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Abstract: In this study, a location routing problem (LRP) model was considered for the distribution
network of multiple perishable food items in a cold supply chain (CSC) where vehicles can refuel at
gas stations during light of the COVID-19 disaster. Fuel consumption is assumed to vary depending
on the cargo transported between nodes when using a non-standard fuel fleet. The problem was
formulated as a mixed-integer linear programming (MILP) model to reduce the production of carbon
dioxide (CO2). The model was validated using several numerical examples which were solved using
the software, LINGO 17.0. The results show that fuel consumption could be reduced in this case. Due
to the complexity of the problem, genetically simulated annealing algorithms were developed to
solve the actual size problems, and their performance was also evaluated.

Keywords: sustainable supply chain; COVID-19 disaster; cold logistics; CO2 emissions; location
routing problem; genetic algorithm

1. Introduction

The spread of the new coronavirus disease (COVID-19) threatens the health of the
world’s population, and it is the latest epidemic that has led to a pandemic and a public
health emergency [1]. By the last day of March 2020, COVID-19 had spread rapidly from
Wuhan to other areas, and it had affected more than 200 countries worldwide [2]. Due to
the sharp increase in the number of people affected, and the initial lack of attention paid to
the COVID-19 pandemic by world leaders, it became a global epidemic [3].

The negative impact of automobile traffic on the environment is undeniable due to its
impact on the earth and the consumption of resources. The emission of greenhouse gases
has led to an increase in average global temperatures, which is a well-known phenomenon
called global warming [4]. Moreover, the efficient management and optimization of logisti-
cal activities has led to offering customers different and faster services, reduced waiting
times, reduced damages, and improved customer care, taking the critical role of transport
in generating and releasing biological pollutants in the environment into consideration.
These pollutants have destructive and irreparable effects on the environment, the health of
living beings, and the ozone layer. Considering sustainability, environmental constraints,
and economic imperatives when modeling and optimizing transportation and distribution
networks will significantly help preserve the environment and reduce associated risks [5].
Vlachos and Malindretos (2023) [6] redesigned the SC for aquaculture with a real case study.

Perishable food LRP designs optimize location, inventory, and routing decisions in
a supply chain system (SC) [7]. The goal is to minimize costs, reduce food waste, and
improve the efficiency and sustainability of the SC [8]. Research papers and articles provide
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insights into approaches and models for solving the LRP for perishable products. Here are
some key points from the search results.

The LRP for perishable products involves the integration of location, inventory, and
routing decisions in a SC system [7,9]. This integration is critical for optimizing the overall
performance of the SC [10].

When designing the location routing problem (LRP), minimizing the total cost, includ-
ing transportation, inventory, and food waste costs, is a key aim [9,11]. Optimizing the total
cost formula helps to achieve cost-effective operations. Designing a sustainable supply
chain network (SSCN) for perishable foods is important [12]. This requires optimizing the
economic and environmental aspects of the SC [13]. Strategies such as dynamic pricing and
minimizing CO2 emissions can be used to improve resilience and sustainability [11,14]

Vlachos and Polichronidou [15] (2023) suggested a model for multi-demand, with
regard to SC issues. Shafaghizadeh et al. (2021) [16] analyzed the role of wholesale
markets in food SCs by considering their resilience. Meta-heuristic algorithms, such as
genetic algorithms, can be used to solve the LRP for perishable products. These algorithms
provide efficient solutions within an acceptable time frame [17]. The LRP for perishables
is a special case concerning the vehicle routing problem (VRP) [18]. The VRP involves
optimizing routes and schedules for vehicles delivering perishable products, considering
time constraints and quality degradation [19].

These insights from the search results provide a starting point for designing the LRP
for perishable foods. Further research and analysis can help develop specific models and
algorithms tailored to the unique requirements of the perishable food industry [20]. Li et al.
(2018) [21] suggested a multi-agent for the SC framework in light of uncertain demands.
Li et al. (2023) [22] proposed a SC for the partial durable good. [23] Xiao et al. (2021)
reviewed a comprehensive model with nonlinear energy recharging and consumption.
Huang et al. (2023) [24] improved blueberry freshness predictions using machine learning
for cold chain logistics.

Figure 1 shows the transportation process for refrigerated logistics. The different
sections of the paper are organized as follows: Section 2 reviews previous studies, Section 3
presents the problem, and Section 3.2 illustrates the linearization of the mathematical model
of the problem. Section 4 presents the solution, Section 5 presents the validation of the
mathematical model and its solution using genetic and simulated annealing algorithms,
and Section 6 presents the conclusions and suggestions for future research.
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Figure 1. With the ability to monitor and manage the transportation process in real-time, IoT tech-
nology can solve problems, especially those concerning perishable goods [25]. 
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The impact of the COVID-19 pandemic on LRP is currently the subject of extensive 
research, although not at the level of deployment. In addition to providing medical items, 
another important issue concerns managing infectious medical waste associated with 
COVID-19 after diagnosing and treating patients in health centers, including hospitals 
and dispensaries. As the number of confirmed cases has increased, the amount of medical 
waste associated with COVID-19 has increased significantly, and it is now considered a 
critical hazardous material. In other words, medical waste disposal is considered an im-
portant measure to control the source of infection, and it is necessary to strictly define and 
standardize the waste disposal of COVID-19 [26]. 

However, since most of this waste is made of plastic, it can be hazardous to the envi-
ronment if not processed properly and promptly. Therefore, to the greatest extent possi-
ble, careful attention should be paid to reducing the risk of epidemics in hospitals and 
hospital wards. In this study, a waste management system is designed to efficiently handle 
collection (from hospitals and hospital wards), transportation (via the road network), and 
the disposal of COVID-19 waste at pre-determined disposal sites [27]. This section briefly 
explains the routing and location problem, and then, the main studies related to this re-
search are briefly reviewed. Ahmed and Yousefi Khoshbakht (2023) [28] propose that VRP 
refers to problems where a fleet of multiple vehicles, from one warehouse, provides cus-
tomer services at different locations. 

Due to the limited loading capacity of vehicles, the VRP is sometimes referred to as 
the capacitated VRP. The VRP is divided into several types based on its limitations and 
special conditions. The multi-depot vehicle routing problem (MDVRP) is one of these 
types. The MDVRP is an evolved version of the classical VRP, where the number of ware-
houses is more than one. In this problem, customers are first assigned to the existing ware-
houses using techniques such as clustering. After assigning the customers to the ware-
houses, the transportation routes between each warehouse and the customers are deter-

Figure 1. With the ability to monitor and manage the transportation process in real-time, IoT
technology can solve problems, especially those concerning perishable goods [25].
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2. Literature Review
2.1. Related Studies

The impact of the COVID-19 pandemic on LRP is currently the subject of extensive
research, although not at the level of deployment. In addition to providing medical items,
another important issue concerns managing infectious medical waste associated with
COVID-19 after diagnosing and treating patients in health centers, including hospitals
and dispensaries. As the number of confirmed cases has increased, the amount of medical
waste associated with COVID-19 has increased significantly, and it is now considered
a critical hazardous material. In other words, medical waste disposal is considered an
important measure to control the source of infection, and it is necessary to strictly define
and standardize the waste disposal of COVID-19 [26].

