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Abstract: Improving carbon emission performance (CEP) is the key to realizing the goal of “carbon
peaking and carbon neutrality” for China. Using a panel dataset of 282 cities at prefecture level and
above in China from 2003 to 2017, this study employs the Global Malmquist–Luenberger (GML)
index to measure CEP. Moreover, this study investigates the effect and transmission mechanisms of
urbanization on CEP based on the extended STIRPAT model. The results show a significant positive
“U-shaped” relationship between urbanization and CEP. When urbanization exceeds the inflection
point, urbanization is conducive to improve CEP in Chinese cities. The mechanism analysis illustrates
that human capital has a positive impact on CEP, while technological innovation inhibits it. The
findings of this study can provide a scientific basis for local governments to formulate different
strategies to improve China’s high-quality development through human capital accumulation and
low cost and scale of low-carbon technologies.
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1. Introduction

From 6 to 20 November 2022, the United Nations launched the 27th Conference of
the Parties to the United Nations Framework Convention on Climate Change (COP27),
reiterating the goal to “pursue further efforts to limit the temperature increase to 1.5 ◦C” [1].
Greenhouse gases (GHGs), especially carbon emissions, are believed to be the main influ-
encing factors of the global increase in mean temperature [2]. According to the Review of
World Energy 2020, global carbon emissions increased by 40% from 2000 to 2019, reaching a
historical record high of 34.46 billion tons [3]. In this context, many countries have com-
mitted to achieving net zero emissions and facilitating measures to achieve “low carbon”
development [4,5].

China, the largest carbon emitter globally, is in charge of reducing carbon emissions [6].
In 2020, President Xi proposed China’s carbon peak and carbon neutral goals (hereinafter
referred to as the “dual carbon” goals) at the 75th Session of the United Nations General As-
sembly; the “dual carbon” goals have been successively written into the 2021 Government
Work Report and the 14th Five-Year Plan. To achieve this goal, China must not only reduce
carbon emissions but more significantly, increase the carbon emission performance (CEP).

CEP has drawn much attention from academics and policymakers, making a definition
of its connotation. Wang et al. [7] pointed out that CEP is the result of the changes of the
relationship between input and output factors in socioeconomic development. Xu et al. [8]
proposed the improvement in CEP to be the environmentally sensitive productivity growth,
considering carbon emissions as an undesirable output. Miao et al. [9] put forward that
CEP depends on the influence of both carbon emissions and economic output factors. Zeng
et al. [10] pointed out that it is an important breakthrough point to achieve a win-win
situation between economic development and environmental protection. In this paper,
CEP is defined as a term that reflects the comprehensive performance of regional units
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in various dimensions involved in the transformation within a certain time range. As an
important indicator for cities to pursue low carbon development, there are two types of
ways to measure CEP. Firstly, some scholars use a single index method to assess CEP. The
CEP involved in these studies is expressed via the ratio of carbon emissions to a specific
variable [11,12]. The benefit of this approach is that it is simple and requires a small amount
of data. It can be applied in situations wherein data acquisition is difficult. However, Xiao
et al. [13] pointed out that a single factor would ignore the substitution of factors, making it
difficult to accurately estimate CEP. Thus, many scholars have proposed measuring CEP
from the perspective of total factors [14,15]. Its core lies in putting the input–output theory
into a theoretical framework and using multiple factors, such as capital, labor, energy, etc.,
to construct evaluation systems. Based on the broader connotation and deeper requirements
of urban low-carbon development, this study uses the total factor productivity of carbon
emissions to highlight the effective control and restriction of carbon emissions, expressed
as a proxy variable of CEP.

With CEP drawing significant attention, there have been many in-depth analyses of
studies investigating its influencing factors, such as the economic basis [16], industrial
structures [17], energy consumption [18], urbanization [19], environmental regulation [20],
government policies [21], and internet infrastructure [22]. Cities are regions where human
economic and social activities are concentrated and distributed [23]. They account for about
2% of the global area but comprise about 70% of GDP, consume more than 60% of energy,
and produce 75% of global carbon emissions [24]. Urbanization is the engine and driving
force of socioeconomics, as well as an inevitable trend, playing an even more important
role in achieving sustainable development goals (SDGs) and realizing responses to climate
change [25]. Thus, urbanization plays an important role in CEP; existing studies have
mainly focused on the impact of urbanization on CEP.

Many scholars have studied the relationship between urbanization and CEP, and these
studies can be broadly divided into two categories. On the one hand, scholars have tried
to figure out the relationship between urbanization and CEP. In general, unsustainable
population growth would increase carbon emissions [26]; however, studies have indicated
that there is no standardized relationship between urbanization and CEP, such as posi-
tive [27], negative [28], insignificant [29], inverted U-shaped [30], nonlinear [31], etc. On
the other hand, researchers have focused on how urbanization affects CEP. In the process of
urbanization, cities gradually show a tendency to concentrate population, industry, capital,
etc. Thus, the effect of urbanization on CEP is very complex. Li et al. [32] argued that new
urbanization stimulates green technological innovation and facilitates the development
of industrial agglomeration, thus achieving a reduction in carbon emission intensity. Liu
et al. [33] analyzed the effect of urbanization on CEP from population, industrial, spatial,
and economic perspectives. Jiang et al. [34] argued that there is a self-regulating balance
mechanism between urbanization and carbon emissions as well as carbon emissions and
economic growth. Moreover, researchers have also explored the effect of different urbaniza-
tion stages on CEP. Wang et al. [35] pointed out that semi-urbanization not only facilitates
emission reduction in a particular region but also significantly reduces carbon emissions
in surrounding regions. Moreover, the regional heterogeneity of the impacts has also
been confirmed [36,37]. In addition, scholars have also analyzed these impacts from the
perspective of land use, population migration, and public transport [38,39].

Although existing studies have examined the relationship between urbanization and
CEP [40,41], their research still has the following gaps: Firstly, the relationship between
urbanization and CEP in Chinese cities has not been examined clearly. Furthermore, 85%
of carbon emissions in China are contributed by cities; thus, the influencing mechanisms
between them need to be discussed more deeply. Secondly, the quantitative impacts
of urbanization on CEP have not reached the same conclusions, especially in Chinese
cities. Exploring the specific quantitative relationship between them will help the Chinese
government formulate specific emission reduction measures. In addition, our research



Sustainability 2023, 15, 15498 3 of 20

can also explore how to achieve a win-win situation for urbanization and carbon emission
reduction under the background of “dual carbon”.

