
Citation: Chen, H.; Dai, S.; Meng, F.

Smart Building Thermal

Management: A Data-Driven

Approach Based on Dynamic and

Consensus Clustering. Sustainability

2023, 15, 15489. https://doi.org/

10.3390/su152115489

Academic Editors: Chuanmin Mi,

Wang Luo and Jian Liu

Received: 3 October 2023

Revised: 20 October 2023

Accepted: 27 October 2023

Published: 31 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Smart Building Thermal Management: A Data-Driven
Approach Based on Dynamic and Consensus Clustering
Hua Chen 1,†, Shuang Dai 2,†, and Fanlin Meng 2,*

1 School of Economics, Fujian Normal University, Fuzhou 350117, China
2 Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, UK
* Correspondence: fanlin.meng@essex.ac.uk
† These authors contributed equally to this work.

Abstract: A customized and cost-effective building thermal control system is critical for accommo-
dating thermal performance differences within the building, as well as satisfying the individual
thermal comfort needs of occupants. Moreover, incorporating a building indoor thermal simulation
procedure into the thermal control system can reduce the necessity of installing various expensive
sensors (e.g., wearable sensors for personal thermal comfort management) in individual offices,
as well as the requirement of extensive computing facilities without rendering the control perfor-
mance, resulting into more sustainable building operations. An important step in achieving the
above-mentioned goal is understanding how different offices/rooms behave differently given the
same outdoor weather conditions. This study proposes a smart building indoor thermal profiling
system to identify underlying physical factors that affect thermal performance in different seasons
and to track dynamic cluster trajectories of considered offices to suggest indoor thermal optimization
strategies. A consensus-based clustering approach is adopted to robustly cluster offices into different
groups based on their hourly indoor temperature profiles for different seasons. Experimental results
showed that our proposed approach could effectively discover more indoor thermal patterns in
the buildings and is able to identify distinct dynamic cluster trajectories across four seasons (i.e.,
eight distinct dynamic trajectories in our case study). The data-driven analysis conducted in this
study also indicated promising applications of the proposed smart building indoor thermal profiling
system in effectively guiding the design of customized thermal control strategies for buildings. It
also suggested that the proposed approach could be applied to a wide range of other applications,
such as customized building energy management, energy pricing, as well as the economic benefit
analysis of building retrofits and design.

Keywords: building efficiency; dynamic and consensus-based clustering; indoor temperature
profiling; sustainable buildings; thermal comfort

1. Introduction

The building sector contributes to nearly 40% of total carbon emissions [1], leading to
global warming, which poses a significant global challenge [2]. In addition, the energy con-
sumption of buildings (e.g., office/public buildings) is the largest contributor, accounting
for around 50% of the overall energy consumption in the world [3]. The thermal control
systems installed in these buildings are designed to reduce energy consumption and carbon
emissions, as well as to provide residents with enhanced thermal comfort where HVAC
systems are popular options for optimizing the thermal comfort of building occupants. A
thermostat transmits information about the temperature of a room throughout a building to
a central heating or cooling system, which adjusts the temperature in that area accordingly.
The indoor thermal comfort of a building, however, is also determined by its physical
characteristics, such as its floor level and the surrounding environment. For complex
built environments, it may be difficult for a thermal control system to effectively optimize
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thermal comfort and maximize energy efficiency simultaneously, especially for buildings
with multiple types of offices. Furthermore, continuous monitoring of room temperatures
may not always be feasible due to the high cost of installing thermostats in each room.

There are a few studies considering thermal comfort as part of their building and envi-
ronment management models [4–7]. In addition, the impact of thermal comfort on different
occupants, such as elderly people and university students, was studied in [8,9]. Recent
studies have also examined individual/personalized thermal comfort and the underlying
HVAC control systems (e.g., personalized HVAC systems) utilizing various sensor technolo-
gies and taking into account personal thermal comfort and ambient environments [10–14].
Most of these studies assess the potential impact as a consequence of technological changes
without taking into account the influence of physical factors and external dynamic en-
vironments. Furthermore, the use of sensors around occupants to enable personalized
comfort management may pose challenges to the occupant’s living experience and privacy.
Moreover, personalized thermal comfort systems entail individual learning systems for
each office, which can be prohibitively expensive in large buildings. Thus, a less intrusive
and more cost-effective solution that accounts for thermal differences among different
offices is needed.

Motivated by the above analysis, in this paper, we propose a dynamic and consensus
clustering-based indoor thermal profiling system for customized building thermal control.
The system investigates the relationship between physical information (e.g., floor area, floor
level, etc.) of offices and their thermal behaviors within each cluster over different seasons,
and analyzes the dynamic cluster trajectory of individual offices throughout the year to
identify optimal indoor thermal control strategies. Customized building thermal control
strategies could be derived and, therefore, recommended to the building operator/manager.
The main contributions of this paper are summarized as follows.

• We developed a data-driven indoor thermal profiling system based on dynamic and
consensus clustering, which is important for understanding differences in building
thermal performance among individual offices over different seasons. To the best of
our knowledge, the proposed system is the first of its kind in the building simulation
research community. The proposed system could bring significant benefits, such as
facilitating customized building thermal control strategies and enabling robust and
cost-effective building energy management among many others.

• A consensus clustering approach with a dynamic clustering structure is developed for
the proposed system, which enables the identification of different thermal behaviors
during different seasons and the change of behaviors over different seasons.

• The developed system takes advantage of the cost-effective building indoor thermal
simulation instead of installing costly monitoring sensors (a much better scalability
for large-scale analysis), and establishes the links between building physical factors
(e.g., floor level, floor area, orientation) and indoor thermal performance.

• The developed system is tested on a hypothetical 7-story office building consist-
ing of 84 offices. Extensive experiment results, analysis, and managerial insights
are provided.

The rest of the paper is organized as follows: Section 2 provides a review of related
studies. Section 3 details the proposed four-layer system framework. Section 4 presents
the results and discusses the practical implications of results and their potential wider
applications. Section 5 concludes the paper and discusses future research directions.

2. Related Work

In this section, we will review related work that motivated this research. First, existing
studies on building indoor thermal information simulation will be discussed, followed
by existing research on indoor thermal-related factors. Finally, we will review existing
approaches to indoor thermal profile modeling.
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2.1. Building Indoor Thermal Information Simulation

The objective of a building simulation program is to simulate the indoor–outdoor
environment associated with a target building by utilizing thermodynamic algorithms [15].
Building simulation programs can quantify the building environment for occupants, iden-
tify areas of improvement, and suggest potential solutions for the designer to maximize
the energy efficiency [16]. There have been several simulation tools developed as a con-
sequence, which are used in a variety of applications, such as the renovation of building
envelopes and systems, and the control of energy-consuming equipment in buildings.