However, since most of this waste is made of plastic, it can be hazardous to the
environment if not processed properly and promptly. Therefore, to the greatest extent
possible, careful attention should be paid to reducing the risk of epidemics in hospitals
and hospital wards. In this study, a waste management system is designed to efficiently
handle collection (from hospitals and hospital wards), transportation (via the road network),
and the disposal of COVID-19 waste at pre-determined disposal sites [27]. This section
briefly explains the routing and location problem, and then, the main studies related to this
research are briefly reviewed. Ahmed and Yousefi Khoshbakht (2023) [28] propose that
VRP refers to problems where a fleet of multiple vehicles, from one warehouse, provides
customer services at different locations.

Due to the limited loading capacity of vehicles, the VRP is sometimes referred to as the
capacitated VRP. The VRP is divided into several types based on its limitations and special
conditions. The multi-depot vehicle routing problem (MDVRP) is one of these types. The
MDVRP is an evolved version of the classical VRP, where the number of warehouses is
more than one. In this problem, customers are first assigned to the existing warehouses
using techniques such as clustering. After assigning the customers to the warehouses, the
transportation routes between each warehouse and the customers are determined under
the constraints of the classical VRP. Moreover, the problem of facility location is also one
of the areas considered in operations research. In a general location model, facilities are
scattered in a geographical area to satisfy customer demand [29].

Location models have been extended to answer the abovementioned questions with
different objectives and assumptions, which has led to the emergence of different types
of location models with extensive scopes. However, a question arises concerning the
relationship between location models and routing problems. In response, the link between
location and routing problems is explained via the design of distribution and logistics
networks [30].

The issues at the strategic level of logistics engineering and supply chain management
(SCM) relate to the number of distribution warehouses and their locations, the customers
assigned to each distribution center, the number of vehicles that deliver customer orders
and their routes, etc. If location and route planning are not considered simultaneously,
supporting SC costs will increase [31–36]. Bektas and Laporte (2011) [37] considered
pollution in the vehicle routing problem and presented their proposed model. Liu and
Yu (2012) [38] presented the multi-depot vehicle routing problem based on an ant colony
with a genetic algorithm. Erdogan and Hooks (2012) [39] presented a green vehicle routing
problem which they solved using Clark and Wright’s density-based clustering algorithm
and an improved heuristic method. Xiao et al. (2012) [40] presented a model for capacitated
LRP in which the cost of fuel consumption was considered, in addition to other costs,
to optimize the total cost and reduce environmental pollutants. The model used two
numerical examples available in the reviewed literature, and the responses showed very
different energy consumption levels, with regard to the classical vehicle routing problem,
compared with the energy consumption of the load-dependent condition.

Zheng and Chen (2014) [35] presented an optimization model for a multi-product
frozen food vehicle routing problem, taking delivery time into consideration, and they
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solved the problem using the genetic meta-heuristic method. Goeke and Schneider
(2015) [41] modeled the mixed fleet vehicle routing problem with two types of vehicles,
and they considered the amount of fuel and energy consumed in conjunction with speed,
road slope, and weight of cargo. Moreover, they noted the refueling capabilities of electric
vehicles, and then, they developed an innovative local search solution method. Koc et al.
(2016) [42] proposed to model the LRP with a heterogeneous transportation fleet and a time
window, first as a mixed integer programming problem, and then as a family of related
constraints. They attempted to solve this problem by developing a powerful algorithm, a
hybrid evolutionary algorithm.

Bae and Moon (2016) [43] introduced the multi-warehouse vehicle routing problem
with a time window, and they described delivery and setup times for heterogeneous
vehicles to minimize the total cost. Song and Ko (2016) [44] presented the vehicle routing
problem, with two types of normal and glowing vehicles for perishable food, to maximize
customer satisfaction in terms of maintaining freshness. Xiangguo and Manying (2015) [45]
developed a route to solve a cold chain logistical problem, which they combined with a
time window to satisfy multiple customers. They achieved this by assuming the probability
of each customer’s demand, and then they solved the problem using a genetic algorithm.
Keskin and Catay (2016) [46] introduced a routing problem for electric vehicles, combined
with a time window; this problem is an extension of the well-known classical time window
problem for vehicle routing, and they adapted an adaptive algorithm for searching in large
neighborhoods to solve this problem efficiently.

Wang et al. (2016) [47] presented a Multi-Objective Vehicle Routing Problem (MOVRP),
with a time window for perishable food distribution, and they aimed to minimize the total
cost and maximize the freshness of the products delivered to customers. They solved this
problem with a two-phase heuristic algorithm, based on the Pareto variable neighborhood
search and Genetic Algorithm, by describing the space–time interval. Montoya et al.
(2017) [48] formulated a routing problem for electric vehicles with a nonlinear charging
function. Schiffer and Walther (2017) [49] presented the electric vehicle routing problem
with time windows and partial charging. Hosoda and Irohara (2022) [50] proposed an
LRP approach to describe electric vehicle routing and charging station decisions in order
to support the strategic decisions of the operational logistics fleet simultaneously. Wu
et al. (2017) [51] attempted to design an integrated distribution system for food services on
high-speed trains based on the three principles of location, routing with hard time windows,
and deadlines. They designed this system in order to deliver high-quality perishable food
on trains, taking demands that are influenced by various aspects of railroad planning
into consideration. They solved this problem using a hybrid cross-entropy algorithm.
Hsiao et al. (2017) [52] modeled a distribution scheduling problem for a cold food chain
to generate a distribution plan that satisfied customer needs for a variety of foods with
a pre-determined quality level at the lowest distribution cost. To solve the problem, a
biography-based compatibility optimization algorithm with genetic algorithm modeling
was used. An article by Wang et al. (2018) [53], titled Optimization of the Location Routing
Problem (LRP) for the Cold Chain Logistics (CCL), concerns the carbon phenomenon, and it
refers to the category of environmental protection that examines how carbon minimization
can minimize the total cost, which includes the carbon emission cost. They also developed
a hybrid genetic algorithm with heuristic rules to solve the model. Simulation results of a
practical numerical example showed the model’s applicability to provide distribution plans
and green and nature-friendly sites for CCL companies. Table 1 shows the main features of
the research papers discussed in this section.
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Table 1. The perspective of the current study with regard to previous studies.