Motivated by this aim, this study investigates the following questions: (1) How has
CEP changed since 2003 in Chinese cities? What are the characteristics of spatial and
temporal heterogeneity? (2) What is the impact mechanism of urbanization on CEP?
More specifically, what are the transmission channels by which urbanization affects CEP?
(3) What are the differences in the impacts of urbanization on CEP among Chinese cities? To
answer these questions, we first explicate the theoretical mechanism between urbanization
and CEP and then explore transmission channels between them. Secondly, we use the
data of Chinese cities from 2003 to 2017 and the Global Malmquist–Luenberger (GML)
index to measure the CEP of 282 cities and conduct an analysis from the perspective of
temporal and spatial heterogeneity. Finally, we provide new evidence illustrating the effect
of urbanization on CEP using a panel dataset covering 282 Chinese cities, which enriches
the EKC theory empirically.

The rest of this paper is organized as follows: Section 2 introduces the influencing
mechanism and proposes two theoretical hypotheses. Section 3 describes the methodology
and data. The empirical research of this study is presented in Section 4. The final section
summarizes the conclusions and proposed policy recommendations.

2. Research Hypothesis
2.1. Direct Path for Urbanization to Influence CEP

The impact of urbanization on CEP is different and depends on the combined effects
of the various mechanisms. There are several theories that can help us to figure out this
problem.

Firstly, Northam [42] proposed the theory of the three stages of urbanization. At the
beginning of urbanization, city sizes are small, the ratio of the non-farming population
in cities is relatively low, and the primary industry accounts for a large proportion of
the regional economy. In the medium-term, more and more rural people immigrate to
urban areas; meanwhile, urban industrialization levels gradually improve, and the urban
economy thrives. In the last stage, the rate of migration of rural populations to urban
areas flattens, and the development goal of cities changes from quantity to quality, which
improves the efficiency of social development [43]. At different stages of urbanization,
economic activities represent different characteristics; the high consumption of energy and
carbon emissions in the medium-term cannot be ignored.

Secondly, Panayotou [44] put forward the Environmental Kuznets Curve (EKC) hy-
pothesis. This theory assumes there is an inverted U-shaped relationship between economic
growth and environmental pollution. Economic growth initially increases environmental
pollution discharge, but after a certain level, it negatively affects discharge. The next is the
theory of ecological modernization. It claims that if we want to realize a win-win situation
between economic development and environmental protection, we must leverage ecologi-
cal advantages to enhance modern development [45]. With the gradual transition of urban
economies from low stages to middle and high stages, ecological problems will present
a state of continuous deterioration and improvement [46]. Then, from the perspective
of urban environmental transformation theory, we know that in the early stage of urban
development, there is not only greater consumption of pollution-intensive products but also
an increased demand from people for a high-quality environment. Therefore, the impact on
environmental quality is uncertain [47]. Finally, the compact city theory points out that in
the process of urban development, increased urban density inevitably leads to concentrated
urban public infrastructure, enterprises, and populations, which is conducive to generating
scale and agglomeration economies, thus improving environmental quality [48].

It can be seen from the above analysis that there is not a simple linear relationship
between urbanization and CEP. At different stages of urbanization, the impact of urbaniza-
tion on CEP showed a “negative” to “positive” trend. Therefore, the first hypothesis is put
forward as follows:
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Hypothesis 1. Urbanization has a U-shaped nonlinear effect on CEP.

2.2. Indirect Path for Urbanization to Influence CEP

Based on a literature review and existing research, we argued that the U-shaped effect
of urbanization on CEP may emerge from two channels: human capital accumulation and
technological innovation.

(1) Human capital accumulation. With the development of urbanization, human capital
accumulation constantly improves in urban areas, which contributes to improving
urban environmental quality [49–51]. Although urbanization promotes carbon emis-
sion increase, human capital accumulation may weaken this increase [52,53]. Human
capital and material capital are core production factors that promote economic growth.
Compared with material capital, human capital plays a greater role in promoting
economic growth [54–56]. In addition, human capital has a spillover effect on eco-
nomic growth and promotes high-quality economic growth by improving total factor
productivity [57]. In the process of economic growth, human capital can offset the
diminishing marginal returns brought about via material capital and the negative
effects of carbon emissions and breakthrough energy constraints, thereby achieving
a win-win situation between economic growth and energy conservation, as well as
emission reduction [58]. From the perspective of trade openness, it has a positive
effect on promoting carbon emission performance, and improving the quantity and
quality of human capital can consequently enhance this positive effect [59]. Moreover,
improving population quality also forms a mutual learning effect among people, thus
leveraging the externality of human capital. When the human capital accumulation of
a city is relatively high, regional leading industries favor high-tech and innovative
industries. The mode of production will restrict the increase in carbon emissions, thus
promoting the improvement in CEP.

In conclusion, the transformation process of urban population structures would im-
prove population quantity, and an increase in education opportunities would transform
the pressure of huge populations into high-quality human capital, thus contributing to
low-carbon development in China. Therefore, human capital accumulation has a positive
effect on CEP. We can further propose the following hypothesis:

Hypothesis 2. Human capital accumulation can inhibit the increase in carbon emissions and
promote the improvement in CEP.

(2) Technological innovation. Schumpeter pointed out that innovation is a way to com-
bine production factors and production conditions in a production system [60,61].
In particular, new product manufacturing, new market openings, new production
methods, new sources of material supply, and new organizational forms are the five
basic forms of innovation [62]. The evolution of urban population structures provides
a platform for technological innovation, and a low-carbon development model with
the characteristics of low energy consumption, low pollution, and low emissions
needs to be guided via the theory of technological innovation.