For the renovations of building envelopes and systems, Ref. [3] presented a hybrid
approach integrating energy simulations and validation, orthogonal array testing, and data
envelope analysis to determine the optimal method of retrofitting a building envelope to
achieve energy-efficient operations. The study used DesignBuilder to analyze and simulate
the energy consumption of commercial buildings and identify physical factors affecting
energy efficiency for the purpose of retrofitting the building envelope. Moreover, Ref. [17]
constructed two energy models and assessed the energy consumption of conventional
white roofs and new green roofs using eQuest. It was found that the application of green
roofs reduced the amount of electricity consumed annually for space heating and cooling.
For building energy-consuming equipment control, Ref. [18] developed an HVAC model
using EnergyPlus and transient system simulation tools. Combined with Simulink, an
HVAC fuzzy logic controller was designed for thermal comfort management. A compar-
ative experiment showed that the fuzzy HVAC controller was capable of reducing the
non-comfort time by more than half in terms of the thermal comfort provided to building
occupants. Recently, a digital twin platform was developed in [14] combining building
physical spatial data from the building information model (BIM) and occupant feedback
temporal data from the smartwatch-based ecological momentary assessments to inform
personal thermal comfort management. Furthermore, through co-simulation with Ener-
gyPlus and CONTAM, a coupled building model was developed in [19] to implement a
control strategy for energy-consuming equipment by analyzing different air re-circulation
strategies. It was found that both the energy consumption and the quality of the indoor
air could be improved. The results of the above studies indicate that building simulations
can assist with indoor thermal control and reduce energy consumption. In light of these
facts, this paper utilizes EnergyPlus and DesignBuilder to generate a synthetic commercial
building of different indoor thermal behavior patterns.

2.2. Indoor Thermal-Related Factors

The research on building thermal control has focused on analyzing interactions be-
tween the indoor thermal profile of buildings and their energy-consuming equipment to
optimize energy consumption and thermal comfort. Specific observable (and monitored)
variables are correlated with changes in indoor thermal conditions over various time pe-
riods (e.g., different seasons). These variables typically include indoor information (e.g.,
floor level, room area, room orientation) and the outdoor environment (e.g., outdoor air
temperature, solar radiation rate). Different thermal profiles not only indicate that differ-
ent occupants use the building in different ways, but may also indicate different comfort
requirements of occupants.

In [20], 5 of the 27 factors have been incorporated into building performance simula-
tions to model space-heating behavior, including room type, occupancy, indoor relative
humidity, outdoor temperature, and time of day. Similarly, according to [21], building phys-
ical environmental variables, including outdoor temperatures, indoor relative humidity,
and solar radiation, all influence occupant behavior during the heating season, illustrat-
ing the potential impact of physical environmental variables on indoor thermal profiles.
Ref. [22] examined household behavior regarding the adoption of appliances with thermal
control systems. They found that the floor area and the social information of residents were
closely related to household behavior. In order to determine the thermal comfort profiles,
Ref. [23] installed different sensors and data loggers for monitoring temperature, relative
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humidity, and carbon dioxide concentration in different office buildings. The study found
that thermal comfort was significantly influenced by environmental indicators, the type
of office, and the type of work. Moreover, Ref. [24] concluded that solar radiation, as a
quasi-thermal parameter, has a direct impact on indoor thermal profile. On the other hand,
Ref. [25] pointed out that an excessively complex building model would be difficult to
embed in the energy system operation and control. The study selected the heating/cooling
power, the outdoor temperature, and the solar radiation power to model the building’s
thermal profile. Additionally, they used a parameter that represents the impact of occupant
behavior to improve the model accuracy. The above studies have shown that building
physical factors, such as building design or the outdoor environment, can have a significant
impact on building thermal performance. Thus, this research examines the interplay be-
tween multiple building physical parameters and thermal profiles, as well as the impact of
outdoor weather on the indoor thermal environment over time (e.g., in different seasons).

2.3. Indoor Thermal Profile Modeling

Accurately analyzing the dynamic thermal profile of buildings is the basis for utilizing
thermal inertia to provide operational flexibility for energy systems. Many approaches have
been proposed for modeling the thermal profile of buildings, among which unsupervised
learning has been given considerable attention in recent years.

The most commonly used unsupervised learning techniques are clustering methods.
Ref. [26] adopted K-means to cluster UK occupancy profiles based on the UK 2000 Time
Use Survey data, and finally identified 22 occupancy clusters on weekdays and 24 occu-
pancy clusters on weekends. Similarly, Ref. [27] utilized K-means to obtain representative
electricity demand profiles for Great Britain based on hourly demand and weather data.
Instead of K-means, Ref. [28] combined principle component analysis with a two-step
clustering method to analyze the heating behavior in residential buildings, which can
automatically select the optimal number of clusters. The experiments found that different
households have different thermal comfort preferences during the same hours. Ref. [29]
used five clustering methods—hierarchical, K-means, Gaussian-mixture models, fuzzy, and
self-organization maps—to cluster the energy and thermal comfort for the office building.
Three cluster internal validity indices were jointly used to evaluate the cluster results, and
experiment results showed that fuzzy clustering is the most suitable clustering technique
for thermal comfort.

On the other hand, in order to capture the time-evolving variations of indoor thermal
profiles, time series clustering was used in recent studies. Ref. [30] compared K-means and
time series clustering for assessing the performance of HVAC zoning and controls system
in the commercial building, and it found that time series clustering performed better than
K-means clustering. Moreover, Ref. [31] adopted K-shape clustering to analyze the indoor
thermal profile in Brisbane, Australia, during different seasons, and experiment results
showed that residents in Brisbane may be at risk of exposure to low and high temperatures
during cold and warm seasons.

Although various clustering methods have been employed for indoor thermal profile
modeling, the following two key points have not received sufficient attention: (1) there is no
consensus on the best clustering algorithm for each indoor thermal dataset; (2) clustering
analyses usually focus on a certain fixed period of time. To overcome the limitations of
existing studies, a dynamic clustering structure based on consensus-based robust clus-
tering was proposed in this study to analyze seasonal variations in thermal profiles of
offices/rooms in buildings. Through the use of the proposed dynamic clustering structure,
strategies can be developed to optimize indoor thermal comfort, which has a direct impact
on maximizing energy efficiency and occupant productivity.
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3. System Framework
3.1. Overall Framework

In this paper, we consider a hypothetical office building in northern China where the
demand for HVAC energy consumption in different seasons varies. To achieve customized
building thermal control, we are interested in knowing how indoor temperature changes
given different outdoor weather conditions. For an office building, it is not surprising
to experience different indoor thermal conditions in different offices given the same out-
door weather conditions. Therefore, this study also aims to understand the relationship
between physical factors and thermal profiles of different offices in the office building over
different seasons.

