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Abstract: With the rise in intermittent energy production methods and portable electronics, energy
storage devices must continue to improve. Supercapacitors are promising energy storage devices
that are known for their rapid charging and discharging, but poor energy density. Experimentally,
one can improve the energy density by improving the operating cell voltage and/or improving the
overall capacitance, which have traditionally been achieved using difficult, complicated, or expensive
syntheses involving additional chemicals or many steps. In this work, we demonstrate a method to
improve the capacitance of electropolymerized polyaniline (PANI, a conductive polymer common in
supercapacitor applications) with zero additional energy input or chemical additives: the use of a
permanent magnet. Using a pulsed-potential polymerization method, we show that the inclusion
of a 530 mT magnetic field, placed directly under the surface of the working electrode during elec-
tropolymerization, can result in a PANI film with a capacitance of 190.6 mF; compare this to the
same polymerization performed in the absence of a magnetic field, which has a significantly lower
capacitance of 109.7 mF. Electrochemical impedance spectroscopy indicates that PANIs formed in
the presence of magnetic fields demonstrate improved capacitor behavior, as well as lower internal
resistance, when compared to PANIs formed in the absence of magnetic fields. To probe the per-
formance and stability of PANI films synthesized in the presence and absence of magnetic fields,
galvanostatic charge–discharge was completed for symmetric capacitor configurations. Interestingly,
the PANI films formed in the presence of 530 mT magnetic fields maintained their capacitance for
over 75,000 cycles, whereas the PANI films formed in the absence of magnet fields suffered serious
capacitance losses after only 29,000 cycles. Furthermore, it is shown that performing the polymeriza-
tion in magnetic fields results in a higher-capacitance polymer film than what is achieved using other
methods of forced convection (i.e., mechanical stirring) and outperforms the expected capacitance
(based on yield) by 13%, suggesting an influence beyond the magnetohydrodynamic effect.

Keywords: magnetoelectrochemistry; supercapacitor; conductive polymer; electropolymerization;
polyaniline

1. Introduction

Energy storage devices must improve in order to support the integration of intermittent
power sources, like wind and solar, into the energy grid, as well as to keep up with the
increasing demand for portable electronics and electric vehicles. Supercapacitors are
promising energy storage devices that can work in place of, or alongside, batteries [1,2].
While useful for their quick charging and discharging, which provides high power density,
they are limited by their low energy density [3–7]. Whether for use as primary or auxiliary
energy storage applications, the increase in the energy density of supercapacitors would
lead to cheaper and more effective systems. This poor energy density is often improved by
electrode modification for increased conductivity or active surface area.

Supercapacitors are generally divided into three categories based on their type of
electrodes: electrical double-layer capacitors (EDLCs), which store charge purely in the
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structure of the electrical double layer; pseudocapacitors, which store energy in fast redox,
intercalative, or underpotential processes; and hybrid capacitors, which have a mix of
different capacitor-type storage mechanisms or a mix of capacitor-type and battery-type
storage mechanisms [3,4,6,8,9]. A common form of redox pseudocapacitance is the use
of redox-active polymers, such as polyaniline (PANI), polypyrrole (PPY), polythiophene
(PTH), and others as electrodes [10–14]. These polymers are convenient for the ease with
which they can be deposited onto conductive surfaces via electrochemical deposition,
improving both the conductivity and active surface area of electrodes. Herein, we propose
a method to synthesize PANI via electrochemical deposition under a constant magnetic
field to improve the capacitance of the resultant film. Other surface modification techniques
for improved energy storage applications require complicated, multi-step processes [15];
additional energy input from sources, such as heating [16–19]; or additional chemical
input, in the form of catalysts or dopants [20–22]. The use of permanent magnets offers
a simple approach for improving polymer properties with zero additional energy input,
such as from heating, higher overpotentials, or electromagnetism; zero additional chemical
input, such as catalysts or dopants; and zero additional fabrication steps, such as pre- or
post-treatments.

Although it has been known since the 1970s that magnetic fields can influence electrode
processes [23–25], further research remains necessary to fully characterize their alteration
of more complex processes, such as polymerization and other electrode modifications. The
utility of magnetic fields and their effects has become of great interest for electrochemical
energy storage applications, due to the versatility of their applications. Recently, magnetic
fields have been employed for energy storage to fabricate nanomaterial-based supercapaci-
tors by altering the morphology of nanomaterial deposits on electrodes [26–28], to improve
the specific capacitance of metal oxide supercapacitors [29–31], to improve zinc–bromide
static batteries by inhibiting dendrite growth and increasing diffusion [32], to fabricate
improved cathode [33,34] and anode [35] materials for Li-ion batteries, and to enhance
the cycling performance of Li-ion [36,37], Li-S [38], and Li-metal anode batteries [39]. (For
further reading about current research on the applications of magnetic fields in energy
storage, the reader is directed to reviews by Shen et al. [40] and Raj et al. [41]). Polyani-
line [42–44] and other electroactive polymers [45–49] have been synthesized in magnetic
fields, although those studies primarily focused on the fundamental characterization of the
magnetic field’s influence instead of the enhancement of their energy-storing properties.
Previous work has shown that magnetic fields can influence the rates of radical-based
reactions [50], suggesting that they should alter the yield of aniline electropolymerization.
Furthermore, magnetic fields have been shown to induce convection in aqueous systems via
the magnetohydrodynamic (MHD) effect [23,32,51,52], in which charged species moving
through a magnetic field are caused to move in a spiral path via the Lorentz force, defined
in Equation (1):

FL = q(E + v × B) (1)

where FL represents the Lorentz force vector on a moving charged particle, q represents the
charge on that particle, E represents the electric field vector, v represents the velocity of the
particle, and B represents the magnetic field vector.