From the perspective of low-carbon development, technological innovation can be
divided into low-carbon technological innovation and non-low-carbon technological inno-
vation. Both of them can boost economic growth, but low-carbon technological innovation
is the best way to restrict carbon emissions. In order to achieve the goals of peak carbon
emissions and carbon neutrality, we must rely on low-carbon technological innovation [63].
In order to break the path dependence of enterprises’ technological progress, the govern-
ment should adopt a series of measures to encourage enterprises to engage in cleaner
production and voluntarily reduce carbon emissions. Although the government has issued
different environmental regulation policies to force enterprises to carry out technological
innovation which restricts carbon emissions, enterprises have different responses to envi-
ronmental regulation policies. The carbon emission trading market encourages technology
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and traditional production departments to choose clean production. The tendency to
produce clean technology depends on the different contributions of output elasticity from
clean and traditional departments to the output of terminal production and intermediate
products. By adjusting the price of carbon emission trading, enterprises can control clean
technology research and development processes [64]. Moreover, the cumulative effect of
environmental policy and R&D efficiency influences the direction of environmental technol-
ogy progress, and the effect of combined environmental regulation policies is better than a
single-policy intervention. Under the constraints of combined environmental regulation
policies, the production of urban economic sectors will gradually tend to adopt cleaner
production technologies to suppress carbon emissions, thus promoting the improvement
in CEP [65]. Therefore, in the process of technological innovation, environmental policies
should be adjusted promptly based on policy implementation to ensure the effectiveness of
policy implementation reaches its optimal level.

In summary, the evolution of urbanization provides a platform for technological
innovation. Technological innovation can optimize the energy utilization efficiency of
enterprises, increase the proportion of renewable energy, make up for the single-energy
structure in China, and, thus, promote the low-carbon development of cities. Technological
innovation can not only realize the decarbonization of enterprises’ terminal production but
also reduce energy consumption in the production chain, reduce the energy consumption
cost of products, and, finally, control the carbon emissions of enterprises. Moreover, the
products produced via this clean production mode are low-carbon throughout their life
cycle, even after being used in the market, which contributes to the low-carbon development
of Chinese cities. Thus, technological innovation has a positive effect on CEP. Hypothesis 3
is proposed as follows:

Hypothesis 3. Cleaner production modes based on technological innovation are an effective way to
restrict the increase in carbon emissions and promote the improvement in CEP.

To test these hypotheses above, we employed the GML index to evaluate CEP at the
city level firstly, and then, the extended STIRPAT model was used to examine the impact of
urbanization on CEP and identify potential transmission channels of urbanization on CEP.

3. Materials and Methods
3.1. CEP Measurement Method
3.1.1. Global Malmquist–Luenberger Index

Assume that there are n decision-making units (DMUs, n = 1, 2, . . ., N) over T time
periods (t = 1, 2, . . ., T). We denote the input vector by x = (x1

t, x2
t,. . ., xN

t), x ∈ R+
N; the

desirable output vector by y = (y1
t, y2

t,. . ., yN
t), y ∈ R+

M; and the undesirable output vector
by b = (b1

t, b2
t,. . ., bN

t), x ∈ R+
I. The production technology (T) can be expressed as follows:

T = {(x, y, b) : x can produce(y, b)} (1)

T can transform the input vector to desirable and undesirable outputs. Färe et al. [66]
pointed out that if the output satisfies the assumption of strong disposability, the unde-
sirable output is equal to the disposable desirable output. Therefore, we assume that
the undesirable outputs are as weakly disposed as (a). In addition, T must satisfy the
null-jointness assumption, as shown in (b).

(a) if (x, y, b) ∈ T and 0 ≤ θ ≤ 1, then (x, θy, θb) ∈ T.
(b) if (x, y, b) ∈ T and b = 0, then y = 0.

The weak disposability assumption (a) implies that the reduction in undesirable
outputs is not free but is a proportional reduction in desirable outputs. The null-jointness
assumption (b) implies that the undesirable outputs are unavoidable during the production
process [67]. Based on the above assumptions, Chung et al. [68] proposed a new directional
distance function (DDF) to deal with the production process containing undesirable outputs
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by using the Malmquist–Luenberger (ML) index, as shown in Equation (2), where g = (y,−b)
is the direction vector.

→
D0(x, y, b; g) = sup

{
θ : (y, b) + θg ∈ T

}
(2)

Then, DDF can be solved via the following linear programming (LP) problem:

⇀
D0

G(
xt

0, yt
0, bt

0; yt
0,−bt

0
)
= maxθ

s.t.



N
∑

n=1
Zt

nyt
nm ≥ (1 + θ)yt

0m, m = 1, . . . , M

N
∑

n=1
Zt

nbt
ni = (1− θ)bt

0i, i = 1, . . . , I

N
∑

n=1
Zt

nxt
nk ≤ (1− θ)xs

0k, k = 1, . . . , K

Zs
n ≥ 0, n = 1, . . . , N

(3)

The ML index can obtain a more realistic productivity change; however, there are
still some limitations which renders the ML index biased, including infeasibility in linear
programming and the inability to facilitate multi-period comparisons. Additionally, ra-
dial and angular approaches struggle to overcome the bias introduced by the relaxation
variables [69]. These deficiencies can be overcome via the GML index based on the global
production possibility set (PPS), which envelopes all the contemporaneous PPS. Hence,
DDF can be solved via the following LP, as shown in Equation (4):

⇀
D0

G(
xs

0, ys
0, bs

0; ys
0,−bs

0
)
= maxβ

s.t.



N
∑

n=1

T
∑

t=1
Zt

nyt
nm ≥ (1 + β)ys

0m, m = 1, . . . , M

N
∑

n=1

T
∑

t=1
Zt

nbt
ni = (1− β)bs

0i, i = 1, . . . , I

N
∑

n=1

T
∑

t=1
Zt

nxt
nk ≤ (1− β)xs

0k, k = 1, . . . , K

Zs
n ≥ 0, n = 1, . . . , N

(4)

Then, the GML model is defined as follows:

GMLt+1
t =

1+
⇀
D0

G
(xt ,yt ,bt ;yt ,−bt)

1+
⇀
D0

G
(xt+1,yt+1,bt+1;yt+1,−bt+1)

=
1+

⇀
D0

t
(xt ,yt ,bt ;yt ,−bt)

1+
⇀
D0

t+1
(xt+1,yt+1,bt+1;yt+1,−bt+1)

×
(

1+
⇀
D0

G
(xt ,yt ,bt ;yt ,−bt)

)
/
(

1+
⇀
D0

t
(xt ,yt ,bt ;yt ,−bt)

)
(

1+
⇀
D0

G
(xt+1,yt+1,bt+1;yt+1,−bt+1)

)
/
(

⇀
D0

t+1
(xt+1,yt+1,bt+1;yt+1,−bt+1)

)
 = ECt+1

t × TCt+1
t

(5)

where GMLt
t+1, indicating that productivity enables more economic outputs and fewer

carbon emissions, suggests CEP has been improved. EC is the technical efficiency change
index, which measures the catch-up effect of a sub-sector toward the contemporaneous
frontier, and ECt

t+1 means that the sub-sector is approaching the contemporaneous frontier
over two periods. TC is the index that can judge the real existence of technological progress
based on whether the distance between the frontier surface of two adjacent periods and the
common frontier surface decreases, and TCt

t+1 corresponds to technical progress.