A graphical overview of the system is shown in Figure 1 and explained step-by-step
in Sections 3.2–3.5. Specifically, the proposed system framework contains four layers. In
layer 1 (Section 3.2), the indoor thermal information simulation process collects building
physical factors, as well as indoor thermal patterns and outdoor weather conditions, which
are passed to layer 2. Layer 2 (Section 3.3) then segments the thermal information for each
office into seasonal time series and normalizes the thermal information to prepare it for
unsupervised modeling. Subsequently, layer 3 (Section 3.4) conducts the consensus-based
robust clustering to find typical thermal patterns in different time periods. Finally, layer 4
analyzes the clustering profiles including their relationship with building physical factors,
and constructs the dynamic indoor thermal profiles trajectory tracking route. By analyzing
cluster results, key drivers that affect indoor temperatures can be identified, which can help
to develop customized thermal control strategies for each office cluster.
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Figure 1. The system framework of clustering-based indoor temperature profiling.
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3.2. Indoor Thermal Information Simulation

The majority of existing studies on indoor thermal variation at the office level are
conducted in controlled environments with thermal cameras and other expensive equip-
ment [32]. Instead of installing various sensors to collect data from a real-world building,
building simulation is a cost-effective alternative especially useful for the planning stage,
e.g., in evaluating the feasibility of different technologies/concepts, and sizing of differ-
ent building components. In this paper, we adopt an EnergyPlus (for simulation) and
DesignBuilder (for building 3D modeling) based building simulation model to generate
the hourly temperature data in each office within the building given different outdoor
weather conditions.

First, a seven-floor (ground floor to sixth floor, encoded from 1 to 7 for the quantitative
analysis) conceptual office building was considered as the testing case where the 3D
building was modeled in DesignBuilder (see Figure 2). Each floor has 12 office rooms, and
they all lie down the west and north sides of the building (see Figure 3). The office has the
same room and window dimensions at the same position on different floors.

(a) (b) (c)
Figure 2. The seven-floor conceptual office modeled in DesignBuilder, (a) front elevation; (b) north-
east elevation; (c) south elevation.

(a) (b)
Figure 3. Floor plan of the conceptual office, (a) floor plan of the ground floor, (b) floor plan of the
non-ground floor.

There are nine office rooms on the west side on each floor. The office rooms positioned
in the middle of the west side each have one window, with the window sizes varying
from 2.75 sqr.m to 5.27 sqr.m. The office room set on both ends of the west side has two
windows. The south corner office on the west side has one west-facing window with a size
of 5.27 sqr.m and another south-facing window with 7.20 sqr.m. The north corner office
on the west side also has one west-facing window with a window size of 4.67 sqr.m and
another north-facing window with 7.20 sqr.m. The office area on the west side varies from
19.15 sqr.m to 38.68 sqr.m.
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Additionally, there are 3 offices on the north side on each floor. Each office has one
north-facing window with a window size of about 4.1 sqr.m. Each office also has a varying
room area from 28.56 sqr.m to 32.59 sqr.m.

The physical information of offices in the simulated building is summarized in Table 1,
where the detailed physical information for each office room is provided in Appendix A
Table A1.

Table 1. Physical information for the simulated offices.

Physical Information Category Number of Offices
on Each Floor

Number of Offices
on Seven Floors

% of Total Number of Offices
in the Building

Orientation
North 3 21 25
West 8 56 66.7

West/North 1 7 8.3

Floor area (m2)

19.15 2 14 16.7
22.78 2 14 16.7
27.04 2 14 16.7
28.56 1 7 8.3
31.5 1 7 8.3
32.59 1 7 8.3
34.22 2 14 16.7
38.68 1 7 8.3

The DesignBuilder-based 3D building model was then input into EnergyPlus for
thermal simulation. The default office activity schedule was applied to the associated
modeled rooms while the default building regulation Part L 2013 data were applied to the
construction setting of the modeled office building. HVAC systems are not included in the
building model, and the indoor temperature is, therefore, only associated with building
physical parameters and outside environmental parameters. After the simulation process
using EnergyPlus, the whole year’s indoor thermal conditions for the modeled conceptual
office building were obtained.

3.3. Indoor Thermal Information Management

To understand the typical characteristics of the obtained thermal information, we first
briefly analyze the indoor temperature changes associated with different floor levels and
orientations in different seasons. Figure 4 shows the average indoor temperature of offices
on different floors in different seasons.

As can be observed, the ground floor has the lowest indoor temperature in spring,
summer, and autumn, while it becomes the highest during the daytime in winter. Fur-
thermore, during the transition seasons (spring and autumn), lower and middle floors
(second and third floors) tend to have higher indoor temperatures. On the other hand,
during summer months, the middle floors (third and fourth floors) have the highest indoor
temperatures, reaching 44.01 Celsius at 17:00, while the ground floor has the coolest indoor
temperature. In general, for winter months, offices on higher floors tend to be cooler (for
instance, on the top floor the average room temperature at 6:00 is only 9.35 Celsius). Instead,
offices on lower floors tend to be warmer in the cold season.

Based on the above seasonal segmentation, we aim to model the thermal profiles of
offices in layer 3 using unsupervised learning techniques. However, it is important for
these algorithms to deal with scale invariance to prioritize the shape features of the thermal
patterns over amplitude features, especially for time series clustering [33–35]. Therefore,
z-normalization was used to normalize the thermal profiles:

Zi =
xi − µi

si
(1)
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where Zi are the normalized values calculated for all thermal profiles xi for season i. µi
and si represent the mean feature value and the standard deviation, respectively. For the
seasonal thermal profiles, we use the mean feature value and the standard deviation over
the season months. This will enable us to determine the dynamic trajectory of the indoor
temperature profile under different weather conditions and seasons.

10

20

30

00:00 06:00 12:00 18:00 23:00
Hour of Day

Te
m

pe
ra

tu
re

 (C
)

Ground floor

First floor

Second floor

Third floor

Fourth floor

Fifth floor

Sixth floor

Outdoor

Spring

20

30

40

00:00 06:00 12:00 18:00 23:00
Hour of Day

Te
m

pe
ra

tu
re

 (C
)

Ground floor

First floor

Second floor

Third floor

Fourth floor

Fifth floor

Sixth floor

Outdoor

Summer

10

15

20

25

00:00 06:00 12:00 18:00 23:00
Hour of Day

Te
m

pe
ra

tu
re

 (C
)

Ground floor

First floor

Second floor

Third floor

Fourth floor

Fifth floor

Sixth floor

Outdoor

Autumn

5

10

15

20

00:00 06:00 12:00 18:00 23:00
Hour of Day

Te
m

pe
ra

tu
re

 (C
)

Ground floor

First floor

Second floor

Third floor

Fourth floor

Fifth floor

Sixth floor

Outdoor

Winter

Figure 4. Average indoor temperature of different floors in different seasons. OT: outdoor temperature.

