i,t and Qlat

i,t are the real/reactive power transfer from bus i

through the lateral branch i. Pch
i,t and Pdis

i,t are the BESS power before DSM.
_
P denote the

power after DSM. Ri, and Xi are the line impedance (ohm). Vi,t is the bus voltage. The goal
is to reduce the overall AC/DC MG running costs. The entire O&M costs of DE-SG, SPV,
and BESS are calculated, accordingly, in Equation (30) through (31)–(42). The transaction
cost using the primary grid is calculated in Equation (43). Additionally, Equation (44),
with the demand response in place, computes the revenues from selling electricity to the
subscribers. Constraint (45) states that the binary nature of the demand response decision
variables, and Constraint (46) establishes a limit on the number of active demand response
levels per hour. Security limits (47) and (48) state that customers’ electricity usage cannot
be negatively influenced by the demand response and that electricity bills for consumers
after the implementation of the demand response cannot be higher than the initial bills. A
linearized distribution load flow model is shown in Equations (47)–(51).

Mathematically, an improved objective function can be stated as follows
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min Obj,2 =


fObj + λPslack

(
Pslack − Plim

slack

)2
+ λQNDE−SG

NDE−SG
∑

k=1

(
QDE−SG,k −Qlim

DE−SG,k

)2
+ λVPQ

NPQ
∑

k=1

(
VL,k −Vlim

L,k

)2
+

λQNSPV

NSPV
∑

k=1

(
QSPV ,k −Qlim

SPV ,k

)2
+ λQNBESS

NBESS

∑
k=1

(
QBESS,k −Qlim

BESS,k

)2
+ λQSL

NNT
∑

k=1

(
SL,k − S lim

L,k

)2

 (44)

xlim =

{
xmaxx > xmax

xminx < xmin (45)

Here, λPslack , λQNDE−SG
, λVPQ, λQNSPV

, λQNBESS
, & λQSL are penalty components, set

as 1000. xlim is the limiting value of control parameter, x. If x is greater than the upper limit,
xlim keeps to the upper limit, and if x is less than the lower limit, xlim keeps to the lower
limit point.

4.1. Total Emission Minimization Model

For the minimization of emissions, the objective function of the cost model inclusive
of tax is represented as follows

min Obj,2 = Obj,1 + [Cλ ∗ EF(PDE−SG,k)] (46)

4.2. Total Active Power Losses Minimization

Toward the objective of a reduction in the active power losses of the power system, an
objective function can be expressed as follows

min Obj,3 = PL =

[NDE−SG
∑
k=1

(PDE−SG,k) +
NBESS

∑
k=1

(PBESS,k) +
NSPV

∑
k=1

(PSPV ,k)

]
−
NPQ
∑
k=1

(PD,k) (47)

In the above relation, the total load demand is defined by PD and the loss of the
transmission loss by PL. The total number of buses in the system is denoted by Nbus. Gm
denotes the conductance of the line m connecting buses r & t; Vr & Vt are the voltage at bus
buses r & t respectively; Φrt is the angle between buses.

4.3. Voltage Deviation Minimization

The next objective is to consider the reduction in deviation in the voltage at PQ buses
from the reference voltage of 1 p.u. and can be represented as follows [52]

min Obj,4 = VD =
NPQ
∑

m=1

[
Vm −Vre f

m

]
(48)

Here, Vre f
m is the reference voltage at the mth load bus and is set at 1 p.u. generally.

4.4. Security Constraints

In this study, we considered several realistic security constraints for solving the
scheduling and optimal power flow problem. Equality limits usually consist of active
and reactive power balance equations at every node. These constraints equations are
given below.

∑ Pk = 0 ; and ∑ Qk = 0 (49)

Here Pk and Qk represent, respectively, the net real and imaginary power injections at
the kth node.

(a) Generators limits

The operating limits of the thermal generators may be stated as below

Pmin
DE−SG,k ≤ PDE−SG,k ≤ Pmax

DE−SG,k ∀k ∈ NDE−SG (50)
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Qmin
DE−SG,k ≤ QDE−SG,k ≤ Qmax

DE−SG,k ∀k ∈ NDE−SG (51)

Pmin
SPV ,k ≤ PSPV ,k ≤ Pmax

SPV ,k ∀k ∈ NSPV (52)

Qmin
SPV ,k ≤ QSPV ,k ≤ Qmax

SPV ,k ∀k ∈ NSPV (53)

Pmin
Grid ≤ PGrid ≤ Pmax

Grid (54)

Vmin
G,k ≤ VG,k ≤ Vmax

G,k ∀k ∈ NPV (55)

(b) Security limits

While minimizing objective function, it is necessary that the min and max limits of
the voltage magnitude at load buses should remain within certain limits. Furthermore,
the complex power in all transmission lines should not exceed their maximum limit. The
boundary conditions associated with these variables are mathematically formulated in the
following equations

Vmin
L,k ≤ VL,k ≤ Vmax

L,k ∀k ∈ NPQ (56)

SL,k ≤ Smax
L,k ∀k ∈ NT L (57)

where SL,k and Smax
L,k represent the apparent power flow limit of the transmission line, while

superscripts, namely min and max, are associated with the different variables’ corresponding
variable. Similarly, Vmin

L,k and Vmax
L,k represent the voltage values at load buses. An objective

function equation is a quadratic penalty term. In the function given below, penalty terms
represent the extent of the limit violation. The degree of the limit violation is positive when
limits are violated and zero when they are not violated [53].