3.1.2. Variable Selection

According to the method described above, we constructed an evaluation system as
well as the selection of input variables and output variables, as described below.

In this study, labor, capital stock, and energy are selected as the inputs. (1) Labor force:
we use the sum of the number of employees in urban areas as well as employees in private
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enterprises and self-employed individuals in urban areas at year-end as the labor input
index [70]. (2) Capital input: this indicator is expressed via the total fixed assets investment
by Song et al. [71]. (3) Energy input: due to the lack of city-level energy consumption data,
drawing on the research of Xu et al. [72], the electricity consumption of the whole city is
used to measure energy input. We divided the output variables into desirable output and
undesirable output. (1) Desirable output: GDP is selected as the economic output [73].
(2) Undesirable output: Carbon emissions are used as undesirable outputs in this study.
We followed the method of Chen et al. [74] to calculate carbon emissions at city level.

The GDP deflator was used to convert total fixed assets investment and GDP to
comparable prices in 2003, eliminating the impact of price changes.

3.2. Extended STIRPAT Model
3.2.1. Model Construction

Ehrlich and Holdren proposed the IPAT model, which illustrates that environmental
impact (I) is associated with population (P), affluence (A), and technology (T) [75]. In
this model, they are independent of each other. Assuming that all other factors remain
constant, the effect can only be analyzed by changing one of them. In order to overcome
this limitation, Dietz and Rosa improved the STIRPAT model [76]. After taking logarithms
on both sides, the formal formula can be written as follows:

ln Iit = ait + blnPit + clnAit + dlnTit + lnεit (6)

This study develops the following model to examine the role of urbanization in CEP.
The specific model setting is given in Equation (7):

lnGMLit = α0 + α1lnurbit + α2lnurb2
it + α3lnpgdpit + α4lnpgdp2

it + α5lntiit + α6lnhcit + α7lnXit + ηit (7)

where i and t represent some province and year, respectively; GML denotes the environ-
mental impact; population structure (urb) and human capital (hc) refer to population; per
capita GDP (pgdp) and technological innovation (ti) are used to represent affluence and
technology, respectively; urb2 and pgdp2 are the squares of pgdp and urb, respectively; X
denotes some control variables that correlate to CEP; and αi (i = 0, 1, 2,. . ., 7) is a coefficient
that needs to be estimated. The error term is denoted by η.

3.2.2. Variable Selection
Explanatory Variables

Urbanization level (urb): This variable is measured via the proportion of urban res-
idents in each city [77]. It can fully reflect the evolution of China’s urban population
structure under the background of new urbanization. In line with our proposed theoretical
hypothesis, urb may contribute to explaining CEP; there is a “U”-shaped nonlinear rela-
tionship between urbanization and CEP. In other words, we can expect that the evolution
of urbanization will promote long-term improvement in CEP.

Core Control Variables

Since CEP is influenced by many factors, to be precise and reliable for the study, we
also selected three core control variables as follows:

Economic development (pgdp): Economic development is considered a key factor in
affecting carbon emissions based on the EKC hypothesis; here, economic development is
also chosen as a key variable. This variable is measured via GDP per capita. According
to the EKC hypothesis [78], we also put the quadratic term of GDP per capita into the
regression model.

Human capital (hc): In this paper, we used the proportion of university students in
the total population to measure human capital [79]. The impact of hc on carbon emission
is positive.
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Technological innovation (ti): Scholars have used the number of granted patents as a
measure of technological innovation. However, it is important to note that there is a time
lag in the publication of patents granted; thus, we used the number of patent applications
per 10,000 persons to measure this variable.

Other Control Variables

Environmental regulation (er): ers are regarded as effective ways to reduce carbon
emissions, but previous studies on the relationship between er and carbon emission have
not reached a consensus [80]. Among them, pollution reduction and control expenditure,
sewage fees, and environmental subsidies are usually used to measure er [81]. Since
the abovementioned data at the city level could not be obtained, we used the ratio of
wastewater centrally treated in sewage work to measure er.

Public transportation (pub): Nowadays, public transport is considered an important
means of green transport and is being promoted by the local government. The develop-
ment of public transport in cities can facilitate multiple ways of reducing greenhouse gas
emissions from passenger mobility [82]. Therefore, the influence of pub on carbon emission
is negative. The total annual volume of passengers transported via buses and trolley buses
is chosen to reflect pub.

Energy consumption structure (ei): The proportion of industrial electricity consump-
tion was selected here for several reasons. Firstly, coal consumption acts as a kind of
high-emission and high-polluting energy source, which is also the major determinant of
carbon emissions in China. However, data on energy consumption at the city level are
not available. Secondly, according to a study by Li and Lin [83], electricity consumption
is recorded via Watt–hour meters and, thus, is much more accurate, given that energy
consumption in China is widely believed to be underestimated. Finally, with the expansion
of the scale, energy consumption in industry has increased rapidly, leading to substantial
carbon emissions. This indicator has also been used by Yuan et al. [84].

Industrial structure (ind): Upgrading industrial structures is a valid measure to curb
the continuous increase in carbon emissions, which changes the patterns in high-energy-
consuming industries through the rational allocation of production factors and technologi-
cal innovation [85]. The industrial structure is measured via the ratio of the added value of
the secondary industry to GDP.

Openness (fdi): This variable is measured via the proportion of foreign direct invest-
ment in GDP. There are two hypotheses—the pollution haven and halo effect hypotheses—
regarding the relationship between fdi and carbon emissions [86]. The former argues that
fdi may promote carbon emission growth with minimum environmental standards in
developing countries. The latter proposes that fdi can bring low-carbon technologies to
poor nations, thus leading to a cleaner environment. Therefore, the impact of fdi on carbon
emissions is uncertain.

