# Experimental Research on the Output Performance of Scroll Compressor for Micro Scale Compressed Air Energy Storage System

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Setup and Theoretical Equations

#### 2.1. Experimental Setup

#### 2.2. Theoretical Equations

_{out}and T

_{in}are the temperatures at the outlet and inlet of the scroll compressor, °C.

_{out}and p

_{in}are the pressures at the outlet and inlet of scroll compressor, respectively, bar.

_{r}is the torque, N·m.

_{b}is the voltage (V); I

_{b}is the current (A).

_{c}is the power consumption of the scroll compressor (W) and P

_{b}is the power output of the battery (W), respectively.

_{2}is defined as the enthalpy difference at the compressor inlet and outlet divided by the isentropic enthalpy value at the compressor outtake minus the enthalpy value at the compressor inlet.

_{2s}is the isentropic enthalpy of scroll compressor at the outtake, (kg/kJ).

## 3. Result and Discussion

## 4. Summary and Conclusions

- (1)
- The temperature difference and pressure ratio at the outlet and inlet of the scroll compressor show increasing changes with the increase in current, torque, and air tank pressure. The maximum temperature difference between the outlet and inlet of the scroll compressor is approximately 45 °C, and the maximum pressure ratio of the scroll compressor is approximately 7.4.
- (2)
- The power consumption of the scroll compressor shows an increasing trend with the increase in current, torque, and air tank pressure. The maximum power consumption of the scroll compressor (used in this paper) is approximately 3427 W.
- (3)
- The isentropic efficiency of a scroll compressor shows a decreasing trend with increasing current, torque, and air tank pressure. The maximum isentropic efficiency of scroll compressor is approximately 90.8%.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Nomenclature