Researchers’ Names

Main Characteristics and Limitations of the Problem Disaster
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Bektas and Laporte (2011) [37] 4 4 4 4 4

Liu and Yu (2012) [38] 4 4 4 4 4

Erdogan and Hooks (2012) [39] 4 4 4 4 4 4 4 4

Xiao et al. (2012) [40] 4 4 4 4

Zheng and Chen (2014) [35] 4 4 4 4 4 4

Goeke and Schneider (2015) [41] 4 4 4 4 4 4 4 4

Koc et al. (2016) [42] 4 4 4

Bae and Moon (2016) [43] 4 4 4 4

Song and Ko (2016) [44] 4 4 4 4 4

Xiangguo and Manying (2015) [45] 4 4 4 4 4

Keskin and Catay (2016) [46] 4 4 4 4 4 4 4

Wang et al. (2016) [47] 4 4 4 4

Montoya et al. (2017) [48] 4 4 4 4 4 4 4

Schiffer and Walther (2017) [49] 4 4 4 4 4 4 4

Wu et al. (2017) [51] 4 4 4 4 4

Hsiao et al. (2017) [52] 4 4 4 4

Wang et al. (2018) [53] 4 4 4 4 4 4 4 4 4 4 4

Current
Research 4 4 4 4 4 4 4 4 4 4 4 4
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2.2. Research Gap Analysis and Contributions

A review of the literature shows that, so far, extensive research has been conducted
at a series of locations, and on numerous routing problems. However, simultaneous
investigations into multi-storage modes, the use of heterogeneous vehicles with non-
conventional fuels, variable fuel consumption rates (which vary in accordance with the size
of the load), the refueling ability of different types of vehicles, multi-product modes, and
perishability for the CSC have not been conducted with the COVID-19 disaster in mind.

3. Problem Presentation

In this study, the LRP for CSC is considered. The critical points are fuel consumption,
the size of the load, and the COVID-19 catastrophe. The graph G = (V′, A) contains the
set V′ of all nodes, including the fixed locations of customers, the potential locations of
warehouses, and the potential locations of fueling stations. A set of edges is defined below,
including parameters and decision variables. This mathematical model minimizes harmful
environmental impacts by considering the fuel consumption between nodes during the
COVID-19 disaster.

3.1. Mathematical Modeling

In this section, first, the assumptions of the proposed mathematical model are ex-
plained, then, the sets, parameters, and decision variables are presented (Tables 2–4).
Finally, the mathematical model is presented.

Table 2. The sets of models.

Symbol Description

C = {1, 2, . . ., c} The set of customers

G = {1, 2, . . ., g} The set of warehouses

P = {1, 2, . . ., p} The set of cold food products

T = {1, 2, . . ., t} The set of vehicles

F = {1, 2, . . ., f} The set of refueling places

F′ = {1, 2, . . ., F + 1, F + 2, . . ., F + F′} The set of virtual charging and refueling places

V = C∪F′ The set of customers and virtual charging and
refueling places

V′′ = F′∪G The set of warehouses and virtual
charging/refueling places

V′ = V∪G = G∪F′∪C The set of customers, virtual refueling places,
and warehouses

Table 3. The parameters of the model.

Symbol Description Symbol Description

Prp
The price of a unit of a cold
production type p ESTc

The earliest service start time
at the c node

µp

COVID-19 damage rate of cold
production type p during customer
service time

LSTc
The latest service start time at
the c node

θp

COVID-19 damage rate of cold
production type p during the
transportation process

Qt The capacity of vehicle t

Upc

The quantities of cold production
type p by the customer c, Zero if c
/∈ C

dcg
Distance between nodes g
and c
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Table 3. Cont.

Symbol Description Symbol Description

β
The frequency of opening and
closing the vehicle’s refrigerator
door to serve the customer

rt The refueling rate of vehicle t

Bt
The capacity of the fuel of vehicle t
in terms of the fuel unit sc Service time at the customer c

αt
0

The fuel consumption rate of the
vehicle t in its unloaded state in
units of fuel per kilometer

TRcg
Travel time between nodes g
and c

α∗t

The fuel consumption rate of the
vehicle t in its maximum load
mode in fuel per kilometer

CFt
The fixed cost of using the
vehicle t

ρt
cg

The fuel consumption rate of
vehicle t between nodes g and c Fg

The fixed cost of building the
warehouse g

f pt
cg

The amount of fuel consumption
of vehicle t between nodes g and c Qg

The maximum capacity of
warehouse g

Ct The cost of a unit of fuel for a
vehicle t Op

The weight of a unit of cold
food type p

ωt
The depreciation coefficient of the
refrigerators of vehicle t Qt The capacity of vehicle t

δ
The coefficient of the temperature
conductivity of the
refrigerator’s body

∝ A very large positive number

∆T
The temperature difference
between the outside and inside of
the vehicle’s refrigerator

∑ Sn
The total external surfaces of
refrigerators in vehicle

∑ Sw
The total internal surfaces of the
refrigerators in the vehicle Γτ

The thermal load related to the
temperature difference
between the outside and inside
of the refrigerator

Γσ
The thermal load during loading
and unloading time

Table 4. The decision variables of the model.

Symbol Description

τt
g The arrival time of vehicle t at node g

Fcg The number of transported goods between nodes c and g

y′gh The remaining capacity for fuel in vehicle t when entering node g

y′′ gt The remaining capacity for fuel in vehicle t when entering node g

Xcgt
If the movement from node c to node g by vehicle t is complete, it equals 1;
otherwise, it equals zero

Wcg If customer c is assigned to warehouse g, it equals 1, otherwise, it equals zero

Mg If the warehouse g is opened, it equals 1; otherwise, it equals zero

X′cgt The auxiliary binary decision variable for the constraint linearization of constraints

3.1.1. Model Assumptions

• There are different types of vehicles with internal combustion engines.
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• The customers’ locations, service stations, and distribution centers (warehouses)
are specific.

• The demand of each customer is obvious. Each customer has a specific, pre-determined
delivery time for his or her order.

• The fuel consumption of the vehicles is variable and depends on the amount of goods
transported between the two nodes.

• The travel time between node j to node i is calculated using cars. The time to serve the
customers and refuel at the stations is specified for each type of car.

• Each customer’s order is delivered by only one car, but it can serve different customers.
• Each customer’s demand does not exceed the capacity of each group of vehicles.

The vehicles have a fixed speed. Each vehicle is only allowed to refuel once at a
service station.

• Each group of vehicles has a specific and fixed refueling capacity.
• At the fueling stations, the waiting time in the queue will be zero.
• Each tour starts at one of the reopened warehouses and it ends at the same warehouse.

The model’s sets, parameters, and decision variables are expressed above.