To assess the suitability for clustering before and after the z-normalization, we consider
Hopkins’ statistical scores for the raw and z-normalized data in the four seasons, which are
shown in Table 2. The Hopkins statistical score represents the degree of randomness in a
dataset, which is calculated by comparing the sum of distances between random points
in the data with the sum of distances between random points in a uniformly distributed
reference set. A Hopkins score near 0.5 indicates high randomness, whereas a score
near 1 (or 0) indicates high clustering (or dispersion) [36]. The results indicate that the
z-normalized data produce the highest scores for all four seasons, suggesting that more
meaningful clusters are present in the data set after z-normalization.

Table 2. Hopkins statistical scores.

Cluster Tendency (Hopkins Statistic)

Spring Summer Autumn Winter

Raw data 0.96 0.95 0.96 0.91
Z-normalized data 0.98 0.98 0.98 0.97

3.4. Consensus-Based Unsupervised Modeling

In layer 3, we perform clustering on the normalized seasonal indoor thermal seg-
ments. Clustering algorithms must take into account two key components, namely distance
measures and prototyping functions [37]. It was demonstrated that clustering results can
be unstable when only one clustering algorithm is used [38,39], and for this reason, we
employ consensus-based robust clustering across multiple distance metrics and prototype
combinations. Table 3 lists the clustering algorithm combinations used in this paper. Note
that clustering is only one type of unsupervised learning method that could be applicable
to our problem. For instance, the hierarchical Bayesian non-parametric model proposed
in [40] could be considered in our future work for the problem.
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The Euclidean distance [41], which approximates a one-to-one correspondence be-
tween each pair of sequences, is the most commonly used distance measure. However, for
time series data (like the thermal profiles data we are considering), the distance measure
needs to be invariant to specific distortions of the data to yield accurate results, which has
been regarded as a limitation of the Euclidean distance [41]. Therefore, except for using
the Euclidean distance, two state-of-the-art distance measures, namely the dynamic time-
warping distance (DTW) [42] and the shape-based distance (SBD) [43] are also adopted in
this paper to produce comprehensive similarity measures for thermal profile clustering.

To quantitatively choose the optimal number of clusters and evaluate the clustering
results, three cluster validity indices (CVIs) are used in the validation process to produce
robust validation results: the silhouette index, Davies–Bouldin (DB) index, and Calinski–
Harabasz (CH) index. These metrics simultaneously measure the cohesion of the objects
within clusters and the separation between clusters. For the silhouette index, it contrasts
the average distance of objects within the same cluster to the average distance of objects
in other clusters. It assumes values between −1 and 1. Cluster configurations with a
higher silhouette index value are considered to be more optimal. Similarly, a higher CH
index value signifies a better clustering result. In contrast, for the DB index, a lower value
indicates a better clustering configuration. A more detailed description of the evaluation
metrics can be found in [44–46].

Table 3. List of the used combination of the consensus-based clustering algorithm. DTW: dy-
namic time warping, SBD: shape-based distance; PAM: partition around medoids; DBA: DTW
barycenter averaging.

Distance Measures Cluster Prototypes

Euclidean Distance
K-means [47]

PAM [48]

DTW DBA [49]

SBD Shape extraction [43]

3.5. Dynamic Indoor Thermal Profiling

After the consensus-based unsupervised modeling, a dynamic clustering structure is
adopted in layer 4 to capture seasonal/dynamic changes in the indoor thermal profiles of
offices. The proposed dynamic indoor thermal profiling structure is illustrated in Figure 5.
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clustering
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Figure 5. Dynamic analysis to capture seasonal change.

Under the dynamic profiling structure, a separate consensus-based clustering analysis
is implemented for each season. The ultimate clustering results from the dynamic clustering
structure consists of two components: (1) relationship pattern between the clusters and the
physical factors of each office; (2) dynamic indoor thermal profile of each office.

Specifically, the clusters for different seasons are described by testing the difference
in the building’s physical factors. Since the physical factors (detailed in Table 1) can all be
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seen as categorical variables, the chi-square test [50] is adopted to analyze the association
between the clusters and the physical factors. Then, based on cluster results for each season,
the dynamic indoor thermal profile for each building can be tracked, which is a cluster
trajectory for each office in the building (e.g., a cluster assignment for each room under each
season). More importantly, by analyzing the dynamic cluster trajectories, the corresponding
physical factors possessed by the offices in each dynamic cluster trajectory can be sketched.
We highlight that the proposed dynamic indoor thermal profiling layer not only allows
the investigation of different thermal behaviors but also facilitates the understanding of
seasonal behavioral changes.

4. Results and Analysis

In this section, we will show the results of our proposed consensus-based clustering
approach, followed by the analysis of the relationship between indoor thermal patterns
and building physical factors, empowered by the consensus clustering and the chi-square
test. Then, the results of the dynamic indoor thermal profile recognition are discussed.
For comparison purposes, we considered the benchmark case where all-seasons data are
considered simultaneously, which is the most adopted approach in existing studies. In
addition, to demonstrate the benefits of our proposed consensus clustering approach,
performances of individual clustering algorithms are reported and compared as part of the
comparative analysis.

4.1. Cluster Validity Results

We adopt consensus-based clustering to cluster the 84 simulated offices based on their
daily indoor temperature in different seasons. To serve as a baseline benchmark, we also
consider the same clustering procedure based on all-seasons data (i.e., average thermal
profile of the year rather than of each season) without differentiating different seasons.
The optimal cluster number and cluster algorithm for each season and the whole year (all
seasons) are chosen according to the majority vote from the three CVIs (silhouette, DB,
and CH).

Specifically, we utilized tsclust in R for the consensus-based clustering process [37].
This package is specifically designed to handle the unique characteristics of time series data
and offers a wide range of clustering algorithms and distance measures. We took advantage
of the flexibility provided by tsclust to customize the clustering process according to our
specific requirements. The parameter settings used in tsclust during our experiment are
summarized in Table 4.

Table 4. Parameter settings for the consensus-based clustering.

Clustering Algorithm kkk distancedistancedistance centroidcentroidcentroid window.sizewindow.sizewindow.size

Eucl. + K-means [2:10] Euclidean mean -
Eucl. + PAM [2:10] Euclidean pam -
DTW + DBA [2:10] dtw dba 10
SBD + Shape extraction [2:10] sbd shape -

During the experiment, a random seed value (in our case, 8) was also used for repro-
ducibility and consistency in the clustering results. We consider cluster numbers k with
the range from 2 to 10. The distance measure is used to calculate the distance between
time series data points, while the centroid refers to the cluster prototypes that are used
to calculate the centroid for each cluster. Regarding the DTW barycenter averaging, the
window.size parameter determines the size of the subsequence used for calculating the
alignment path between two time series. In the experiment, a 10-h window was used
to balance local patterns and the overall behavior of the time series. Figure 6 presents
the visualizations of the CVIs for the cluster results in each season and the whole year
(all seasons).