(c) Constraints of DSM

To incorporate DSM into the problem, fresh demand has been created by shifting
demand from one hour to another according to the need of the hour. The latest demand
after the demand response, where the relocated demand is either connected

(
dVarup

i,t

)
or

deducted
(

dVardn
i,t

)
from the base load demand, can be expressed as follows

dPi,t = PDi,t + dVarup
i,t − dVardn

i,t (58)

The load demand response is executed such that the share of the demand detached
during the peak hours of the day should be identical to the share of the demand joined
during off-peak hours and can be expressed as follows

T

∑
t=1

dVarup
i,t =

T

∑
t=1

dVardn
i,t (59)

The part of the load demand to be attached or detached relies on the ratio of the
demand response and can be expressed as follows

0 ≤ dVarup
i,t ≤ Bup × PDi,t (60)

0 ≤ dVardn
i,t ≤ Bdn × PDi,t (61)

The load demand to be locomoted at someone’s chosen hour can be as undersized as
zero and as great as the ratio demand response of the load to be satisfied.

(d) Constraints of BESS

This section briefly discusses the limitations of storage devices for the proper func-
tioning during the specified time span. The following equations and constraints have been
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formulated for the BESS system. The calculation of the amount of energy stored during the
discharging and charging mode of the BESS can be expressed as follows

CBESS,t+1 = max
{(

CBESS,t − ∆tPBESS,t

ηd

)
, CBESS,min

}
; t = 1, 2, 3, . . . , T (62)

CBESS,t+1 = min{(CBESS,t − ∆tPBESS,tηc), CBESS,max}; t = 1, 2, 3, . . . , T (63)

The state of BESS (either charging or discharging) depends on the charge left in the
previous hour after contributing power according to the demand. The power discharged
or charged should be within the maximum and the minimum discharging/charging rates
(in kW) and can be represented as follows

RBESS ,t ≤ PBESS ,t ≤ RBESS ,t (64)

RBESS ,t = max
{(

PBESS ,min,
(CBESS ,t − CBESS ,max)

ηc∆t

)}
(65)

RBESS ,t = min
{(

PBESS ,max,
(CBESS ,t − CBESS ,min)ηd

∆t

)}
(66)

(e) Constraints of Operating Reserve

Operating reserve (OR) from SPV and BESS plays a significant role in the reliability
enhancement of the AC/DC MG. It is defined as the hourly sum of the reserved capacity of
power generation from BESS, SPV, and utility (when their status is ON). The maximum
response time of OR to be fed to the MG is 10 min has been formulated as follows

PSPV,k,maxuSPV ,k +RBESS ,tuBESS ,t + PGrid,max ≥ ORt + PD,t; t ∈ T (67)

The load demand is obtained via the combination of all generators of AC/DC micro-
grids; however, from an economic perspective, the contribution is decided by values of
the penalty cost. To validate the results of the minimum cost with the application of the
generalized normal distribution optimization (GNDO) algorithm in terms of the best factor
of the objective function obtained, result time, and total iterations, it is compared with the
results of similar research work.

5. GNDO Algorithm

Normal distribution is a probability function that can be completely described with
its mean and variance. Its wide adoption has to do with its simplicity in the formulation,
and basically, every sample distribution that we would encounter in most situations would
eventually follow a normal distribution if the sample size were large enough, and that is a
nice property when we are modeling the stochastic behavior [38]. The normal distribution
is a continuous probability distribution choosing a PDF specified by two parameters, µ and
σ. The Greek symbol µ is the mean (arithmetic average) of the normal distribution. The
Greek symbol σ is the standard deviation which measures the spread of the distribution.
The standard deviation is measured if the individual differences in the observations. Every
normal distribution is characterized by the following facts: Approximately 66% of the data
values in a normal distribution fall between (µ− 1σ) and (µ + 1σ). Approximately 95% of
the data values in a normal distribution fall between (µ− 2σ) and (µ + 2σ). Approximately
99.7% of the data values in a normal distribution fall between (µ− 3σ) and (µ + 3σ). A lot
of phenomena follow a similar distribution. That distribution turns out to be normal. So,
we can look at it as the familiar bell-shaped curve (although not all bell-shaped curves are
normal) but, for math and statistics, we need a formula. It turns out that the formula for
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the normal is rather messy [39]. For a random variable x, the probability density function
(PDF) of normal distribution is expressed as

(x, µ, σ) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
(68)

Figure 2 demonstrated the characteristics of the normal distribution of random
variables against several values of µ and σ. An effective and simple optimization ap-
proach based on normal distribution, termed generalized normal distribution optimization
(GNDO), is first proposed by Zhang 2020 [40], with special characteristics. Figure 3 demon-
strates the methodology and search strategies of the GNDO.