Fuel Consumption Estimation Models

Fuel consumption costs have always accounted for a large part proportion of trans-
portation costs, and fuel consumption causes an escalation in terms of the production of
greenhouse gases, the release of environmental pollutants, and an adverse effect on the
ecosystem. Therefore, paying attention to planning, and optimizing logistical activities us-
ing mathematical models, has become necessary. This section will explain how to calculate
and determine the rate and amount of fuel used for car engines when moving between two
nodes [54].

A Model for Calculating the Fuel Consumption of Cars When Moving

The model in Figure 1 was used to calculate the required fuel consumption of a car
engine that advances and moves between vertices.

Formulation of the Car Engine Fuel Consumption Rate

Although the amount of fuel consumption is determined based on traveled distance, to
a large extent, other parameters, such as the amount of transported cargo, are also effective
in terms of reducing the cost of fuel consumption. According to the report published by
the Ministry of Road Organization concerning the transport and tourism infrastructure of
Japan, travel distance and units of fuel used to have a strong relationship and correlation
with increases in vehicle weight (see Figure 2). In Figure 2, the red line (with a square
marker) represents the actual fuel consumption rate, which is shown to be proportional
to an increase in car weight, resulting from the statistical data. The blue line (with a circle
marker) shows the linear regression from this data, which is formulated as Y = 0.08X− 0.03,
and since the indicator for matching the prediction with real data values is equal to 90.2%,
the blue line regression function can confirm the general relationship between the fuel
consumption rate and an increase in vehicle weight.

Figure 2 presents the fuel consumption rate in accordance with the gross vehicle
weight. By generalizing this topic and dividing the gross weight of the vehicle into two
parts, including unlade weight (θc) and loaded weight (θu), the fuel consumption rate
formula can be approximately presented in fuel units per kilometer as a linear function,
depending on the weight of the loaded cargo α(θu); where ω is the angular coefficient
and b is the intercept of the regression function related to determining the car’s fuel
consumption rate.
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Figure 2. Fuel consumption rate based on gross vehicle weight.

α(θu) = ω(θc − θu) + b (1)

If the maximum capacity of vehicle t (maximum loadable weight) is Qt, the fuel
consumption rate at maximum capacity is α∗, and the fuel consumption rate in the unloaded
state is α0, then based on formula one, the values will be obtained in accordance with
relations two and three.

α0 = ωθc + b (2)

α∗ = ω(θc −Qt) + b (3)

Therefore, γ will be obtained using Equation (4), as follows:

ω =
α∗ − α0

Qt
(4)

Similarly, if α(θu), we can write Equation (5) as follows:

α(θu) = α0 +
α∗ − α0

Qt
θu (5)

According to Equations (4) and (5), the rate of consumption (in terms of fuel units
per kilometer) and the amount of fuel consumed (in terms of fuel units) are estimated in
accordance with Equations (6) and (7) in order to move cargo with the weight of Fij from
node i to j.

αcg
(

Fcg
)
= Max

[
α0 +

α∗ − α0

Qt

(
Fcg
)
, 0
]

(6)

f ph
cg = dcg pt

cg
(

Fcg
)

(7)

Introduction of the Objective Functions

In this model, the objective function minimizes the sum of the significant failure costs
in the distribution process, which includes two parts. The total failure cost comprises
the cost of food stacked on top of each other during transportation, the cost of damage
caused by the vehicle stopping during the delivery of customers’ orders, the cost of creating
warehouses, the cost of using cars, the cost of transportation, and the vehicle’s refrigeration
cost. Determining costs associated with the refrigeration of food to prevent spoilage
depends on two factors, as follows:
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3 Heat transfer inside and outside the refrigerator and freezer due to temperature
differences during transportation time.

3 Heat exchange due to air convection during the loading and unloading time. The
vehicles’ cooling system costs can be obtained by calculating the energy consumption
for refrigeration.

3 Regarding the difference in temperature between the outside and inside of the refrig-
erator, the thermal load can be obtained using Equation (8).

Γτ = (1 + α)δ
√

∑ Sw∑ Ss∆T (8)

The thermal load of the vehicle during the loading/unloading time can be obtained
using Equation (9).

Γσ = (0.54LV + 3.22)∆Tβ (9)

where β(0.25,2) is related to the frequency of opening the refrigerator door, thus enabling
its value to be obtained.

Therefore, the Objective Function (OF) of the problem will be defined according to
Equation (10).

MinZ = ∑
c∈C

∑
g∈v′

∑
t∈T

∑
p∈P

θpTRcgqpcXcgt + ∑
c∈C

∑
g∈G

∑
t∈T

∑
p∈P

µpS(g)qpc prpXcgt ∑
g∈G

Fg Mg + ∑
t∈T

∑
c∈C

∑
g∈G

CFtXcgt

+ ∑
c∈C′

∑
g∈V′

∑
t∈T

Ct
(

αt
0Xcgt +

α∗t−αt
0

Qt

(
Fcg
))

dcg + ∑
c∈C

∑
g∈V′

∑
t∈T

(1 + ωt)δ
√

∑ Sw∑ Sn∆TCRtTRcgXcgt

+ ∑
c∈C

∑
g∈G

∑
t∈T

(0.54lv + 3.22)∆TβsgCRtXcgt

(10)

∑
t∈T

∑
g∈V′

Xcgt = 1∀c ∈ C (11)

∑
t∈T

∑
g∈V′

Xcgt ≤ 1∀c ∈ F′ (12)

∑
g∈V′

Fcg − ∑
g∈V′

Fcg = ∑
p∈P

qcp∀c ∈V (13)

∑
g∈V′

Xcgt = ∑
g∈V′

Xcgt∀c ∈ V′, t ∈ T (14)

Fcg ≤ ∑
t∈T

QtXcgt∀c ∈ C, g ∈ V′ (15)

∑
g∈V

Fgt = ∑
g∈V

∑
p∈P

WgtUpcOp∀t ∈ T, c ∈ C (16)

∑
g∈V

Fgc = 0∀c ∈ C (17)

Fcg ≤ ∑
t∈T

(
Qt − ∑

p∈P
qcpOp

)
Xcgt∀c ∈ V, g ∈ V′ (18)

Fcg ≥ ∑
p∈P

UcpOp ∑
t∈T

Xcgt∀c ∈ V′, g ∈ V (19)

∑
c∈V

∑
p∈P

UcpOpWcg ≤ Qg Mg∀g ∈ G (20)

∑
c∈C

∑
g∈G

Xcgt = 1∀t ∈ T (21)
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∑
t∈T

Xtc ≤Wtc∀c ∈ C (22)

∑
t∈T

Xcgt ≤Wct + ∑
g∈G,g 6=t

Wgt ≤ 2∀t ∈ T, (c, g) ∈ C, c 6= g (23)