Sustainability 2023, 15, 15489 11 of 25

2 4 6 8 10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Number of clusters

S
ilh

ou
et

te

EUCL+K−means
EUCL+Pam
DTW+DBA
SBD+Shape

2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Number of clusters

D
av

ie
s−

B
ou

ld
in

2 4 6 8 10

20
40

60
80

10
0

12
0

Number of clusters

C
al

in
sk

i a
nd

 H
ar

ab
as

z

(a) CVIs for the spring season.
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(b) CVIs for the summer season.
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(c) CVIs for the autumn season.
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(d) CVIs for the winter season.
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(e) CVIs for all seasons.
Figure 6. A comparison of CVIs of consensus-based clustering in different seasons and the whole
year. The gray vertical dashed line indicates the optimal cluster number for each CVI.

The CVIs offer significant insights into the quality of clustering outcomes. Table 5
compares the performance of different clustering algorithms with the optimal cluster
number across different seasons and the overall year, and the best scores for each algorithm
are highlighted in bold.
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Table 5. Performance comparison of clustering algorithms with the optimal cluster number in four
seasons and the whole year (all-seasons data).

Spring CVIs (k = 2)

Clustering algorithm Silhouette DB CH

Eucl. + K-means 0.56 0.64 83.42
Eucl. + PAM 0.12 3.26 23.26
DTW + DBA 0.61 0.63 116.25
SBD + Shape extraction 0.31 1.85 50.42

Summer CVIs (k = 2)

Clustering algorithm Silhouette DB CH

Eucl. + K-means 0.78 0.22 134.24
Eucl. + PAM 0.78 0.21 79.52
DTW + DBA 0.83 0.14 169.73
SBD + Shape extraction 0.64 0.33 194.72

Autumn CVIs (k = 2)

Clustering algorithm Silhouette DB CH

Eucl. + K-means 0.45 0.94 86.81
Eucl. + PAM 0.43 1.25 65.81
DTW + DBA 0.66 0.45 94.05
SBD + Shape extraction 0.62 0.44 135.20

Winter CVIs (k = 2)

Clustering algorithm Silhouette DB CH

Eucl. + K-means 0.42 0.90 81.24
Eucl. + PAM 0.37 1.37 60.84
DTW + DBA 0.51 0.93 113.45
SBD + Shape extraction 0.61 0.60 135.32

All seasons CVIs (k = 2)

Clustering algorithm Silhouette DB CH

Eucl. + K-means 0.63 0.37 78.07
Eucl. + PAM 0.42 1.07 79.70
DTW + DBA 0.67 0.53 131.82
SBD + Shape extraction 0.41 0.80 100.89

Dynamic time-warping clustering and shape-based clustering consistently demon-
strate excellent performance across all seasons. These algorithms consistently achieve
higher silhouette and CH scores, indicating superior cluster separation, while also main-
taining relatively low DB indices, suggesting dense and compact cluster results.

Dynamic time-warping clustering shows remarkable performance in terms of all three
CVIs across spring and summer, which highlights the effectiveness of DTW clustering in
capturing temporal patterns and generating meaningful clusters in each season. Similarly,
shape-based clustering can capture shape-based similarities and consistently demonstrates
strong performance across autumn and winter.

In contrast, traditional clustering algorithms, such as K-means and PAM, show rel-
atively worse performance in terms of the CVIs for each season. These two algorithms
generally achieve moderate silhouette scores and CH scores across all seasons. These algo-
rithms generally achieve moderate silhouette and CH scores but tend to have higher DB
indices, indicating less distinct and less dense clusters. This may be due to their limitations
in capturing the inherent temporal or shape-based patterns in the time series data.
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It is worth noting that the employed consensus-based approach uses multiple distance
metrics (Euclidean, DTW, SBD) and prototype methods (K-means, PAM, DBA) rather than
relying on a single algorithm. This approach captures different aspects of the data and
reduces the bias introduced by a single algorithm. Furthermore, it enhances the robustness
and stability of the clustering process compared to studies that used only a single clustering
algorithm [51–54].

Moreover, evaluating cluster validity using multiple indices (silhouette, CH, DB)
enables us to assess the quality and characteristics of the clusters from different perspectives,
providing a more comprehensive quantitative assessment compared to many existing
studies [9,30,54].

All the CVIs vote K = 2 as the best clustering number for the indoor thermal profiles
in summer and autumn. Although K = 2 is also selected as the optimal number in spring
and winter, the DB index and the CH index vote different numbers for the former and the
latter, respectively. The final chosen clustering algorithms and their corresponding CVIs
for each season and the whole year (benchmark) are listed in Table 6.

Table 6. Lists of the optimal clustering algorithms and their corresponding CVIs for four seasons and
the whole year (all-seasons data).

Season Optimal Clustering
Algorithm

Optimal Cluster
Number

CVIs

Silhouette DB CH

Spring DTW + DBA 2 0.61 0.63 116.25
Summer DTW + DBA 2 0.83 0.14 169.73
Autumn SBD + Shape extraction 2 0.62 0.44 135.20
Winter SBD + Shape extraction 2 0.61 0.60 135.32

All seasons DTW + DBA 2 0.67 0.53 131.82

Finally, dynamic time-warping clustering is selected to generate two clusters for the
spring and summer seasons, respectively. The same choice was made for the clustering of
all-year data (all seasons). The K-shape utilizing the SBD distance and the shape extraction
prototype is applied to produce two clusters for the autumn and winter seasons. Figure 7
illustrates the cluster centroids for each of four seasons and the whole year (all seasons).
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Figure 7. The cluster centroids of clusters in different seasons and the whole year. OT: outdoor
temperature.

4.2. Relationship Pattern between Seasonal Indoor Thermal Clusters and Physical Factors

Using the consensus clustering results, the chi-square test is performed to test differ-
ences in different clusters according to building physical factors (floor level, floor area,
orientation) during different seasons. To serve as a benchmark, the chi-square test has also
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been conducted for the consensus clustering results based on the all-year data (all seasons).
The detailed test results for three building physical variables are provided in Appendix B
Tables A2–A6.

Several high-level distinct patterns can be observed, which is not possible without
differentiating among different seasons. In particular, the dynamic impact of physical fac-
tors on the indoor temperature in different seasons can be identified through our proposed
approach. That is, a certain physical factor (e.g., floor level, floor area, or orientation) could
be the main factor for one season but less important in other seasons. To be more specific,
based on the chi-square test results, a statistically significant association between clusters
and floor levels in the spring season is observed. For instance, cluster 1 mainly consists of
offices on the ground and first floors (see Table A2). Most of the small offices are located in
cluster 2, with the majority of offices located to the west. Similarly, the association between
clusters and floor levels is found to be significant for the summer season with cluster 1
consisting of all the offices on the ground floor. In fact, the floor level is the dominant factor
for the indoor temperature in the summer season (see Table A3). Interestingly, all three
physical factors are significantly associated with the autumn season. Among the three
physical factors, floor area seems to be the dominant factor with small offices primarily
located in cluster 2. In addition, the physical factor of office orientation is only found to be
significant for the autumn season with almost all offices in cluster 2 facing either North
or West (see Table A4). For the winter season, the association between clusters and the
floor levels is found to be significant with cluster 2 including all the offices on the ground
floor and almost all the offices on the sixth floor (top floor) (see Table A5). In contrast, the
chi-square test results based on the clustering of all-seasons data indicate only floor level is
significantly associated. In particular, cluster 1 consists of offices on the ground floor and
first floor only (see Table A6).