Figure 2. Normal distribution with varied µ and σ.

Figure 3. Framework and search strategies of GNDO.

GNDO has a very straightforward framework whose design consists of mainly two
statistics-transferring approaches: the first is local exploitation, and the second is global
exploration. In exploitation, a wide search is carried out to observe the greatest results
established thus far to assay whether there are superior solutions in an effort to speed up
convergence. Furthermore, in the generalized normal distribution model, local exploitation
is assisted through the present average position and the present optimum position, whereas
global exploration is associated with three randomly chosen agents.

In the local exploitation stage, an optimization model of the generalized normal
distribution is a correlation between a normal distribution and the allocation of populations
(individualistic) that can be formulated as

vt
j = µj + σj × w, {j ∈ N} (69)

Here, vt
j is the trail vector of the jth individualistic at time t. µj and σj define the

generalized average location and the standard variance. w is the penalty factor.

µj =
1
3

(
xt

j + xt
Best + M

)
(70)
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σj =

√
1
3

[(
xt

j − µ
)2

+
(

xt
Best − µ

)2
+ (M− µ)2

]
(71)

w =


(√
− log(λ1)

)
cos(2πλ2) ; i f a ≤ b(√

− log(λ1)
)

cos(2πλ2 + π); otherwise
(72)

Here, xt
Best is the current optimum position; a, b, λ1, & λ2 are random quantities [0, 1];

and M is the mean or average position of the present population that can be evaluated as

M =

N
∑

j=1

[
xt

j

]
N

(73)

The global exploration related to choosing three random populations can be de-
scribed as

vt
j = xt

j + β× (|λ3| × v1)︸ ︷︷ ︸
Locally information−sharing

+ (1− β)× (|λ4| × v2)︸ ︷︷ ︸
Globally information−sharing

(74)

Here, λ3 & λ4 specify two random parameters associated with normal distribution; β
is the modifying constant, which is a random number [0, 1]; v1 & v2 are the specified train
vectors that can be assessed using following equation

v1 =

{
xt

j − xt
k1 ;

(
xt

j

)
<
(
xt

k1

)
xt

k1 − xt
j ; otherwise

(75)

v2 =

{
xt

k2 − xt
k3 ;

(
xt

k2

)
<
(

xt
k3

)
xt

k3 − xt
k2 ; otherwise

(76)

Here, k1, k2, & k3 are three random numbers [1, N] that match k1 6= k2 6= k3 6= j.
In order to guarantee the viability of all generations in the solution area, the following
equation is utilized

vt
j,r =

{
vt

j,r ; min
(
xt

r
)
≤ vt

j,r ≤ max
(
xt

r
)

xt
best,r ; otherwise

(77)

Here, min
(

xt
r
)
, & max

(
xt

r
)

are the lowest and highest integer values associated with
the set of decision variables, which are assessed from the initial position to next position of
the vector vt

j,r using the decision variable r. xt
best,r refers to the value of the decision variable

r for the best present solution observed so far.
The execution of GNDO is related to the configured local exploitation and global

exploration approaches. These approaches have the aforementioned significance to GNDO,
which has an identical probability to be chosen. Therefore, similarly to other developed
optimization techniques such as GWO, TLBO, PSO, WOA, CO, etc., the GNDO population
is initialized using following equation

xt
jn = ln + λ5 × (un − ln) ; {j ∈ N, n ∈ D} (78)

Here, D defines the total numbers design variables; ln, & un are the lower and upper
boundary of the nth design variable; and λ5 is a random number [0, 1]. If a better solution
cannot be found in a local exploitation strategy or a global exploration approach, then it
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is necessary to make better solutions for the succeeding generation, and thus, a screening
technique is developed, which can be expressed as

xt+1
j =

{
vt

j ;
(

xt
j

)
>
(

vt
j

)
xt

j ; otherwise
(79)

Here, xt+1
j is the best solution, and t, t+ 1 indicate the current and next iteration value,

respectively. The execution of GNDO is explained in a flowchart [54], as demonstrated
in Figure 4.

Figure 4. The GNDO algorithm flowchart.
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6. Simulation Results Case Studies

In this section, to solve the proposed problems of Section 3, the GNDO algorithm
is tested on grid-connected AC/DC microgrid study systems which including solar PV
and BESS units. Figure 1 shows the study system. The simulations are run on a personal
computer with three processors running at 3.0 GHz, with 1 TB of storage and 8 GB of
RAM, and the algorithm is written in MATLAB. The population size is set at 50, the highest
iteration number is set at 500, and 30 runs have been fixed for the algorithm, accordingly.
Different cases are considered for the simulation study to verify the performance of the
suggested GNDO algorithm. Furthermore, to ensure a fair comparative analysis among
the achieved simulation solutions from the optimization methods, parameter settings of
competing algorithms are taken uniformly such as the maximum number of iterations Tmax,
population size N, etc. The case simulations are prescribed as follows

Case 1: Minimization optimum total operational cost without DSM.
Case 2: Minimization emissions without DSM.
Case 3: Minimization active power loss without DSM.
Case 4: Minimization of voltage deviation (VD) without DSM.
Case 5: Minimization optimum total operational cost with DSM.
Case 6: Minimization emissions with DSM.
Case 7: Minimization active power loss with DSM.
Case 8: Minimization of voltage deviation (VD) with DSM.