(
ρt

0Xcgt +
ρ∗t−ρt

0
Qt (Fcg)

)
dcg − (1− Xcgt)Bt ≤ y′ct − y′′gt ≤

(
ρt

0Xcgt +
ρ∗t−ρt

0
Qt (Fcg)

)
dcg + (1− Xcgt)Bt

∀c ∈ V′, t ∈ T, g ∈ F′
(24)

y′ct ≥
(

ρt
0Xcgt +

ρ∗t − ρt
0

Qt (Fcg)

)
dcg∀c ∈ V, t ∈ T, g ∈ G (25)

y′ch = Bh∀h ∈ H, c ∈ V ′′ (26)

Bt −
(

αt
0Xcgt +

α∗t − αt
0

Qt (Fcg)

)
dcg ≥ y′gt∀c ∈ V ′′ , t ∈ T, g ∈ V′ (27)

ESTc ≤ τt
c + Sc ≤ LSTc∀c ∈ C, t ∈ T (28)

τt
c +

(
Sc + tcg

)
Xcgt − τt

c ≤∝
(
1− Xcgt

)
∀c ∈ C, g ∈ V′, t ∈ T (29)

τt
g ≥ τt

c + tcgXcgt + rt
(

Bt − y′′ct
)
Xcgt −

(
∝ +rtBt)(1− Xcgt

)
∀c ∈ F′, ∀g ∈ V′, t ∈ T (30)

∑
c∈V′

∑
g∈F′

Xcgt ≤ 1∀t ∈ T (31)

Xcgt ∈ {0, 1}∀c, g ∈ V′, t ∈ T, c 6= g (32)

Wcg ∈ {0, 1}∀c, g ∈ V′, c 6= g (33)

X′cgt ∈ {0, 1}∀c ∈ F′, ∀g ∈ V′, t ∈ T, c 6= g (34)

Mg ∈ {0, 1}∀g ∈ G (35)

τt
g

〉
0∀t ∈ T, g ∈ V′ (36)

y′gt

〉
0∀t ∈ T, g ∈ V′ (37)

y′′gt

〉
0∀t ∈ T, g ∈ V′ (38)

In this model, constraint (11) indicates that each customer belongs to precisely one
route, which is used only once. Constraint (12) guarantees that each refueling station is
visited only once. Constraint (13) indicates that the demand of each customer is satisfied.
Constraint (14) indicates that the entrance to each vertex equals the number of exits from
that vertex. Constraint (15) indicates that the total goods loaded at each edge should not
exceed the vehicle’s capacity moving on that edge. Constraint (16) indicates the capacity of
each warehouse and ensures that the goods stored in each warehouse satisfies the demand
of customers assigned to that warehouse. Constraint (17) indicates the number of goods
remaining in the vehicle when it returns to the warehouse, which is equal to zero.
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Constraints (18) and (19) represent the capacity of the vehicles. Constraint (20) guaran-
tees that the total demand supplied by warehouses does not exceed the capacity of each
warehouse. Constraint (21) ensures that each customer is assigned to only one warehouse
and vehicle. Constraints (22) and (23) are related to the sub-tour elimination. Constraints
(24) and (25) indicate the conditions for finding the base fuel level of vehicles in successive
vertices. Constraint (26) represents the reduced ability to charge fuel tanks to maximum
capacity at refueling stations and warehouses. Constraint (27) represents the battery level
(fuel tank), which is equal to the fuel tank’s maximum capacity; however, the energy re-
quirement reduces the maximum capacity in the corresponding edge. Constraints (28)–(30)
guarantee that the customers’ time window is not violated. Constraint (31) is related to the
fuel stations and vehicles, indicating that each vehicle can only refuel once. Constraints
(32)–(38) show the decision variables in the model.

3.2. Linearization of the Mathematical Model of the Problem

The mathematical model of the mixed-integer programming (MIP) problem, presented
in this research, is valid in the form of relations (10) to (38), but upon reflection of Constraint
(30), this constraint was found to be nonlinear after multiplying the two decision variables
Xcgt , y′′ct together; this made the model nonlinear. Constraint (30) thus becomes Constraints
(39)–(42) in order to linearize the model, and it is enough to replace these constraints with
Constraint (33) from the previous model.

y′′ct − X′cgt ≤ M−MXcgt∀c ∈ F′, ∀g ∈ V′, t ∈ T (39)

X′cgt ≤ y′′ct∀c ∈ F′, ∀g ∈ V′, t ∈ T (40)

X′cgt ≤ MXcgt∀c ∈ F′, ∀g ∈ V′, t ∈ T (41)

τt
g ≥ τt

c + tcgXcgt + rtBtXcgt − rtX′cgt −
(

M + rtBt)∀c ∈ F′, ∀g ∈ V′, t ∈ T (42)

4. Solution Approaches

In the literature, the classic LRP is considered to be one of the hard problems, and
finding the optimal solution in this field is difficult, even in relatively small dimensions.
Moreover, this problem is complex for large problems, and almost impossible using exact
methods, as per Garey and Johnson (1979) [55]. For this reason, innovative and meta-
heuristic methods have been developed in most studies to solve these problems. In this
section, meta-heuristic algorithms used in this research, the genetic algorithm, and the
simulated annealing algorithm, will be briefly described; then, the efficiency of these
algorithms will be evaluated to solve the introduced mathematical model.

4.1. Genetic Algorithm

A genetic algorithm is a search technique in computer science that aims to find the
optimal solution for complex optimization problems. This algorithm is one of the evolu-
tionary algorithms inspired by biological science, incorporating factors such as inheritance,
mutation, sudden selection, natural selection, and combination. The genetic algorithm is
more efficient at solving discrete and nonlinear problems [56]. First, the answer is shown
to be a 1*g matrix with zero and one rows. One indicates that the warehouse will be built,
and zero indicates that the warehouse will not be built. For example, consider g = 3, the
matrix for which is randomly generated in Table 5, and warehouses two and three are built
in the chromosome mentioned above.
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Table 5. Chromosome with a number of genes that determine the number of warehouses.

Warehouse j1 j2 j3

X1 0 1 1

The second part of the answer shows the allocation of customers to each of the
warehouses. This chromosome is a 1*N matrix whose entries are filled with integers,
indicating that each warehouse is assigned to a customer. For example, consider that the
number of customers equals six, and warehouses two and three have been built; allocating
customers to warehouses would thus occur as shown in Table 6.

Table 6. Chromosome with a number of genes that determine how customers are allocated
to warehouses.

Customer C1 C2 C3 C4 C5 C6

X2 2 1 3 3 2 3

The third part of the answer relates to the sequence of customer visits. This matrix has
dimensions 1*N, and its fields are filled with random sequences of numbers between 1 and
N. This matrix is shown in Table 7.

Table 7. Chromosome with a number of genes that determine the sequence of meeting customers
with cars.