To better understand the changing patterns in clusters over different seasons and their
dynamic association with different physical factors, the corresponding average physical
factors are utilized to reflect common building characteristics in each cluster, as shown
in Table 7. Moreover, the mean, minimum, and maximum indoor temperatures of offices
within each cluster are also summarized for each of the four seasons to facilitate tracking of
the dynamic cluster trajectory for each office. We can conclude from the results of clustering
and the physical information of the buildings that there is a distinct characteristic associated
with each cluster, as indicated in the cluster labels. In generating the cluster labels, floors
are divided into three categories: low (ground to second floors, i.e., 1–3), medium (third
and fourth floors, i.e., 4–5), and high (fifth and sixth floors, i.e., 6–7).

We can observe that during the spring season, cluster 1 has low floor levels, medium-
sized offices, and lower indoor temperatures. In contrast, cluster 2 has medium floor
levels, medium office sizes, and a higher daily indoor temperature. During the summer,
cluster 1 is associated with low floor levels and a cooler indoor temperature, while cluster
2 has medium floor levels and higher indoor temperature with a maximum temperature
of 42.61 Celsius. In autumn, cluster 1 has a medium floor level, a large office size, and a
warmer indoor temperature, while cluster 2 has a low–medium floor level, small offices,
and a cooler indoor temperature. In winter months, cluster 1 has low–medium floor level,
medium floor area, and slightly higher indoor temperature, while cluster 2 has a medium
floor level, a medium floor area, and a lower indoor temperature. It is also observed that
the differences in average indoor temperatures in the two clusters for the autumn and
winter seasons are less distinct than other seasons. To summarize, based on our approach,
the clustering results over four seasons generate six distinct cluster profiles (six distinct
cluster labels). In contrast, the clustering based on all-seasons data only results in two
clusters (i.e., two distinct cluster labels), where cluster 1 has a low floor level, medium
office area, and lower indoor temperature, and cluster 2 has a medium floor level, medium
office size, and higher indoor temperature.



Sustainability 2023, 15, 15489 15 of 25

Table 7. Clusters profile summary for different seasons and the whole year (all seasons).

Cluster Floor
Level

Floor
Area

Mean
Temp.

Max/Min
Temp.

Cluster
Label

Spring

1 2.15 29.65 21.14 26.66/16.11
Low floor level;

medium office size;
lower indoor temperature.

2 4.58 27.67 25.13 32.55/18.44
Medium floor level;
medium office size;

higher indoor temperature.

Summer

1 1.00 28.14 23.11 28.02/18.61
Low floor level;

medium office size;
lower indoor temperature.

2 4.50 28.14 34.41 42.61/26.89
Medium floor level;
medium office size;

higher indoor temperature.

Autumn

1 4.24 31.86 22.42 28.57/16.74
Medium floor level;

large office size;
higher indoor temperature.

2 3.84 25.62 21.98 26.55/17.67
Low–Medium floor level;

small office size;
lower indoor temperature.

Winter

1 3.78 28.60 15.22 19.52/10.82
Low–Medium floor level;

medium office size;
higher indoor temperature.

2 4.32 27.47 14.97 18.50/11.44
Medium floor level;
medium office size;

lower indoor temperature.

All seasons

1 1.25 27.34 20.69 25.34/16.56
low floor level;

medium office size;
lower indoor temperature.

2 4.65 28.33 24.30 30.56/18.50
Medium floor level;
medium office size;

higher indoor temperature.

Based on the above analysis, we can observe distinct thermal performances and
behaviors of offices in different seasons and underlying physical factors. In other words,
the same offices may behave differently in different seasons, affected by different physical
factors differently over time.

4.3. Dynamic Indoor Thermal Profile Recognition

In order to track the dynamic cluster trajectory for the offices (i.e., track different
behavior patterns in different seasons), a category summary is performed after character-
izing each cluster for each season. Table 8 summarizes all cluster trajectories that exist
based on clustering results over four different seasons in the previous subsection, together
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with the average thermal profile of each trajectory. In total, eight dynamic trajectories
(DTs) were identified for the 84 simulated offices, and the characteristics of each DT can
be summarized by combining the cluster labels for each season defined in Table 7. For
instance, for offices following DT 1, they appear in cluster 1 (lower temperature according
to Table 7) in the spring season, remain in cluster 1 (lower temperature) for the summer
season but change to cluster 2 (lower temperatures) in the autumn and winter seasons.
That is, the offices following DT 1 have relatively lower indoor temperature throughout the
year, characterized by low floor levels and medium floor areas. The detailed offices that
follow each dynamic trajectory (DT) are listed in Appendix B Table A7.

Table 8. Category summary for the dynamic cluster trajectories over the year. DT: dynamic trajectory.

Spring
Cluster

Summer
Cluster

Autumn
Cluster

Winter
Cluster

Floor
Level

Floor
Area

Mean
Temp.

DT
No.

1

1 2 2 1 (low) 28.14 (med.) 19.58 1

2
1 1 2 (low) 31.72 (large) 22.53 2
1 2 4.50 (med.) 34.22 (large) 22.79 3
2 2 7 (high) 30.03 (med.) 23.42 4

2 2

1 1 4 (med.) 32.11 (large) 24.56 5
1 2 6.50 (high) 30.24 (med.) 24.14 6
2 1 3.88 (low–med.) 24.87 (small) 24.68 7
2 2 6.08 (high) 23.85 (small) 24.69 8

In general, there are low floor levels in both DT 1 and DT 2, with DT 1 containing
medium offices and DT 2 containing large offices. Most offices that follow DTs 3, 5, and 7
are located on medium floor levels, and offices in DTs 3 and 5 have large floor areas. On
the other hand, DT 7, which has the largest number of offices, is characterized by low to
medium floor levels and small office sizes. Furthermore, most offices following DTs 4, 6,
and 8 are located on the upper floors. In addition, those who follow DTs 4 and 6 have a
medium-sized office, while those who follow DT 8 have a small-sized office.

Based on the characteristics described in each DT, the dynamic thermal behavior can
be summarized, and useful managerial insights (MIs) can be gained to assist the building
manager/operator in developing customized thermal control strategies:

• MIs for DT 1. Offices following DT 1 experience lower indoor temperatures through-
out the year than offices following other DTs. As these offices experience a cooler
winter, thermal control decisions should be made with additional consideration for
DT 1 during this period.