6.1. Implementation of GNDO Algorithm for DSM of Grid-Connected AC/DC MGs

The GNDO algorithm has been used to find the optimum total operational cost,
emissions, active power loss, and voltage deviation (VD) of a MG by optimally scheduling
the power generated by DGs and utility on an hourly basis. The following steps discuss
the process of implementing GNDO algorithm for the present work.

Step 1 All the essential input data (viz., power demand, upper and lower limits of
power from DE-SG, SPV, BESS and utility, hourly output power of DE-SG, SPV
and BESS, forecasted market price for an entire day, hourly bid for utility, and
bids for SPV, BESS, and DE-SG) have been defined. Set the initial parameters of
solution algorithm.

Step 2 The initial population (i.e., power generated by each element), adhering with
(50)–(55) and (62)–(68) has been initialized.

Step 3 Generated power has been scheduled such that all security constraints are satisfied.
Step 4 The cost of the generated power of utility and each DE-SG, SPV, and BESS unit

has been calculated using (22)–(37); emission is calculated using (46); total active
power loss is calculated using (47); and voltage deviation is calculated using (48).

Step 5 Establish xt+1
j and set the iteration itr = 1.

Step 6 The best solutions from the population for each element have been selected.
Obtained new results utilizing (77)–(79) and rectify the results.

Step 7 Check whether the updated values of the specific problem are within the operating
limits or not. The independent variable is considered as the least value, if it less
with respect to the minimum value, and make it equivalent to the highest value if
it is more than the most significant value.

Step 8 The best solution is found after updating of each solution for maximum number
of iterations.

Step 9 The total cost and emission values are calculated using the final power output val-
ues. Stop the algorithm if itr = maxitr. The final optimal solution will be reached.

The above steps have been repeated by updating the new demand after considering
a DR of 15% using (58)–(61). In this study, two scenarios of load demand, low load and
high load, are considered. The total power demand of AC/DC MG is 49,650 kWh and
88,960 kWh for a day with low-load and high-load scenarios. The load demand curve with
and without DSM for a day is presented in Figures 4 and 5 for low- and high-load scenarios,
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respectively. According to the load profiles presented in Figures 5 and 6, the final load
curve, i.e., after load shifting is similar to the necessary objective curve in each of the two
scenarios. It is worth noting that the distance between the target curve and the load curve
has been successfully minimized by the GNDO algorithm. The proposed GNDO algorithm
appears to be the most successful and efficient in providing a global optimal solution for
lowering utility bill costs. Table 5 shows the power limits for installed DGs, bidding cost (in
USD/kWh), operation and maintenance cost (in USD/kWh) and the start-up/shut-down
costs (in USD) of each DG. The cost involved in turning on and off the respective DG is
included in the start-up and shut-down costs, respectively.

Figure 5. DSM results pertaining to low-load scenario in AC/DC MG.

Figure 6. DSM results pertaining to high-load scenario in AC/DC MG.
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Table 5. Boundary values, emission, and bids factor of AC/DC MG units and utility.

AC/DC MG
Units

Power (KW) Cost Emission (lb/kW h)

min. max. Bidding
(USD/kW h)

O&M
(USD/kW h)

Start-Up/
Shut-Down (USD) CO2 SO2 NOX

SPV-1 0 10.5 2.584 0.2082 0 - - -
SPV-2 0 725 2.584 0.2082 0 - - -
DE-SG 500 3000 0.457 0.04476 0.96 1.96211 0.0397 0.89
BESS-1 −96 96 0.380 - - 0.02204 0.0002 0.001
BESS-2 −30 30 0.380 - - 0.03114 0.0012 0.002
Utility −1000 2000 - - - 2.09 0.0011 0.0046

A scheduling horizon of 24 h has been chosen with each interval of one hour. The
amount of CO2, SO2, and NOx emissions from different DGs and utilities is presented in
Table 5. After the utility, DE-SG’s emission is on the higher side followed by BESS. RESs, viz.
SPV, do not produce any kind of emissions. In this work, tax is selected as 10%. The analysis
has been performed on an hourly basis and the impact of 15% DR has been evaluated for
the grid-connected mode of AC/DC MG. Peak load is subsequently reduced as a result of
load shifting. As a result, it benefits both the utilities and the end users. Generators with
higher ratings are mostly expensive, and their requirement is high when demand is at its
peak. As after DSM, peak load decreases, the utility then realizes significant savings in
terms of generation scheduling. The capacity for reserve generation consequently rises.
The optimal simulation results for power flow in terms of minimization of operating cost,
emission, power loss, and voltage deviation in grid-connected AC/DC MG are reported in
Table 6 for cases 1 to 8 after DSM and before DSM. The test has been conducted to find the
minimum operating cost, emission, power loss, and voltage deviation, for two cases, viz.,
before and after applying DSM.