p_{in} | intake pressure (bar) |

p_{out} | exhaust back pressure (bar) |

P_{c} | power consumption of scroll compressor (W) |

P_{b} | power output of battery (W) |

T_{r} | torque (N·m) |

n | rotating speed (r/min) |

Greek letters | |

ε | expansion ratio |

η | efficiency |

Acronyms | |

CAES | compressed air energy storage |

## References

- Yu, X.L.; Jiang, R.C.; Li, Z.; Qian, G.; Wang, B.Z.; Wang, L.; Huang, R. Synergistic improvement of melting rate and heat storage capacity by a rotation-based method for shell-and-tube latent thermal energy storage. Appl. Therm. Eng.
**2023**, 219, 119480. [Google Scholar] [CrossRef] - Wan, J.F.; Meng, T.; Li, J.L.; Liu, W. Energy storage salt cavern construction and evaluation technology. Adv. Geo-Energy Res.
**2023**, 9, 141–145. [Google Scholar] [CrossRef] - He, W.; Wang, J.H. Optimal selection of air expansion machine in Compressed Air Energy Storage: A review. Renew. Sustain. Energy Rev.
**2018**, 87, 77–95. [Google Scholar] [CrossRef] - Wan, M.Z.; Ji, W.D.; Wan, J.F.; He, Y.X.; Li, J.C.; Liu, W.; Jurado, M.J. Compressed air energy storage in salt caverns in China: Development and outlook. Adv. Geo-Energy Res.
**2023**, 9, 54–67. [Google Scholar] [CrossRef] - Wang, F.L.; Xiao, Z.X.; Liu, X.; Ren, J.W.; Xing, T.; Li, Z.; Li, X.Y.; Chen, Y.L. Strategic design of cellulose nanofibers@ zeolitic imidazolate frameworks derived mesoporous carbon-supported nanoscale CoFe
_{2}O_{4}/CoFe hybrid composition as trifunctional electrocatalyst for Zn-air battery and self-powered overall water-splitting. J. Power Sources**2022**, 521, 230925. [Google Scholar] [CrossRef] - Li, Q.C.; Han, Y.; Liu, X.; Ansari, U.; Cheng, Y.F.; Yan, C.L. Hydrate as a by-product in CO
_{2}leakage during the long-term sub-seabed sequestration and its role in preventing further leakage. Environ. Sci. Pollut. Res.**2022**, 29, 77737–77754. [Google Scholar] [CrossRef] - Li, Q.; Wang, F.L.; Wang, Y.L.; Forson, K.; Cao, L.L.; Zhang, C.L.; Zhou, C.; Zhao, B.; Chen, J.S. Experimental investigation on the high-pressure sand suspension and adsorption capacity of guar gum fracturing fluid in low-permeability shale reservoirs: Factor analysis and mechanism disclosure. Environ. Sci. Pollut. Res.
**2022**, 29, 53050–53062. [Google Scholar] [CrossRef] - Leszczyński, J.S.; Gryboś, D.; Markowski, J. Analysis of optimal expansion dynamics in a reciprocating drive for a micro-CAES production system. Appl. Energy
**2023**, 350, 121742. [Google Scholar] [CrossRef] - Chen, S.; Arabkoohsar, A.; Zhu, T.; Nielsen, M.P. Development of a micro-compressed air energy storage system model based on experiments. Energy
**2020**, 197, 117152. [Google Scholar] [CrossRef] - Mendoza, L.C.; Lemofouet, S.; Schiffmann, J. Testing and modelling of a novel oil-free co-rotating scroll machine with water injection. Appl. Energy
**2017**, 185, 201–213. [Google Scholar] [CrossRef] - Heidari, M.; Wasterlain, S.; Barrade, P.; Gallaire, F.; Rufer, A. Energetic Macroscopic Representation of a linear reciprocating compressor model. Int. J. Refrig.
**2015**, 52, 83–92. [Google Scholar] [CrossRef] - Khaljani, M.; Harrison, J.; Surplus, D.; Murphy, A.; Sapin, P.; Markiders, C.N.; Mahmoudi, Y. A combined experimental and modelling investigation of an overground compressed-air energy storage system with a reversible liquid-piston gas compressor/expander. Energy Convers. Manag.
**2021**, 245, 114536. [Google Scholar] [CrossRef] - Heidari, M.; Mortazavi, M.; Rufer, A. Design, modeling and experimental validation of a novel finned reciprocating compressor for Isothermal Compressed Air Energy Storage applications. Energy
**2017**, 140, 1252–1266. [Google Scholar] [CrossRef] - Ma, L.R.; Zhang, X.L.; Zhang, Z.; Wang, Y.Z.; Si, Y.; Chen, X.T.; Zhang, T.; Xue, X.D. Application of the multi-stage centrifugal compressor 1D loss model in the adiabatic compressed air energy storage. Energy Convers. Manag.
**2023**, 283, 116908. [Google Scholar] [CrossRef] - Cao, Z.; Zhou, S.; He, Y.; Xu, Y.; Chen, H.; Deng, J. Numerical study on adiabatic compressed air energy storage system with only one ejector alongside final stage compression. Appl. Therm. Eng.
**2022**, 216, 119071. [Google Scholar] [CrossRef] - Wang, B.L.; Liu, X.R.; Shi, W.X. Performance improvement of air source heat pump using gas-injected rotary compressor through port on blade. Int. J. Refrig.
**2017**, 73, 91–98. [Google Scholar] [CrossRef] - Emhardt, S.; Tian, G.H.; Chew, J. A review of scroll expander geometries and their performance. Appl. Therm. Eng.
**2018**, 141, 1020–1034. [Google Scholar] [CrossRef] - Liu, Z.; Li, Z.; Xie, D.S.; Wu, H.W. Unsteady characteristic and flow mechanism of a scroll compressor in small-scale compressed air energy storage system. J. Energy Storage
**2022**, 51, 104368. [Google Scholar] [CrossRef] - Zhao, R.C.; Li, W.H.; Zhuge, W.L. Unsteady characteristic and flow mechanism of a scroll compressor with novel discharge port for electric vehicle air conditioning. Int. J. Refrig.
**2020**, 118, 403–414. [Google Scholar] [CrossRef] - Luo, X.; Wang, J.H.; Sun, H.; Derby, J.W.; Mangan, S.J. Study of a new strategy for pneumatic actuator system energy efficiency improvement via the scroll expander technology. IEEE/ASME Trans. Mechatron.
**2012**, 18, 1508–1518. [Google Scholar] [CrossRef] - Rak, J.; Pietrowicz, S. Internal flow field and heat transfer investigation inside the working chamber of a scroll compressor. Energy
**2020**, 202, 117700. [Google Scholar] [CrossRef] - Wang, Y.-F.; Zhao, S.-D.; Guo, Y.; Yang, J.-L. Effects of process parameters on semi-solid squeeze casting performance of aluminum alloy scrolls for scroll compressors. China Foundry
**2020**, 17, 347–356. [Google Scholar] [CrossRef] - Ma, Z.W.; Bao, H.S.; Roskilly, A.P. Dynamic modelling and experimental validation of scroll expander for small scale power generation system. Appl. Energy
**2017**, 186, 262–281. [Google Scholar] [CrossRef] - Xu, Y.H.; Zhang, H.G.; Yang, F.B.; Tong, L.; Yang, Y.F.; Yan, D.; Wang, C.Y.; Ren, J.; Wu, Y.T. Experimental study on small power generation energy storage device based on pneumatic motor and compressed air. Energy Convers. Manag.
**2021**, 234, 113949. [Google Scholar] [CrossRef]