• MIs for DT 2. The indoor temperature of offices following DT 2 is lower in the spring
and higher from the summer to the winter. It is, therefore, necessary for the thermal
control system to cool the offices that follow DT 2 during the summer months to
ensure optimal comfort for the occupants.

• MIs for DT 3. In DT 3, offices experience lower indoor temperatures during winter and
spring, and higher indoor temperatures during summer and autumn. Consequently,
offices following DT 3 require special attention to the thermal control system during
the summer and winter months as occupants suffer from high indoor temperatures
in the summer and low indoor temperatures in the winter. In addition, it expects
extended operations of thermal control systems in transition seasons due to higher
temperatures in the autumn and lower temperatures in the spring.

• MIs for DT 4. In DT 4, offices experience higher indoor temperatures in the summer
and lower indoor temperatures in the winter and two transition seasons (spring and
autumn). As in DT 3, the thermal control system should ensure that the offices in DT 4
are maintained at a comfortable temperature throughout the summer and winter.
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• MIs for DT 5. Offices in DT 5 are generally warmer throughout the year. Similar to
DT 2, DT 5 requires the thermal control system to maintain a comfortable temperature
during the summer months.

• MIs for DT 6. As in DTs 3 and 4, offices in DT 6 also experience higher indoor temper-
atures during the summer and two transition seasons and lower indoor temperatures
during the winter. Therefore, the thermal control system in DT 6 should optimize
thermal comfort for the offices during the summer and winter seasons.

• MIs for DT 7. In offices following DT 7, the indoor temperature is lower during
autumn and higher during other seasons, especially during the summer. Thermal
control systems should, therefore, ensure that the indoor temperatures in DT 7 do not
become excessively hot during the summer months.

• MIs for DT 8. As with DTs 3, 4, and 6, offices in DT 8 also experience higher summer
temperatures and lower winter temperatures. Therefore, the thermal control system
in DT 8 should enable offices to remain comfortably cool during the summer and
warm during the winter. However, DT 8 presents a unique trajectory with higher
temperatures in the spring and lower temperatures in the autumn.

It can be observed that offices following DTs 3, 4, 6, and 8 experience higher summer
temperatures and lower winter temperatures. Therefore, thermal control strategies can
be developed in order to optimize the thermal comfort of these offices in both seasons.
Moreover, offices following DTs 2, 5, and 7 require thermal comfort optimization strategies
during the summer, while offices following DT 1 require thermal comfort optimization
strategies during the winter. Although some DTs (e.g., DTs 3, 4, 6, 8) seem to present similar
thermal behaviors in summer and winter seasons, they have distinct patterns during two
transition seasons (i.e., spring and autumn). Overall, each DT presents a unique trajectory
with its own characteristics, which could provide useful insights and opportunities for
customized building operation and management.

4.4. Discussion

In light of the above analysis, we can conclude that there are different physical factors
contributing to thermal differences among offices in different seasons. Furthermore, the dy-
namic cluster trajectory of the offices provides valuable guidance for designing customized
building climate control strategies. Although we considered a case study focusing on
different rooms/offices within a single building, it is worth mentioning that the proposed
method can be readily extended or easily modified to other different built environment
settings at different spatial-temporal scales such as examining behaviors of different types
of buildings or a group of buildings. When performing the analysis for a group of different
types of buildings simultaneously (e.g., a district or city level), we could consider extending
the current simulation model by including more building physical factors (e.g., building
material, insulation, etc.) to account for the difference between buildings.

Moreover, the above promising results can also be applied to other relevant appli-
cations, such as for the building energy management/energy pricing and accounting
for economic benefits of building retrofits. As for the former, based on the customized
data-driven building’s indoor thermal profiles, customized HVAC control and the energy
management approach can be developed for each office/each group of offices, considering
the differences in thermal performance. It is also possible to consider customized energy
pricing and demand response management strategies in similar application scenarios (e.g.,
for a group of buildings) to manage the energy costs. For the latter, it can be achieved
by using the developed clustering-based indoor thermal performance profiling system,
allowing different building retrofit plans to be evaluated through simulations on a group
of rooms/buildings rather than on individual rooms/buildings, which can then be in-
corporated into an economic benefit analysis to obtain the optimal building retrofit plan.
According to the above, the proposed smart building indoor thermal profiling system can
lead to promising computational benefits, as the consensus-based clustering method can
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significantly reduce the number of simulations required, which is particularly useful for
large and complex buildings and big data scenarios.

5. Conclusions

This paper proposes an indoor thermal profiling system for smart buildings that is
useful for customized thermal control in buildings. Firstly, a building simulation model
based on EnergyPlus is developed to simulate the thermal conditions of individual offices
under various outdoor weather conditions. Secondly, the simulated thermal conditions
are segmented and normalized based on the different seasons throughout the year. To
capture different building thermal behaviors in different seasons, the consensus-based
robust clustering approach is applied to cluster individual offices into different groups.
By analyzing clustering results with accompanying building physical information, we are
able to identify underlying factors that can explain the observed thermal performance
behaviors, which is an important step toward developing a fully automated customized
building climate control system. Moreover, the dynamic cluster trajectories of the simulated
84 offices are summarized to provide valuable guidance for designing different building
climate control strategies for different times of the year. The promising results shown in
our experimental analysis will inspire future directions of our work; we aim to further
develop and extend our proposed methodological framework to other areas, such as
customized building energy management, energy pricing, and economic benefit analysis of
building retrofits and design. For instance, different thermal behaviors of offices (assuming
multiple companies/organizations share the same building in this example) can be taken
into account when offering different energy tariffs to different companies/organizations by
the load serving entity (LSE), to incentivize the best energy use behaviors, such as reducing
emissions and energy bills. Another potential area of our proposed framework is to study
the potential impact of different building retrofit designs on indoor thermal behavior in
order to evaluate its impact on overall energy efficiency.
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Appendix A. Detailed Physical Information of Office Rooms

Table A1. Detailed physical information of office rooms.

Room Number Floor Level Orientation Floor Area (m2)

Office1 Ground floor South-West Corner 38.68
Office2 Ground floor West 19.15
Office3 Ground floor West 19.15
Office4 Ground floor West 22.78
Office5 Ground floor West 22.78
Office6 Ground floor West 27.04
Office7 Ground floor West 27.04
Office8 Ground floor West 34.22
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Table A1. Cont.