Table 6. Simulation results optimum power flow obtained via GNDO with and without DSM.

Control
Variables

Bus min. max. Before DSM After DSM
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

PDe−SG(KW) 8 500 3000 2645.42 2580.82 2610.24 2652.05 2701.64 2684.32 2692.45 2678.25
PSPV,1(KW) DC 0 10.5 9.24 8.94 9.54 9.34 9.81 9.48 9.56 9.89
PSPV,2(KW) 6 0 725 650.64 700.04 715.36 718.64 718.6 705.14 703.54 719.36
PBESS,1(KW) DC −96 96 15.65 55.44 38.61 75.55 82.45 78.36 56.97 82.64
PBESS,2(KW) 1 −30 30 6.55 23.65 18.22 19.37 23.56 26.55 19.83 17.54
V1(pu) 1 0.95 1.05 1.0447 1.0324 1.0314 1.0435 1.0475 1.0415 1.0428 1.0463
V6(pu) 6 0.95 1.05 1.0436 1.0385 1.0345 1.0448 1.0414 1.0409 1.0415 1.0405
V8(pu) 8 0.95 1.05 1.0406 1.0345 1.0322 1.0478 1.0399 1.0313 1.0325 1.0301
VDC(pu) DC 0.95 1.05 1.0305 1.0309 1.0455 1.0495 1.0301 1.0358 1.0472 1.0436
V2(pu) 2 0.95 1.05 1.0128 1.0192 1.0167 1.0255 1.0474 1.0333 1.0092 1.0082
V3(pu) 3 0.95 1.05 1.0299 1.0204 1.0205 1.0289 1.0487 1.0404 1.0244 1.0285
V4(pu) 4 0.95 1.05 0.9884 0.9814 0.9875 0.9836 0.9873 0.9873 0.9814 0.9802
V5(pu) 5 0.95 1.05 0.9954 0.9968 0.9974 0.9901 0.9934 0.9992 0.9954 0.9983
V7(pu) 7 0.95 1.05 0.9721 0.9745 0.9772 0.9705 0.9701 0.9707 0.9788 0.9795
V9(pu) 9 0.95 1.05 0.9635 0.9602 0.9604 0.9677 0.9641 0.9685 0.9625 0.9678
V10(pu) 10 0.95 1.05 1.0145 1.0148 1.0104 1.0165 1.0136 1.0193 1.01464 1.0147
V11(pu) 11 0.95 1.05 1.0254 1.0258 1.0251 1.0277 1.0285 1.0252 1.0278 1.0274
V12(pu) 12 0.95 1.05 0.9656 0.9647 0.9679 0.9693 0.9656 0.9654 0.9673 0.9637
V13(pu) 13 0.95 1.05 0.9861 0.9817 0.9813 0.9838 0.9833 0.9846 0.9871 0.9818
V14(pu) 14 0.95 1.05 0.9733 0.9746 0.9777 0.9748 0.9768 0.9722 0.9741 0.9711
T1(pu) − 0.9 1.1 1.0586 1.0187 1.098 1.0662 1.0164 1.0494 1.0999 1.0568
T2(pu) − 0.9 1.1 0.9378 0.9926 0.9111 0.9308 0.9 0.9844 0.9608 0.9354
T3(pu) − 0.9 1.1 0.9725 0.9752 0.9905 0.9713 0.9626 0.9983 0.9409 0.9715
TBS(pu) − 0.9 1.1 0.9682 0.9667 0.9693 0.9661 0.9538 0.9515 0.977 0.9803
TDE(pu) − 0.9 1.1 1.0124 1.0177 1.0145 1.0154 1.0172 1.0112 1.0135 1.0182
TDC1−2(pu) − 0.9 1.1 0.9836 0.9854 0.9874 0.9814 0.9811 0.9898 0.9856 0.9871
QDE−SG(MVAr) 8 −50 125 35.3254 −11.8425 −4.3058 −8.3256 −9.5428 −18.2546 10.5145 −2.5425
QSPV,1(MVAr) DC −12 18 4.6365 9.6548 5.2564 0.4582 14.2563 −15.5236 −5.2545 1.3656
QSPV,2(MVAr) 6 −20 20 11.0563 19.3659 14.6956 11.6392 10.6523 16.3568 2.2598 4.3258
QBESS,1(MVAr) DC −18 24 14.5689 21.2568 21.8936 21.0509 19.5306 20.2563 20.4562 21.8065
QBESS,2(MVAr) 1 −16 22 14.2583 14.3705 14.3659 14.8023 14.7361 14.9836 14.9208 14.7308

Total Operating Cost ($/h) 3.5654 4.3645 5.6542 4.3329 2.0441 3.6658 2.3699 2.1148