Customer C1 C2 C3 C4 C5 C6

X3 1 2 3 6 4 5

Based on this part of the answer, it is determined how the meeting sequence takes
place, with regard to customers who have been assigned to a warehouse. For example,
based on matrix X2 (Table 6), it was determined that customers 1, 4, and 5 were assigned to
warehouse two. Therefore, based on the X3 matrix, it may be determined that the order in
which these customers should be met by vehicle is 4-5-1.

The fourth part of the answer concerns the sequence where vehicles are allocated to
warehouses. This matrix has dimensions T*1, and its chromosome is shown in Table 8.
Supposing H is equal to 2, the matrix is generated as follows. Customers are first assigned
to vehicle two when routing. Then, after considering restrictions (for example, each vehicle
is allocated to a warehouse or vehicles have a capacity limit), customers are allocated to the
first vehicle.

Table 8. Chromosome with a number of genes that determine the allocation of cars.

Customer C1 C2

X4 2 1

The fifth part of the answer shows the sequence of fuel stations, which is a 1*F matrix,
it shows which fuel stations are allocated to vehicles, and in which order; this chromosome
is shown in Table 9. Supposing F equals 1, this matrix is randomly generated as follows.

Table 9. Chromosome with a number of genes that determine the allocation of fuel stations to cars.

Customer C2 C3 C4 C5

X5 3 2 5 2
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In the presented model, the initial population is generated in the form of a sieve. To
produce each member of the population, warehouses are created randomly, and the dis-
tances between each customer and the warehouses are measured. Then, while considering
the limited capacity of the warehouses, customers are assigned to the closest warehouses.
After allocating customers to warehouses, one vehicle is randomly selected from each ware-
house, along with the customer who is closest to the warehouse (provided that the delivery
can occur within the time window and the nearest fuel station is on route). There should be
sufficient fuel to navigate the distance between the warehouse and the customer and vice
versa. The first customer is selected based on closest distance to the warehouse; then, the
customer with the closest distance to the first customer is selected. This process continues
until all customers assigned to the warehouses are served. To ensure that the answers
are justified in the algorithm, first, all the random answers generated in the semi-code, as
defined in the problem’s limits, are tested; then, the justified answers are accepted and the
unjustified answers are removed from the set of answers.

4.1.1. Crossover

In this algorithm, one-point crossover is used. The operation of crossing to produce a
new generation is randomly applied to two selected parents that are related to one of the
five parts of the answer. For example, the operation of one-point crossover is shown in
Figure 3 for two parent chromosomes that are related to allocating customers to warehouses;
in other words, the second part of the answer display is shown to produce children.
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Figure 3. One-point crossover action on the chromosome in the third gene.

At each point in the crossover process, a gene from two chromosomes, corresponding
to one of the parts of the answer display, is randomly selected, and the crossover action
is performed on that gene. The example in Figure 4 assumes point 2 to be the crossover
point in the second part of the answer display; the produced chromosomes, also shown in
Figure 4, shows the allocation of customers to warehouses.
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4.1.2. Mutation

The mutation operator increases the dispersion of the answers, and the search space is
further investigated. The presented algorithm uses all three types of mutation operators, as
follows: swap, inversion, and insertion. Therefore, in each iteration of the algorithm, one of
these operators is randomly applied to each part of the answer display.

4.1.3. The Stopping Condition

The stopping condition in the presented algorithms reach a certain number of repetitions.
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4.2. Simulated Annealing (SA) Algorithm

The annealing simulation algorithm is a simple and effective meta-heuristic optimiza-
tion algorithm for solving optimization problems. In 1983 and 1985, Kirkpatrick et al.
and Cerny, respectively, used the annealing simulation algorithm for other optimization
problems. The main advantage of the annealing simulation algorithm is its ability to solve
problems at the local optimal point while moving toward the optimal point [57,58].

Neighborhood Structure

To create a neighborhood in this algorithm, three efficiency operators are used, as
follows: 1-swap, 2-inversion, and 3-insertion. They are used for each of the five parts of the
answer display, as mentioned in previous sections. For this purpose, a random number
like P, between 0 and 1, is generated, and then, based on that, changes are applied to one of
the parts of the answer display using the mentioned operators, as shown in Table 10. The
way operators are chosen to create a change and a new neighborhood in each iteration on
each component of the answer display is completely random.

Table 10. Applying neighborhood-building operators to the components of the answer display.

Changes Applied to the Answer Display
Sub-Section Randomly Generated Number (P)

Allocation of warehouses and customers 0 < P ≤ 0.25
The sequence of meeting customers 0.25 < P ≤ 0.50

Allocation of cars 0.50 < P ≤ 0.75
Meeting at fuel stations 0.75 < P ≤ 1

With the creation of new neighborhoods, the conditions for improving within and
between the grid are provided, and the algorithm is able to find more search opportunities
in the solution space. For example, if the random number generated at the beginning of the
neighborhood creation process for a specific iteration of the algorithm is equal to P = 0.20,
and the matrix represents a sequence for meeting customers with an initial answer or an
accepted answer of the previous iteration of the algorithm, then the neighborhood structure
created by applying each of the operations will be one of those shown in Figures 5–8.
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5. Validation of the Mathematics Model for Metaheuristic Algorithms

In this section, the proposed mathematics model is first validated by solving a small-
sized numeric example using LINGO 17.0 software and analyzing the gained results.
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Then, more numeric examples are solved, and the efficiency of the genetic algorithm and
simulated annealing is reviewed. In this article, 46 numerical examples are produced and
placed into three categories, as follows: small, medium, and large. We tried to use data
taken from the literature. The products delivered to customers fall into two types, and the
characteristics of each product are presented in Table 11.

Table 11. Information related to each type of frozen food.

References
The Type of Product

Parameter
Y1 Y2

Zheng and Chen (2014) [35] USD 20 USD 75 Pγ

Zheng and Chen (2014) [35] 0.070% 0.2% µγ

Zheng and Chen (2014) [35] 0.04% 0.8% θγ

Wang et al. (2018) [53] 10 Kg 10 Kg Oγ

To determine geographic location and customer demand, as well as the coordinates of
potential distribution centers, we used data taken from the article by Wang et al. (2016),
relating to the MPF Logistics Company in China; this company is active in the field of
warehousing and the distribution of cold foods such as dairy products and frozen meat.
This center has 60 customers and 0 potential distribution centers in the main area, with
a total capacity of 700 tons. At first, a number is generated randomly with a uniform
distribution in the interval (4, 40); this is the earliest service time for customers. Then,
a number is randomly generated in the interval (1, 10); this is the latest service time for
customers. The duration of customer service is also generated as a random number with
a uniform distribution in the interval (0.04, 0.60). The speed of movement for all types of
cars is fixed and equal to 400 km/h, six vehicles were used, and their other specifications
are shown below. The cost of building each of the depots varies for each of the examples,
and the interval is random, with a uniform distribution between (200, 4200). Other data are
assumed to be constant for all examples, as shown in Table 12.