3.3. Data Sources

Due to the relatively serious data missing in city samples, this study investigated the
impact of urbanization on CEP based on panel data from 282 prefecture-level cities in China
from 2003 to 2017. Owing to the lack of energy statics, it is difficult to obtain carbon emission
data at the city level directly. Chen et al. [74] put forward a particle swarm optimization–back
propagation (PSO-BP) algorithm to unify the scale of DMSP/OLS and NPP satellite imagery
and estimate the carbon emission in 2735 Chinese counties during 1997–2017. Thus, we ob-
tained the county-level carbon emissions in China during 2003 to 2017 from Carbon Emission
Accounts & Datasets (www.ceads.net.cn) (accessed on 28 April 2023). Then, we transformed
the county-level data into city-level data. The original socioeconomic data came from the
“China City Statistical Yearbook (2004–2018)”, “China Urban Construction Statistical Yearbook
(2004–2018)”, and Chinese Research Data Services Platform (www.cnrds.com) (accessed on
12 May 2023). Some missing data were supplemented by the linear interpolation method.
Descriptive statistics of each variable are shown in Table 1.

www.ceads.net.cn
www.cnrds.com
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Table 1. Descriptive statistics of each variable.

Variable Type Variable Obs. Mean Std.Dev. Min Max

Dependent variable lnCEP 3948 0.0408 0.251 −2.033 1.585
Independent variable lnurb 3632 −0.322 0.506 −3.051 0

Mechanism variable
lnhc 3486 1.065 1.015 −4.077 5.569
lnrd 3942 2.027 1.477 −2.791 6.194

Control variable

lnpgdp 3898 10.50 0.759 2.791 15.68
lnind 3935 3.872 0.281 2.086 4.511
lnfdi 3467 0.355 1.472 −8.739 7.306
lnei 3864 −0.469 0.384 −5.261 0

lnpub 3637 8.902 1.419 1.792 13.15
lner 3583 4.197 0.519 −1.833 4.605

4. Results
4.1. Spatiotemporal Pattern of CEP in Chinese Cities
4.1.1. Temporal Heterogeneity Characteristics

To preliminarily show the temporal evolution characteristics of GML, EC, and TC,
Figure 1 presents the average value of 282 cities in Chinese cities from 2003 to 2017. It can
be seen that the GML index shows an obvious change in phase, which can be divided into
two stages. Firstly, the GML index showed an overall increasing trend from 2003 to 2016,
with a value higher than 1, indicating that the GML index in China gradually improved.
From 2016 to 2017, the GML index of carbon emissions showed a decline, as shown in
Figure 1. In terms of EC and TC, neither was in a stage of fluctuation but showed different
changes in trends. During the study period, EC was in an overall fluctuant downward
trend, with the variation range deviating from 1, while TC significantly increased from
2003 to 2017, with an overall increase of 189%. Accordingly, we can confirm that the reason
for the continuous increase in the GML index is the significant growth in TC, while the
change in EC restricts the increase in the GML index. The growth in the GML index and
decomposition was due to the sustainable strategies and low-carbon policies in China [87].
Under this economic growth model, cities actively improved their CEP to reduce carbon
emissions. However, the decline in the GML index from 2016 to 2017 also suggests that
local governments in China should pay more attention to the task of carbon reduction
while developing the economy, and they cannot ignore the problem of carbon emissions.
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To analyze the spatial heterogeneity characteristics of CEP, EC, and TC, we classified
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As can be seen in Figure 2a, low-carbon development in China has good prospects; the
CEP value in most cities is higher than 1, accounting for 83.69%. They are mainly distributed
in developed cities and provincial capital cities with good development prospects, such as
Beijing, Tianjin, Xiamen, Nanchang, and Nanjing. Only 45 cities had an average value of less
than 1, such as Huai’an, Bazhong, and Jingdezhen, which are located in inland areas and are
less-developed western regions in China. In comparison, in China, the EC index is higher
than 1 in only 14.18% of cities, such as Beijing, Hefei, and Harbin (Figure 2b). Most cities have
a higher TC index value, and only two cities, Hulunbuir and Ulanqab, have a value below 1
(Figure 2c). From the perspective of spatial distribution, there are few cities with the highest
TC index in China, accounting for only 16.67% of the total cities. There is still significant space
for improvement in China’s technological progress in carbon emission reduction.

Green and low-carbon technological innovation is important for promoting high-
quality development and achieving the “double carbon” goals, but there are still challenges
for green and low-carbon technology innovation in Chinese cities, such as weak indepen-
dent innovation abilities, large investment demands, and the need for financing channels
to be expanded. To this end, we should strengthen scientific research and innovation lead-
ership, promote technology transformation, save enterprises’ energy transformation costs
through upgrading green and low-carbon technologies, and improve energy efficiency [88].

4.2. The Influence of Urbanization on CEP
4.2.1. Empirical Results

To avoid endogeneity caused via dependent and explanatory variables, a GMM system
was applied to estimate the model, and the highest third-order lag term was used as an
instrumental variable. In addition, the validity of the instrumental variable was tested in
this study. Through the empirical finding that the K-P F statistic is far greater than 10, the
problem of weak instrumental variables was eliminated. Moreover, the overestimated test
of instrumental variables was also carried out in this study, and we found that instrumental
variables satisfied the homogeneity hypothesis. The results are shown in Table 2.