Emissions (lb/h) 4.6354 2.2254 3.3648 3.3114 1.6654 1.2544 1.6664 1.3532

Power Loss (KW) 0.3255 0.3625 0.3121 0.3623 0.2154 0.2021 0.1454 0.1935

VD(pи) 0.4285 0.4255 0.4275 0.2145 0.3524 0.2458 0.3588 0.1214
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The best result in the first case has been obtained via GNDO with an optimum cost of
3.5654 USD/h. In case 2, the best emission obtained is 2.2254 lb/h. In case 3, the minimum
power loss obtained is 0.3121 kW/h. In case 4, the minimum voltage deviation obtained is
0.2145. Case 1 to 4 results are without DSM. After applying DSM, the simulation results
are obtained in cases 5 to 8. In case 5, the best operating cost obtained is 2.0441 USD/h,
which is a 74.4240% reduction in cost. In case 6, the best emission obtained is 1.2544 lb/h,
which is 74.40% smaller than the emission obtained in case 2. In case 7, the optimum power
loss obtained is 0.1454 KW, which is a 114.6492% reduction in power loss. In case 8, the
minimum voltage deviation obtained is 0.1214 pu, which is a reduction of around 76.6886%.

The optimum hourly generation scheduling obtained via the GNDO algorithm of
AC/DC MG for high-load case and low-load case with DSM is listed in Tables 7 and 8,
respectively. The total operating cost (USD/day), emission (lb/day), and total power loss
(KW/day) are also reported in Tables 7 and 8 for both cases. The work here is compared
where Figures 7 and 8 depict the scheduled power for individual sources using GNDO,
for both cases, low and high load. The change in load curve may be observed comparing
both Figures 7 and 8 and accordingly the difference in participation of DGs may also be
observed. Figures 7 and 8 confirm that the power demand has been successfully met after
optimization. The shifting of load to the early hours of the day, viz., off-peak hours, is
evidently visible in Figure 8. Both figures establish the fact that when all the DGs contribute
to their best, the MG does not require power from the grid. On the contrary, the power may
be returned back to the utility during these hours. The values of the grid power underneath
the x-axis represent the amount of power sold to the utility. It implies that the amount of
power sold back to the grid is greater when DR has been applied, which concludes that
the pressure on the grid has reduced in the second case. The contribution of each element
majorly depends on their bids on an hourly basis. The accuracy and high convergence
mobility of GNDO may also be observed here too. The GNDO has reached the minimum
cost value in the fewest iterations for all cases. The simulation time of 74 s to 76 s for
different cases has been observed for GNDO. The comparative results are given in Table 9.

Figure 7. Hourly generation scheduling of the AC/DC MG according to cumulative output power
from SPV, BESS, DE-SG, and utility for high-load scenario.
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Table 7. Hourly demand management of the AC/DC MG according to cumulative output power
from different sources using GNDO algorithm for high load.

Hour
Generation (KW) Load

(KW)
Operating
Cost ($/h)

Power Loss
PL(KW)

Emission
(lb/h)PDE-SG PSPV ,1 PSPV ,2 PBESS ,1 PBESS ,2 PUtility-Grid

1 2590.02 0 0 −25.79 −5.57 291.34 2850 5.25 0.51 3.64
2 2610.84 0 0 5.44 −10.52 294.24 2900 5.34 0.53 4.86
3 2680.17 0 0 7.52 −12.61 444.92 3120 7.62 0.45 3.51
4 2800.48 0 0 12.62 2.11 384.79 3200 5.32 0.57 4.36
5 2750.61 0 0 18.48 1.51 569.4 3340 5.31 0.52 3.22
6 2610.08 0 0 30.75 2.35 856.82 3500 5.39 0.66 2.55
7 2540.64 2.54 510.19 −45.58 5.31 686.9 3700 5.07 0.58 2.69
8 2645.49 4.58 570.55 −48.05 7.24 680.19 3860 5.49 0.53 2.69
9 2645.82 8.94 700.04 15.44 3.65 516.11 3890 5.67 0.54 2.46
10 2645.07 9.54 709.68 10.53 −15.37 560.55 3920 4.65 0.42 2.38
11 2645.31 9.51 710.48 12.85 10.12 611.73 4000 4.38 0.33 2.68
12 2645.08 10.09 712.64 17.54 −20.39 485.04 3850 4.69 0.57 2.36
13 2645.82 9.64 720.48 30.25 12.34 331.47 3750 4.31 0.64 2.44
14 2645.74 9.52 680.68 −50.24 −21.58 555.88 3820 4.58 0.69 2.65
15 2645.04 9.38 610.5 −20.43 1.46 654.05 3900 4.36 0.86 2.77
16 2645.42 9.24 650.64 15.65 6.55 672.5 4000 4.85 0.45 2.97
17 2645.36 8.52 680.45 18.75 7.27 689.65 4050 4.39 0.57 2.02
18 2645.71 5.36 540.85 22.51 11.42 774.15 4000 5.36 0.54 2.07
19 2645.64 3.24 520.22 25.05 1.25 904.6 4100 5.77 0.55 2.33
20 2645.47 0 0 1.82 2.51 1500.2 4150 8.96 0.31 2.78
21 2645.58 0 0 0.57 −1.53 1555.38 4200 9.87 0.68 3.22
22 2645.87 0 0 20.58 −2.51 1446.06 4110 6.08 0.33 3.36
23 2645.32 0 0 −30.54 6.05 879.17 3500 5.12 0.45 3.35
24 2645.67 0 0 −45.72 8.94 641.11 3250 5.33 0.55 3.08