Table 12. Information related to each vehicle.

Parameter Value

rh U(0.0083; 0.04)
ρh

0 U(0; 1)
ρ∗h U(0.1; 2)
Ch U(1, 100) $/lit

CFh U(10; 500)
CRh U(0.05; 1) $
Qh U(100; 1000) kg
Bh U(5; 100)

5.1. Validation of the Mathematical Model and Solving A Small Numerical Example

For this purpose, first, a small numerical example including two customers, two
potential distribution centers, four fuel stations, and two cars was produced. It noted the
considerations defined in Sections 1 and 2, and then, in order to validate and demonstrate
the capability of the model, the problem was divided into two scenarios. The capacity of the
fuel tanks of cars, according to the values mentioned in Tables 13 and 14, was considered.
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Table 13. Data related to the refrigeration system and other parameters of the problem.

Parameter Value

β (0; 1)
ε (0; 1)

∆T (1, 50)
External dimensions of the refrigerator 496 × 172 × 246 cm
Internal dimensions of the refrigerator 280 × 155 × 154 cm

ε Kcal2.49
Lv 0.08

Table 14. The results of the exact solution of the small numerical example, obtained using Lingo.
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%−2.0 %−2.1 %+0.5 54 172.4 6 1914.2 2 1904.2 4 1 1 6 3 2

Small
%−1.5 %+1.7 %+3 87 190.8 7 1034.5 15 1074.8 2 1 1 8 3 2
%−1 %−3.6 %−2.8 108 289.0 9 3114.1 144 2174.6 4 2 1 10 4 2

%−2.0 %−3.1 %+3.4 191 407.4 19 2323.3 1955 3245.7 5 2 1 9 4 5
%−2.8 %−1.4 %+1.2 206 301.5 17 2271.9 1422 2241.8 4 2 1 12 3 1
%−0.5 %−1.5 %−1.1 260 167.0 22 5321.9 17,150 2347.9 4 2 1 15 4 6

Middle
%−1.5 %−2.4 %−0.9 259 2457.2 25 4495.5 3921 2019.0 4 2 2 15 4 8
%−5.1 - - 357 2708.3 31 2853.5 - - 3 3 1 50 4 8
%−10.2 - - 372 279.1 37 3230.1 - - 4 2 2 20 4 9
%−15 - - 807 8926.7 80 1057.7 - - 10 1 4 55 4 13
%−10.2 - - 1855 101.8 170 11,290.5 - - 8 6 4 45 5 11

Large
- - - 2874 173.6 222 1330.6 - - 9 6 5 45 5 10
- - - 4862 153.5 334 1740.2 - - 6 10 3 55 7 12
- - - 5150 142.0 339 1653.6 - - 10 5 4 60 5 14
- - - 5156 153.1 233 15,655.3 - - 7 11 6 60 5 15

Reducing the capacity of the fuel tanks of electric and combustion vehicles to 20 and
10 fuel units, respectively, was coded and solved using Lingo software, and the results
obtained from solving each scenario are shown in below. In the following section, the level
of fuel consumption is assumed to occur at a constant rate, and at a rate that is equal to
the average fuel consumption rate; fuel consumption is also reviewed when the vehicle is
unloaded and at full capacity.

In scenario A, despite the restrictions related to consumption and the level of fuel in
the tanks of cars, due to the adequate level of fuel in the tanks of cars that are in the process
of serving customers, there is no need refuel any of the cars at fuel stations. By reducing the
capacity of the fuel tanks of the cars in scenario B, car number two (veh2) travels to refueling
station number three (f3) in order to continue the route, and after charging and bringing
the fuel level of the tank to its maximum capacity, it continues its journey. If there was no
possibility of refueling cars in scenario B, the problem would have no optimal solution. The
costs of the distribution process of each scenario are shown in Figures 9 and 10.
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In the following section, the fuel consumption of each of the scenarios was evaluated
and analyzed based on the assumption that fuel consumption occurs at a constant rate
and that it is equal to the average fuel consumption rate; fuel consumption was measured
when the vehicle was unloaded and at capacity, as shown Table 15. The results confirm an
average saving of 42.2% in fuel consumption, compared with the existing models which
have a fixed fuel consumption rate.
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Table 15. Comparison of the fuel consumption of the proposed model compared with other models
that have a fixed fuel consumption rate.

Scenario Vehicle
Number

Fuel
Consumption

Unit

Fixed Fuel
Consumption

Rate

Total Engine
Mileage

(km)

Amount of Fuel Consumed The Amount by which
Fuel Consumption

Increased/Decreased in
the Proposed Model

Compared with other
Models (%)

Proposed
Model

Common
Models With

Fixed Fuel
Consumption

Rates

A
Veh1 Jules

/km 1.6 218.6 111.7 252.8 −9%

Veh2 lit/km 0.241 50 11.30 10.72 −26.11%

B
Veh1 Jules

/km 1.5 14.2 12.04 21.4 −20.3%

Veh2 lit/km 0.270 209.4 59.03 70.43 −19.9%
Total 367.44 47.40 −12.8%

5.2. Setting the Parameters of Meta-Heuristic Algorithms

To adjust the parameters of the proposed solution algorithms in this research, the
Taguchi test method was used, and the results of this test were reported as average effects
using Minitab version 17.1 software for each of the algorithms. Finally, the optimal levels
of each of the parameters of the algorithms were determined.

To validate the proposed algorithms, the solution for these algorithms, regarding
small-size problems, will be compared with the optimal solution obtained from the Lingo
17.0 software. Regarding the reported numerical examples, problems which required
processing times of more than 3 h, using the Lingo software, are omitted. The number of
repetitions of algorithm loops after multiple executions is experimentally relative to the
resulting convergence; to obtain a relatively suitable answer in a reasonable solution time,
the required number of repetitions is considered to be 200. Each problem was solved five
times with each of the algorithms on a personal computer with 21.2 GHz Intel, 2 GB RAM
Core5, and the best solution is shown in the computational results, displayed in Tables 16
and 17. Regarding the solved numerical examples with small dimensions, the maximum
deviation of the refrigeration and genetic simulation algorithm, compared with the solution
obtained from the exact solution, is 2.1% and 2.6%, respectively. Due to the insignificant
number of deviations, the performance of both algorithms for solving the proposed model
is acceptable. However, by comparing the answers obtained from each algorithm, we
found that the genetic algorithm provided better answers than the refrigeration simulation
algorithm. To increase the validity of the proposed algorithms, in addition to comparing
the answers and the obtained solution times, the paired t-test was used. First, we tested
the hypothesis of improvement using the performance of the genetic algorithm, which
was compared with the improvement of the refrigeration simulation algorithm in terms
of solution and solution time. For this purpose, two hypothesis 1 and hypothesis zero are
as follows: the answer to the refrigeration simulation algorithm is equal to the genetic
algorithm, or conversely, the solution to the refrigeration simulation algorithm is more
significant than the genetic algorithm; and the solution time of the genetic algorithm is
equal to that of the refrigeration simulation algorithm.
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Table 16. The set parameters of meta-heuristic algorithms.