Table 2. Regression results of urbanization on CEP.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

lnurb 0.377 * 0.368 0.422 * 0.481 * 0.488 * 0.621 **
(0.222) (0.238) (0.239) (0.249) (0.249) (0.304)

lnurb_2 0.295 * 0.300 * 0.337 * 0.378 ** 0.382 ** 0.493 **
(0.153) (0.172) (0.172) (0.179) (0.179) (0.228)

lnpgdp 0.308 *** 0.392 ** 0.433 ** 0.391 ** 0.329 * 0.368
(0.043) (0.194) (0.195) (0.191) (0.194) (0.235)

lnpgdp2 −0.015 *** −0.018 ** −0.021 ** −0.019 ** −0.016 * −0.019 *
(0.002) (0.009) (0.009) (0.009) (0.009) (0.011)

lnrd −0.023 *** −0.020 *** −0.022 *** −0.021 *** −0.020 *** −0.020 ***
(0.005) (0.005) (0.006) (0.006) (0.006) (0.007)

lnhc 0.021 *** 0.019 ** 0.016 ** 0.019 ** 0.020 ** 0.018 **
(0.007) (0.007) (0.007) (0.008) (0.008) (0.009)

lner −0.022 * −0.025 ** −0.027 ** −0.026 ** −0.031 **
(0.012) (0.012) (0.012) (0.012) (0.016)

lnpub 0.010 *** 0.011 *** 0.012 *** 0.015 ***
(0.004) (0.004) (0.004) (0.005)

lnei 0.037 ** 0.030 ** 0.027
(0.015) (0.015) (0.017)

lnind 0.028 0.029
(0.026) (0.028)

lnfdi 0.006
(0.004)

_cons −1.513 *** −1.881 * −2.123 ** −1.841 * −1.612 −1.781
(0.194) (1.008) (1.015) (0.996) (1.002) (1.224)

K−P F
statistic 50.154 40.358 41.633 40.623 40.235 35.830

N 2109 1993 1985 1955 1954 1756
Note: *, **, and *** indicate passing the significance inspection at the levels of 10%, 5%, and 1%, respectively. The
values in brackets are robust standard errors.
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As can be seen from Table 2, the primary term and secondary term of urb in Model (1)
basically pass the significance test of 10%, denoting that there is an obvious “U-shaped”
relationship between urbanization and CEP. With the improvement in the urb level, the
influence of urbanization on CEP would improve. Additionally, pgdp is significantly
positive at a 1% level. However, the secondary term of pgdp is significantly negative at the
level of 1%, which is not consistent with the traditional EKC hypothesis. This conclusion is
consistent with the research of Shao et al. [89], which shows that China has not realized
the decoupling effect of carbon emission and economic growth, and the task of low-carbon
development in each city is very difficult.

The regression equation shown in Models (2)–(6) is gradually increases the control
variables based on Model (1) and then explores the impact of urbanization on CEP. The
regression results of Models (1)–(6) show that urbanization significantly promotes the
increase in CEP, and the relationship between urbanization and CEP presents a “U”-shaped
nonlinear relationship. When urbanization exceeds the inflection point, urbanization is
conducive to improve CEP in Chinese cities. Along with urbanization, the impacts of
urbanization on CEP will be still in line with the law. Therefore, the government should
grasp the urbanization process, effectively deal with the increase in carbon emissions,
and avoid more problems such as diseases in big cities caused by rapid urbanization.
Moreover, the secondary term of pgdp also has an inverted “U”-shaped relationship with
CEP, and human capital and technological innovation significantly promote and inhibit
CEP, respectively.

4.2.2. Robustness Test

In this part, we examine the impact of urbanization on CEP through a robustness test.
Specifically, we use the instrumental variable method, replace the explained variable, and
no longer take the logarithm of the explained variable to test robustness. In other words, the
robustness of the conclusion can be verified from the following three aspects. The regression
is further estimated based on the GMM system, and the highest third-order lag term is
used as an instrumental variable. We tested the validity of the instrumental variables, and
the test showed that the K-P F statistic was far greater than 10, thus determining that there
was no weak instrumental variable problem in the study. Firstly, the logarithmic processing
of the data can make the data more consistent with normal distribution characteristics,
thus reducing the sensitivity of the regression coefficient to outliers. Therefore, in column
(1) of Table 3, this study does not perform logarithmic processing for the regression of
CEP. Secondly, CEP is measured via the GML index in the baseline regression, while in
column (2) of Table 4, the dependent variable is measured via the ML index and processed
via logarithm. Thirdly, similar to robustness test (1), in robustness test (3), we no longer
perform logarithmic processing on CEP and instead perform regression calculations. The
results of the above robustness tests did not change the impact of urbanization on CEP.
Therefore, the abovementioned regression results have strong robustness.

Table 3. Robustness test results of the impact of urbanization on CEP.

(1) (2) (3)

lnurb 0.573 * 1.395 *** 1.250 ***
(0.348) (0.324) (0.444)

lnurb_2 0.458 * 1.070 *** 0.955 ***
(0.261) (0.249) (0.335)

lnpgdp 0.370 0.881 ** 0.652 *
(0.274) (0.395) (0.374)

lnpgdp2 −0.018 −0.043 ** −0.032 *
(0.013) (0.019) (0.017)

lnrd −0.021 *** −0.025 *** −0.012
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Table 3. Cont.

(1) (2) (3)

(0.007) (0.008) (0.025)
lnhc 0.017 * 0.021 * −0.009

(0.010) (0.012) (0.052)
lner −0.032 * −0.049 ** −0.040 *

(0.018) (0.020) (0.024)
lnpub 0.015 *** 0.021 *** 0.036

(0.005) (0.006) (0.024)
lnei 0.025 0.041 ** 0.029

(0.021) (0.020) (0.032)
lnind 0.029 0.028 0.076

(0.037) (0.033) (0.080)
lnfdi 0.004 0.010 * 0.009 **

(0.005) (0.005) (0.005)
_cons −0.799 −4.410 ** −2.564

(1.414) (2.032) (1.675)

K−P F statistic 35.830 35.830 35.830

N 1756 1756 1756
Note: *, **, and *** indicate passing the significance inspection at the levels of 10%, 5%, and 1%, respectively. The
values in brackets are robust standard errors.

Table 4. Test results of human capital accumulation mechanism.