Total Operating Cost ($/day) 133.16
Total Power Loss PL(KW) 12.83
Emission (lb/day) 70.44

Table 8. Hourly demand management of the AC/DC MG according to cumulative output power
from different sources using GNDO algorithm for low load.

Hour
Generation (KW) Load

(KW)
Operating
Cost ($/h)

Power Loss
PL(KW)

Emission
(lb/h)PDE-SG PSPV ,1 PSPV ,2 PBESS ,1 PBESS ,2 PUt〉l〉t†-G∇〉d

1 2000.34 0 0 4.25 −2.64 −201.95 1800 2.36 0.35 1.33
2 2012.45 0 0 8.24 −6.47 −164.22 1850 2.35 0.15 1.82
3 2014.25 0 0 10.31 0.58 −125.14 1900 2.65 0.42 1.79
4 2001.21 0 0 11.2 1.25 −43.66 1970 3.36 0.35 1.33
5 1940.36 0 0 −32.55 2.14 90.05 2000 3.25 0.14 1.44
6 1972.31 0 0 −41.36 3.24 105.81 2040 3.38 0.42 1.39
7 1835.64 2.67 505.64 0.58 4.01 −248.54 2100 2.81 0.15 1.32
8 1844.67 5.11 610.47 8.24 2.35 −390.84 2080 2.65 0.21 1.77
9 1842.31 9.45 712.64 7.31 6.89 −438.6 2140 2.65 0.28 1.96
10 1874.36 10.44 714.68 9.15 4.55 −553.18 2060 2.31 0.29 1.89
11 1842.31 10.15 718.08 1.34 −10.35 −461.53 2100 2.45 0.31 1.05
12 1842.05 10.22 720.34 9.68 −11.36 −540.93 2030 2.15 0.33 1.33
13 1873.31 9.89 721.15 8.36 5.02 −507.73 2110 2.14 0.35 1.56
14 1745.68 9.78 702.99 15.64 6.41 −330.5 2150 2.46 0.13 1.46
15 1764.69 9.75 641.07 −7.36 5.67 −333.82 2080 2.44 0.12 1.42
16 1758.77 9.67 603.54 14.69 2.33 −249 2140 2.18 0.45 1.65
17 1712.08 8.47 601.55 17.69 3.45 −163.24 2180 2.67 0.16 1.01
18 1783.49 5.68 580.33 8.9 −8.6 −219.8 2150 3.16 0.42 1.39
19 1794.28 4.08 512.34 2.84 1.25 −194.79 2120 3.11 0.16 1.25
20 1800.25 0 0 3.06 2.51 374.18 2180 3.08 0.14 1.36
21 1802.45 0 0 4.61 2.55 400.39 2210 4.13 0.34 1.13
22 1842.36 0 0 5.87 2.08 299.69 2150 3.55 0.38 1.22
23 1945.33 0 0 −28.58 −6.54 189.79 2100 4.09 0.47 1.65
24 1901.09 0 0 −42.11 −10.32 161.34 2010 4.25 0.42 1.46

Total Operating Cost ($/day) 39.63
Total Power Loss PL(KW) 6.94
Emission (lb/day) 34.98

6.2. Results Discussions

The DSM problem has been modelled in accordance with the day-ahead load-shifting
mechanism. Consumer comforts have been taken into account when modelling. The GNDO
algorithm has been used to optimize the cost and peak load. The simulation results show
that DSM has been successfully implemented through the use of the GNDO algorithm.
The results in the form of a daily load profile illustrate that the distance between the final
load profile (viz., the load after shifting) and the objective load has been greatly reduced.
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The analysis of the results, which showed a decrease in peak load and utility costs for all
areas taken into account, proved the GNDO algorithm’s efficacy. Finally, by observing
the lowered energy bills and peak loads, it is possible to conclude that the use of DSM is
beneficial for both, i.e., smart grid users and power firms. The proposed optimization tool,
viz., the GNDO algorithm, has demonstrated its capability by offering quicker convergence
towards the global optima.

Figure 8. Hourly generation scheduling of the AC/DC MG by cumulative output power from SPV,
BESS, DE-SG, and utility for low-load scenario.

Table 9. Comparative results with and without DSM.