Room Number Floor Level Orientation Floor Area (m2)

Office9 Ground floor North-West corner 34.22
Office10 Ground floor North 32.59
Office11 Ground floor North 31.5
Office12 Ground floor North 28.56
Office13 First floor South-West Corner 38.68
Office14 First floor West 19.15
Office15 First floor West 19.15
Office16 First floor West 22.78
Office17 First floor West 22.78
Office18 First floor West 27.04
Office19 First floor West 27.04
Office20 First floor West 34.22
Office21 First floor North-West corner 34.22
Office22 First floor North 32.59
Office23 First floor North 31.5
Office24 First floor North 28.56
Office25 Second floor South-West Corner 38.68
Office26 Second floor West 19.15
Office27 Second floor West 19.15
Office28 Second floor West 22.78
Office29 Second floor West 22.78
Office30 Second floor West 27.04
Office31 Second floor West 27.04
Office32 Second floor West 34.22
Office33 Second floor North-West corner 34.22
Office34 Second floor North 32.59
Office35 Second floor North 31.5
Office36 Second floor North 28.56
Office37 Third floor South-West Corner 38.68
Office38 Third floor West 19.15
Office39 Third floor West 19.15
Office40 Third floor West 22.78
Office41 Third floor West 22.78
Office42 Third floor West 27.04
Office43 Third floor West 27.04
Office44 Third floor West 34.22
Office45 Third floor North-West corner 34.22
Office46 Third floor North 32.59
Office47 Third floor North 31.5
Office48 Third floor North 28.56
Office49 Fourth floor South-West Corner 38.68
Office50 Fourth floor West 19.15
Office51 Fourth floor West 19.15
Office52 Fourth floor West 22.78
Office53 Fourth floor West 22.78
Office54 Fourth floor West 27.04
Office55 Fourth floor West 27.04
Office56 Fourth floor West 34.22
Office57 Fourth floor North-West corner 34.22
Office58 Fourth floor North 32.59
Office59 Fourth floor North 31.5
Office60 Fourth floor North 28.56
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Table A1. Cont.

Room Number Floor Level Orientation Floor Area (m2)

Office61 Fifth floor South-West Corner 38.68
Office62 Fifth floor West 19.15
Office63 Fifth floor West 19.15
Office64 Fifth floor West 22.78
Office65 Fifth floor West 22.78
Office66 Fifth floor West 27.04
Office67 Fifth floor West 27.04
Office68 Fifth floor West 34.22
Office69 Fifth floor North-West corner 34.22
Office70 Fifth floor North 32.59
Office71 Fifth floor North 31.5
Office72 Fifth floor North 28.56
Office73 Sixth floor South-West Corner 38.68
Office74 Sixth floor West 19.15
Office75 Sixth floor West 19.15
Office76 Sixth floor West 22.78
Office77 Sixth floor West 22.78
Office78 Sixth floor West 27.04
Office79 Sixth floor West 27.04
Office80 Sixth floor West 34.22
Office81 Sixth floor North-West corner 34.22
Office82 Sixth floor North 32.59
Office83 Sixth floor North 31.5
Office84 Sixth floor North 28.56

Appendix B. Chi-Square Test Results and Dynamic Trajectories (DTs)

Table A2. Chi-square test results for spring clusters.

Variable Category
Clusters Test Results

Cluster 1 Cluster 2 x2 p

Floor level

Ground floor 12 0

55.519 0.000 ***

First floor 5 7
Second floor 0 12
Third floor 0 12

Fourth floor 0 12
Fifth floor 0 12
Sixth floor 3 9

Floor area
m2

19.15 2 12

6.431 0.490

22.78 2 12
27.04 2 12
28.56 3 4
31.5 3 4

32.59 2 5
34.22 5 9
38.68 1 6

Orientation
North 8 13

5.611 0.060West 9 47
West/North 3 4

*** p < 0.01.
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Table A3. Chi-square test results for summer clusters.

Variable Category
Clusters Test Results

Cluster 1 Cluster 2 x2 p

Floor level

Ground floor 12 0

84 0.000 ***

First floor 0 12
Second floor 0 12
Third floor 0 12

Fourth floor 0 12
Fifth floor 0 12
Sixth floor 0 12

Floor area
m2

19.15 2 12

0.000 1

22.78 2 12
27.04 2 12
28.56 1 4
31.5 1 4
32.59 1 5
34.22 2 9
38.68 1 6

Orientation
North 3 18

0.000 1West 8 48
West/North 1 6

*** p< 0.01.

Table A4. Chi-square test results for autumn clusters.

Variable Category
Clusters Test Results

Cluster 1 Cluster 2 x2 p

Floor level

Ground floor 0 12

15.515 0.017 **

First floor 9 3
Second floor 6 6
Third floor 4 8

Fourth floor 4 8
Fifth floor 5 7
Sixth floor 6 6

Floor area
m2

19.15 4 10

38.936 0.000 ***

22.78 0 14
27.04 4 10
28.56 1 6
31.5 1 6

32.59 6 1
34.22 12 2
38.68 6 1

Orientation
North 8 13

6.522 0.038 **West 20 36
West/North 6 1

*** p < 0.01, ** p < 0.05.
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Table A5. Chi-square test results for winter clusters.

Variable Category
Clusters Test Results

Cluster 1 Cluster 2 x2 p

Floor level

Ground floor 0 12

52.871 0.000 ***

First floor 11 1
Second floor 12 0
Third floor 12 0

Fourth floor 8 4
Fifth floor 6 6
Sixth floor 1 11

Floor area
m2

19.15 9 5

6.028 0.536

22.78 6 8
27.04 9 5
28.56 3 4
31.5 5 2

32.59 5 2
34.22 7 7
38.68 6 1

Orientation
North 13 8

3.039 0.219West 35 21
West/North 2 5

*** p < 0.01.

Table A6. Chi-square test results for clusters of all seasons.

Variable Category
Clusters Test Results

Cluster 1 Cluster 2 x2 p

Floor level

Ground floor 12 0

66.706 0.000 ***

First floor 4 8
Second floor 0 12
Third floor 0 12

Fourth floor 0 12
Fifth floor 0 12
Sixth floor 0 12

Floor area
m2

19.15 4 10

2.007 0.959

22.78 3 11
27.04 2 12
28.56 1 6
31.5 1 6

32.59 1 6
34.22 2 12
38.68 2 5

Orientation
North 3 18

0.618 0.734West 12 44
West/North 1 6

*** p < 0.01.
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Table A7. List of offices in the eight DTs.

DT 1 DT 2 DT 3 DT 4 DT 5 DT 6 DT 7 DT 8

Office1 Office20 Office21 Office83 Office13 Office57 Office15 Office52
Office2 Office22 Office81 Office84 Office14 Office69 Office16 Office53
Office3 Office23 Office18 Office74 Office17 Office60
Office4 Office24 Office19 Office79 Office27 Office63
Office5 Office25 Office80 Office28 Office64
Office6 Office26 Office82 Office29 Office65
Office7 Office31 Office30 Office66
Office8 Office32 Office35 Office72
Office9 Office33 Office36 Office75

Office10 Office34 Office38 Office76
Office11 Office37 Office39 Office77
Office12 Office44 Office40 Office78

Office45 Office41
Office46 Office42
Office49 Office43
Office56 Office47
Office58 Office48
Office61 Office50
Office62 Office51
Office68 Office54
Office70 Office55
Office73 Office59

Office67
Office71
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