Explained Variable (Human Capital)

(1) (2) (3) (4) (5) (6) (7)

lnurb 0.442 *** 0.215 *** 0.156 *** 0.153 *** 0.151 *** 0.150 *** 0.144 ***
(0.031) (0.051) (0.036) (0.034) (0.034) (0.034) (0.039)

lnpgdp 0.256 *** 0.307 *** 0.258 *** 0.258 *** 0.258 *** 0.254 ***
(0.052) (0.041) (0.039) (0.039) (0.039) (0.042)

lner −0.003 −0.003 −0.007 −0.007 0.004
(0.021) (0.019) (0.019) (0.019) (0.022)

lnpub 0.084 ** 0.077 ** 0.078 ** 0.087 ***
(0.034) (0.034) (0.034) (0.033)

lnei −0.092 * −0.094 * −0.083
(0.054) (0.055) (0.060)

lnind 0.024 0.037
(0.088) (0.091)

lnfdi 0.026 ***
(0.008)

_cons 1.184 *** −1.552 *** −2.049 *** −2.295 *** −2.254 *** −2.356 *** −2.469 ***
(0.008) (0.549) (0.410) (0.449) (0.454) (0.584) (0.643)

N 3182 3148 2869 2651 2607 2606 2363

Note: *, **, and *** indicate passing the significance inspection at the levels of 10%, 5%, and 1%, respectively. The
values in brackets are robust standard errors.

4.3. The Influence of Human Capital on CEP
4.3.1. Empirical Results

The abovementioned theoretical analysis suggests that human capital plays a medi-
ating role between urbanization and CEP. The Hausman test results show that the null
hypothesis was rejected; thus, this paper adopts the panel fixed-effect mode to empirically
test whether urbanization indirectly affects CEP through human capital, and the results are
shown in Table 4.

It can be seen from Model (1) in Table 4 that only ur is used for human capital
regression. The coefficient of ur is 0.442, which is significant at a 1% level. In Models (2) to
(7), control variables are gradually added based on Model (1), and more control variables
are incorporated. The regression results show that a city with higher urbanization has
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a higher human capital level, and the two have a significant positive correlation at the
level of 1%. The increase in ur means that rural people migrate to cities, and the increase
in human capital accumulation contributes to sustainable economic growth, alleviates
damage to the ecological environment caused via economic growth, and, thus, plays a role
in improving CEP. Moreover, China is a country with a large population migrating from the
underdeveloped regions to the developed coastal regions. At the same time, a high-quality
labor force is helpful for enterprises to choose cleaner production modes. Therefore, human
capital accumulation can encourage enterprises to choose cleaner production modes, thus
reducing carbon emissions and promoting the improvement in CEP.

4.3.2. Robustness Test

In the relationship between urbanization and human capital, urbanization is an en-
dogenous variable, and its endogeneity mainly comes from reverse causality. For example,
the improvement in human capital means the sound economic development of cities,
which promotes the migration of more people from rural areas to cities, thus promoting the
improvement in urbanization. This endogeneity problem is solved by using instrumental
variables. Table 5 shows the robustness test results of the GMM system, with the highest
third-order lag as the instrumental variable of this study.

Table 5. Robustness test results of human capital mechanism.

Explained Variable (Human Capital)

(1) (2) (3) (4) (5) (6) (7)

lnurb 1.142 *** 0.256 * 0.306 ** 0.511 *** 0.508 *** 0.512 *** 0.614 ***
(0.103) (0.148) (0.147) (0.148) (0.149) (0.149) (0.175)

lnpgdp 0.498 *** 0.453 *** 0.113 ** 0.159 *** 0.210 *** 0.153 ***
(0.064) (0.044) (0.050) (0.051) (0.053) (0.058)

lner 0.068 0.010 −0.007 −0.030 −0.017
(0.060) (0.066) (0.065) (0.068) (0.084)

lnpub 0.274 *** 0.268 *** 0.254 *** 0.241 ***
(0.017) (0.017) (0.017) (0.019)

lnei −0.314 *** −0.194 *** −0.178 ***
(0.053) (0.058) (0.065)

lnind −0.400 *** −0.492 ***
(0.096) (0.107)

lnfdi 0.063 ***
(0.014)

_cons 1.337 *** −4.095 *** −3.891 *** −2.466 *** −2.969 *** −1.680 ** −0.628
(0.026) (0.705) (0.546) (0.548) (0.566) (0.667) (0.769)

K−P F statistic 157.591 153.043 117.731 116.317 116.669 117.352 85.965

N 2136 2109 1993 1985 1955 1954 1756

Note: *, **, and *** indicate passing the significance inspection at the levels of 10%, 5%, and 1%, respectively. The
values in brackets are robust standard errors.

By calculating the K-P F statistic, we find that its value is far greater than 10, indicating
that the instrumental variables in this study are valid, and there is no weak instrumental
variable problem. Moreover, through the overidentification test, we found that the instru-
mental variables used in this study satisfied the exogeneity hypothesis. Model (1) of Table 6
only includes core explanatory variables and does not add any control variables for regres-
sion. Control variables are gradually added to Models (2) to (7) in Table 6 for systematic
GMM regression. Through an analysis of the results, we find that the improvement in
urbanization significantly promotes the improvement in human capital. Therefore, we
find that the larger urbanization is, the higher the level of urban human capital is, and its
promoting effect is significant and stable.
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Table 6. Test results of technological innovation mechanism.

Explained Variable (Technological Innovation)

(1) (2) (3) (4) (5) (6)

lnurb 0.565 *** 0.217 *** 0.077 * 0.067 0.166 *** 0.154 ***
(0.054) (0.050) (0.045) (0.044) (0.046) (0.048)

lner 1.074 *** 0.887 *** 0.880 *** 0.844 *** 0.885 ***
(0.071) (0.067) (0.068) (0.067) (0.068)

lnpub 0.622 *** 0.626 *** 0.593 *** 0.619 ***
(0.070) (0.071) (0.068) (0.076)

lnei −0.286 ** −0.184 −0.231
(0.126) (0.112) (0.147)

lnind −1.440 *** −1.537 ***
(0.214) (0.233)

lnfdi −0.038 **
(0.017)

_cons 2.203 *** −2.293 *** −7.072 *** −7.219 *** −1.107 −1.090
(0.018) (0.299) (0.585) (0.604) (1.115) (1.270)

N 3632 3284 3049 2996 2991 2679
Note: *, **, and *** indicate passing the significance inspection at the levels of 10%, 5%, and 1%, respectively. The
values in brackets are robust standard errors.

4.4. The Influence of Technological Innovation on CEP
4.4.1. Empirical Results

Similarly, according to the Hausman test, the fixed-effect model was selected in this
section. Table 6 shows the test results of the technological innovation mechanism.