Algorithm
↓

Total Operating
Cost ($/h)

Solar
Cost
($/h)

BESS
Cost
($/h)

PL
(KW)

VD
(pи)

Simulation
Time (S)

Emission
(lb/h)

Best Average Worst

GNDO

Without DSM

Case 1 3.5654 4.3628 5.1647 0.3654 0.0478 0.3255 0.4285 78.5 4.6354
Case 2 4.3645 5.6514 6.5514 0.5678 0.0495 0.3625 0.4255 76.48 2.2254
Case 3 5.6542 6.3318 7.9689 0.4938 0.0547 0.3121 0.4275 77.32 3.3648
Case 4 4.3329 5.4145 6.3362 0.5547 0.0492 0.3623 0.2145 78 3.3114

With DSM

Case 5 2.0441 3.2015 4.2289 0.1047 0.0154 0.2154 0.3524 78.4 1.6654
Case 6 3.6658 4.0125 4.9652 0.2144 0.0274 0.2021 0.2458 77.8 1.2544
Case 7 2.3699 2.9894 3.9617 0.2018 0.0377 0.1454 0.3588 76.2 1.6664
Case 8 2.1148 3.6214 4.5157 0.2388 0.0215 0.1935 0.1214 76.4 1.3532

Reduction (%) 74.4240 248.9971 210.3896 114.6492 76.6886 77.4075

7. Concluding Remarks

The work presented in this paper deals with the inclusion of DGs in an AC/DC
MG in grid-connected mode. The impact of DSM has been examined for the test system.
Mathematical formulation of each DG as well as SPV and BESS has been performed, such
that they supply power within limits. The optimum operating cost, power loss, emissions,
and voltage deviation have been determined and compared for both cases, viz., with and
without DSM. The scenario with DSM has been validated to be economical by observing
the reduced cost of operation, power loss, emissions, and voltage deviation. From the
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analysis performed in the study, it may be deduced that power scheduling by DGs shares
the burden of utility and makes the system more cost-effective. DSM adds to it by helping
the consumers to use the power in the most economical way. DSM also helps to alleviate the
effect of uncertainties of SPV. Furthermore, the analysis has shown that the implementation
of DSM has reduced the emission level of harmful gases in the environment.

The load curve after load shifting and the objective load curves have been compared,
and the difference noticed was minimal. The GNDO algorithm worked excellently for this
problem formulation with a minimum run time of 1.5 s and has outperformed the algorithm
in the literature. The demand response (DR) in an AC/DC microgrid has been performed
with different distributed generation (DG) on board. The effect of BESS in the system has
been further evaluated. MG has been connected to the grid during the analysis. The cost
of running and maintaining DGs as well as BESS has been considered while formulating
the problem. The optimization process involved in this scenario has been performed via a
novel GNDO algorithm. The best result in the first case has been obtained via GNDO with
an optimum cost of 3.5654 USD/h. In case 2, the best emission is obtained is 2.2254 lb/h. In
case 3, the minimum power loss obtained is 0.3121 kW/h. In case 4, the minimum voltage
deviation obtained is 0.2145. Case 1 to 4 results are without DSM. After applying DSM, the
simulation results are obtained in cases 5 to 8. In case 5, the best operating cost obtained is
2.0441 USD/h, which is a 74.4240% reduction in cost. In case 6, the best emission obtained
is 1.2544 lb/h, which is 74.40% smaller than the emission obtained in case 2. In case 7, the
optimum power loss obtained is 0.1454 KW, which is a 114.6492% reduction in power loss.
In case 8, the minimum voltage deviation obtained is 0.1214 pu, which is a reduction of
around 76.6886%.

The work justifies that the use of SPV and BESS in AC/DC MG is cost-effective,
whereas the impact of DSM with BESS in the system is most economical. The observations
from the outcomes have also shown that the combination of DSM with BESS results in less
harmful emissions, which translates to an eco-friendlier environment. Effective usage of
the novel GNDO algorithm for the problem may also be concluded.

The work domain in which DSM may be analyzed is quite large. Although some
countries have started implementing some form of DSM, several challenges are still being
faced. For complete employment of the process, several steps have to be taken cumulatively
by the utilities, consumers, market, and government. In future, the work presented in
the paper may be extended further to see how the practical implementation challenges
(e.g., forecasting error, contingency, battery life cycle, etc.) of DSM may be analyzed
exclusively. Market-based modelling of DSM may further move the discussion into a
real-time framework. Uncertainty analysis for renewable resources and electric vehicles
adds to the scope of the paper.
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Abbreviation

AC Alternating current MG Microgrid
BESS Battery energy storage systems MW Mega watt
CO2 Carbon dioxide OCF Overestimation cost function
DC Direct current PDF Probability density function
DCF Direct cost function PSO Particle swarm optimization
DE Diesel generator RES Renewable energy sources
DG Distributed generation SoS State of charge
DoD Depth of discharge SPV Solar photovoltaic
DR Demand response TLBO Teaching–learning-based optimization
DSM Demand-side management UCF Underestimation cost function
GA Genetic algorithm VD Voltage deviation
GNDO Generalized normal distribution optimization WOA Whale optimization algorithm
GWO Grey wolf optimization
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