**Figure 6.**Effect of current, torque, and air tank pressure on the temperature difference of scroll compressor.

**Figure 7.**Effect of current, torque, and air tank pressure on the compression ratio of scroll compressor.

**Figure 8.**Effect of current, torque, and air tank pressure on the power consumption of scroll compressor.

**Figure 11.**Effect of current, torque and air tank pressure on the isentropic efficiency of the scroll compressor.

Items | Value | Unit |
---|---|---|

Rated power | 3.8 | kW |

Rated speed | 3000 | r/min |

Rated torque | 15 | N·m |

Voltage constant | 67 | V/1000r/min |

Torque coefficient | 1.11 | N·m/A |

Weight | 14.4 | kg |

Items | Measuring Range | Accuracy |
---|---|---|

p_{in}, p_{d}, p_{out} | 0–15 bar | ±0.2% FS |

T_{in}, T_{out} | −20~100 °C | ±0.5% FS |

Torque | 0–50 N·m | ±0.5% FS |

Rotation speed | 0–6000 r/min | ±0.5% FS |

Volume flow | 0–5000 L/min | ±0.5% FS |

Voltage | 0–250 V | ±0.5% FS |

Current | 0–100 A | ±0.5% FS |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fang, J.; Xu, Y.; Zhang, H.; Yang, Z.; Wan, J.; Liu, Z.
Experimental Research on the Output Performance of Scroll Compressor for Micro Scale Compressed Air Energy Storage System. *Sustainability* **2023**, *15*, 15665.
https://doi.org/10.3390/su152115665

**AMA Style**

Fang J, Xu Y, Zhang H, Yang Z, Wan J, Liu Z.
Experimental Research on the Output Performance of Scroll Compressor for Micro Scale Compressed Air Energy Storage System. *Sustainability*. 2023; 15(21):15665.
https://doi.org/10.3390/su152115665

**Chicago/Turabian Style**

Fang, Juan, Yonghong Xu, Hongguang Zhang, Zhi Yang, Jifang Wan, and Zhengguang Liu.
2023. "Experimental Research on the Output Performance of Scroll Compressor for Micro Scale Compressed Air Energy Storage System" *Sustainability* 15, no. 21: 15665.
https://doi.org/10.3390/su152115665