Algorithm Type The Name of the Parameter

Limits of Tested Values
of Parameters

Confirmed Values of
Parameters from the n

Taguchi TestLower Middle Upper

Genetic
Number of primitive Population 60 80 100 100

Intersection rate 65% 75% 85% 65%
Mutation rate 20% 30% 40% 40%

Simulated
Annealing

Initial temperature 80 100 120 100
Rate of reduction in terms

of temperature 65% 80% 99% 65%

Table 17. Data sources for the parametric settings of the meta-heuristic algorithm.

Sources

EDR Santibanez Gonzalez et al. (2023) [34]
Goodarzian et al. (2023) [59]

Hasan et al. (2023) [60]

The parameter settings of the meta-heuristic algorithm were taken from different
literature sources, which we have listed in Table 18.

Table 18. Comparative results from solving numerical examples of the model with meta-
heuristic algorithms.
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A

Veh1 34,000 3560

C1 G2 11.8 3760

1.2

0.901 1.814 51.3 243.7 2.56

198.90
C3 G1 34.5 2950 0.651 1.632 35.1 248.6 3.35
C4 G8 100.6 1520 0.473 1.143 51.2 247.3 7.91
C8 G5 99.4 1091 0.202 1.304 46.2 24,811 8.6
C3 G6 7.7 670 0.158 43.6 247.8 11.75
C10 G2 49.2 12.6 0.1 1.2 49.2 248.2 12.49

Veh2 52 9073

C1 G7 80.7 2880

0.105

0.249 0.213 3.2 56.8 3.61
C5 G10 21.6 1610 0.031 0.205 4.3 52.5 4.43
C1 G5 14.9 350 0.088 0.189 2.5 49.8 9.22
C9 G2 6.8 15.4 0.01 0.11 1.1 48.7 11.07

B

Veh1 43 3560
C8 G5 25.8 750

1.5
0.219 1.211 8.24 20.76 9.37

C2 G5 6.8 10.1 0.18 1 6.80 14.90 10.55

Veh2 37 9073

C6 C2 40.7 4200

0.199

0.011 0.264 5.71 34.29 0.70
C2 G4 44.9 2867 0.061 0.092 7.25 18.72 2.56
C7 G1 53.5 2251 0.052 0.218 4.60 15.04 3.35 26.47
C9 G5 60.6 1769 0.033 0.205 7.1 7.95 5.66
C8 G3 77.7 1022 0.025 0.180 6.04 1.91 6.32
C3 G2 9.4 1050 0.025 0.190 12.84 27.16 7.98
C7 G6 8.7 500 0.010 0.175 6.41 20.75 8.6
C6 G2 10.3 10.1 0 0.165 2.37 18.39 9.14

Based on the results, the null hypothesis is rejected in both tests, and the opposite
hypothesis is accepted. In other words, the response values of the refrigeration simulation
algorithm are larger than the genetic algorithm, and this issue can also be seen in the palette
box diagram. Conversely, the solving time of the genetic algorithm is larger than that of the
refrigeration simulation algorithm.
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5.3. Managerial Insights

The paper proposed a location–routing model for a cold supply chain in emergency
conditions to minimize relief cost, traveling time, and CO2 emissions. The paper also
considers the impact of COVID-19 on the supply chain network and relief logistics. The
managerial insights of the paper are reported in before, which includes the proposed
model’s effectiveness in terms of minimizing relief costs, traveling time, and CO2 emissions.
The paper also highlights the importance of considering the impact of COVID-19 on the
supply chain network and relief logistics. The proposed model can help decision makers
design a sustainable cold supply chain for use in emergencies while considering the impact
of the COVID-19 disaster.

6. Conclusions and Future Suggestions

This paper proposes a new mathematical model for location–routing problems in a
sustainable cold supply chain while considering the COVID-19 disaster. The proposed
model aimed to minimize the total cost of the supply chain, including transportation,
inventory, and facility costs, while ensuring that the cold chain requirements were met.
We also considered the impact of the COVID-19 pandemic on the supply chain, and we
proposed a contingency plan to mitigate the associated risks.

To solve the proposed model, we used two algorithms, the simulated annealing
algorithm and the genetic algorithm. The results of the computational experiments showed
that the proposed algorithm could find high-quality solutions in a reasonable amount
of time.

In this study, to align the problem more closely with real-world conditions and to
make it more practical, we aimed to minimize environmental and economic risks in the
logistics process; a heterogeneous fleet that used unconventional fuels was employed, and
the amount of fuel that was used depended on the size of the load between the vertices.
This problem was first modeled by considering limitations and assumptions, and then,
the exponential time complexity of solving the problem in medium and large dimensions
was considered. Genetic algorithms and refrigeration simulations were developed to
solve the proposed problem. To validate the presented mathematical model, first, a small
numerical example was solved accurately using Lingo software; the model confirmed an
average saving of 41% in terms of fuel consumption. In the next section, 15 numerical
examples were generated and placed into three categories, small, medium, and large. The
performance of the algorithms was then evaluated and tested to solve the presented model.
The results show the genetic algorithm’s high quality in terms of finding a suitable solution
for the model, as compared with the refrigeration simulation algorithm, especially when
the problem-solving time is less favorable.

Future research can build on the work presented in this paper in several ways. First,
the proposed model can be extended to consider other types of disasters, such as natural
disasters or terrorist attacks. Second, the model can be modified to include more realistic
assumptions, such as time-varying demands and capacity constraints. Third, the proposed
algorithm can be further improved by incorporating other meta-heuristic algorithms or
developing more efficient solution techniques. Finally, the proposed model can be applied
to real-world case studies to evaluate its practicality and effectiveness.

Due to the need to maintain the freshness of food in the cold distribution chain, and
with the expansion of online shopping, along with the advancement of information and
communication technology, using the satisfaction function to reduce the duration and
number of tours, as well as the number of times the refrigerator door is opened and closed,
is an avenue for future research. Problem-solving in the form of two goals with opposite
goals is also suggested as a future field of development based on the current study.

Moreover, noting the necessity of fuel consumption to refrigerate food in the real-
world of refrigerated vehicles and considering fuel consumption in this regard, coupled
with understanding the amount of fuel required to travel the distance between nodes, can
be a proposed area of future research.
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