Model (1) of Table 6 independently investigated the relationship between the core
explanatory variables—urbanization and technological innovation—without adding any
control variables. The results show that the regression coefficient of urbanization was
0.565, which was significant at a 1% level, indicating that the higher urbanization is, the
higher the level of technological innovation is. Models (2) to (6) in Table 6 are the regres-
sion results of gradually increasing control variables. We can see that except for Model
(4), urbanization can significantly promote the improvement in technological innovation.
Therefore, the authors believe that urbanization promotes the level of technological inno-
vation. “Demand-induced innovation theory” holds that market demand stimulates the
improvement in technological innovation levels. When urbanization gradually improves,
urban development gradually matures, and the competition faced by enterprises gradually
increases.

In order to face the pressure of competition, enterprises carry out product innovation
and increase their market share through innovation. Moreover, China has been advocat-
ing low-carbon development across various industries, issuing effective and reasonable
environmental regulation policies. In this case, enterprises must control carbon emissions
through technological innovation if they want to achieve long-term vitality. For example,
since China’s energy consumption has been dominated by fossil fuels and energy efficiency
is low, it will vigorously develop low-carbon technologies, such as carbon capture and
sequestration, to curb the increase in carbon emissions.

4.4.2. Robustness Test

This study also tests the robustness of the mediating effect of technological innovation
on CEP. Table 7 shows the robustness test results of the GMM system, with the highest third-
order lag as the instrumental variable of this study. In addition, we also tested the problem
of the overidentification of instrumental variables and the problem of weak instrumental
variables. We found that the instrumental variables in this study are valid and satisfy the
exogeneity hypothesis. Column (1) of Table 7 includes only core explanatory variables
and does not add any control variables for regression. Control variables are gradually
added to columns (2) to (6) of Table 7 for systematic GMM regression. Through an analysis
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of the results, we find that the improvement in urbanization significantly promoted the
improvement in technological innovation. Therefore, this chapter concludes that the larger
urbanization is, the higher the level of urban technological innovation is, and its promoting
effect is significant and stable.

Table 7. Robustness test results of technological innovation mechanism.

Explained Variable (Technological Innovation)

(1) (2) (3) (4) (5) (6)

lnurb 3.932 *** 3.229 *** 2.721 *** 2.704 *** 2.776 *** 2.906 ***
(0.315) (0.324) (0.291) (0.291) (0.322) (0.385)

lner 1.109 *** 0.865 *** 0.872 *** 0.852 *** 0.900 ***
(0.161) (0.139) (0.140) (0.139) (0.100)

lnpub 0.298 *** 0.301 *** 0.293 *** 0.221 ***
(0.025) (0.026) (0.027) (0.031)

lnei 0.048 0.282 *** 0.294 ***
(0.081) (0.097) (0.111)

lnind −0.731 *** −1.107 ***
(0.200) (0.253)

lnfdi 0.065 **
(0.030)

_cons 3.235 *** −1.663 ** −3.424 *** −3.451 *** −0.331 1.668
(0.084) (0.711) (0.598) (0.608) (1.182) (1.310)

K−P F statistic 158.311 121.640 121.587 121.808 116.902 86.215

N 2437 2286 2273 2236 2231 1992
Note: **, and *** indicate passing the significance inspection at the levels of 5%, and 1%, respectively. The values
in brackets are robust standard errors.

5. Conclusions

In the context of global climate change, low-carbon development has increasingly
attracted the attention of various countries and gradually become an inevitable choice to
solve the increasingly serious environmental and energy problems. Under the background
of new urbanization, exploring the relationship, as well as the mechanisms, between the
evolution of urbanization and CEP can provide a decision-making basis for the government
to formulate precise carbon emission reduction policies. However, the relationship between
urbanization and CEP in Chinese cities has not been examined clearly, and the quantitative
impacts of urbanization on CEP have not reached the same conclusions. Filling these gaps,
this study distinguishes the theoretical mechanisms between urbanization and CEP and
explores transmission channels between them. Accordingly, we used the panel data of
282 Chinese prefecture-level cities from 2003 to 2017 as samples and the GML index to
measure and analyze the law of change in CEP; then, we selected the GMM system and
the fixed-effect model to systematically examine the relationship between the evolution of
China’s urbanization and CEP in Chinese cities. The conclusions are as follows:

(1) From the time trend, from 2003 to 2016, the GML index showed a rising state, but
from 2016 to 2017, the GML index showed a decline. From the perspective of regional
heterogeneity, developed cities and cities with development potential had a higher
GML index, such as Beijing, Tianjin, and Xiamen. Moreover, the urban technical
efficiency change index is an obstacle to the improvement in the GML index, and
technological progress is the driving force supporting the improvement in the GML
index. These results are consistent with those of Zhao et al. [50].

(2) Under the premise of considering the endogeneity of urbanization, there is a signifi-
cant “U-shaped” nonlinear relationship between urbanization and the GML index,
indicating that urbanization has an impact on CEP in Chinese cities. The relationship
presents a channel of action that is first inhibited and then promoted. Furthermore,
it reveals that China’s urban economic development and carbon emissions have not
yet been decoupled, and further efforts are needed. This indicates that the role of
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urbanization in promoting CEP may be an effective way to decouple carbon emissions
from economic development [90].

(3) By investigating the channels of human capital in urban areas, after controlling for
endogeneity, the regression results found that human capital is an effective channel by
which urbanization can promote the improvement in CEP, and the higher the level of
urbanization is, the higher the level of human capital is, thereby effectively promoting
the improvement in CEP. As a result, it is of vital importance to pursue human capital
accumulation to encourage the development of urbanization, with the aim of further
improving CEP [53].

(4) Through the channel test of urban technological innovation, we found that although
the evolution of urbanization has promoted the development of technological inno-
vation, technological innovation has inhibited the improvement in CEP in Chinese
cities. Therefore, the technological innovation level has not yet been transformed
into a driving force that promotes the improvement in CEP in China, and cleaner
production methods need to be further developed. Therefore, the low cost and scale
of green and low-carbon technologies are more conducive to their role in improving
CEP [12].

There are additional opportunities to extend our research in the future. First, the
time scale of the research should be further expanded, and more detailed data analysis
will lead to more guiding conclusions and development suggestions. Second, the key
areas of Chinese cities should receive special attention to explore the relationship between
low-carbon urban development and carbon emissions in special regions.
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