In this study, an external magnetic field is applied in order to yield a PANI film
with improved capacitance. When aniline is dissolved in an acidic solution, the aniline
monomer becomes charged by adopting a proton to the amine. As the aniline monomer is
consumed by the polymerization reaction, a net movement of charged aniline monomers
occurs toward the electrode surface. This net movement is induced to rotate via the
MHD effect, creating convection. This convection is herein exploited to yield higher-
capacitance PANI films. To the best of our knowledge, this is the first report on employing
external magnetic fields to affect the capacitance of polymeric materials. We investigate
the effect of a magnetic field on the resulting capacitance of the PANI obtained using
three different polymerization protocols: constant-potential, swept-potential, and pulsed-
potential. Constant- and swept-potential polymerizations are commonly employed in the
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literature for growing PANI films on electrodes, while pulsed-potential techniques are
less common but are still employed [53,54]. The PANI films obtained in the presence and
absence of magnetic fields were characterized using a combination of scanning electron
microscopy and electrochemical techniques. The electrochemical characterization reveals
that the optimized pulsed-polymerization protocol yielded a PANI film with a capacitance
of 190.6 mF when polymerized in a magnetic field, whereas the PANI film formed in the
absence of a magnetic field had a capacitance of 109.7 mF. The results indicate that the
application of a magnetic field via a permanent magnet is a viable strategy for improving
the capacitance of an electropolymerized product without adding any additional chemicals
or energy into the system.

2. Materials and Methods
2.1. Materials and Equipment

Aniline (C6H7N) was purchased domestically from BeanTown Chemical (99%) and
Sigma Aldrich (≥99.5%), and both were used as described in Section 2.2 without further
refinement. Hydrochloric acid (HCl, 12.1 N) was purchased from Fischer Scientific. Sulfuric
Acid (H2SO4, 5 N) was purchased from Sigma Aldrich. All electrodes were purchased from
CH Instruments. The working electrode was cleaned by polishing successively in 0.3 and
0.05 µm alumina slurries before rinsing with distilled water, sonicating, rinsing again, and
drying with a Kimwipe. All experiments, except galvanostatic charging and discharging
and those described in Section 3.3, were performed on a PalmSens4 potentiostat. The
galvanostatic charging and discharging experiments were performed on a BioLogic BCS-
805 battery cycler, and the experiments in Section 3.3 were performed on a CH Instruments
760E electrochemical workstation. The block magnet used was a 2–inch neodymium, nickel-
coated magnet purchased from K&J Magnetics, Inc., and the strength of its magnetic field
at the surface of the electrode was determined with an MF-30K Gaussmeter from Latnex.

2.2. Aniline Polymerization

Solutions of aniline were prepared in deionized water with acid and left in the dark for
24 h before use. For the electrochemical polymerizations, a 2 mm platinum disk electrode
served as the working electrode, a platinum wire served as the counter electrode, and a
saturated Ag/AgCl electrode served as the reference (all reported potentials are versus
sat. Ag/AgCl). The working electrode was modified in solutions of 1 M aniline and
2 M HCl. Three types of polymerization procedures were carried out: a potentiostatic
polymerization for 30 s, a cycled potential polymerization for 10 scans, and pulsed-potential
polymerizations with periodic interruptions. All pulsed-potential procedures with different
pulse and downtime combinations were normalized in order to spend a total of 30 s in the
high potential region.

2.3. Modified Electrode Characterization

Capacitance of the modified electrodes was determined using cyclic voltammetry
in 1 M H2SO4 solutions from 0 V to 1 V, and the resultant area under the curve (AUC)
was compared to the AUCs for the control to determine the increase in capacitance. The
capacitance of an electrode can be determined using the equation

C =
1(

dV
dt

)
∆V

∫
i(t)dV (2)

in which C is the capacitance of the electrode, dV
dt is the scan rate of the cyclic voltammogram,

∆V is the voltage window, and i(t) is the current. It is shown in Equation (2) that the
capacitance of the working electrode is proportional to the area of the CV and, thus, the
increase in capacitance between two electrodes is found by the proportion of the areas of
their CVs in sulfuric acid.
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The absolute capacitance was measured by performing cyclic voltammetry in 1 M
H2SO4 solutions from 0 V to 1 V at scan rates from 0.025 to 0.1 V/s and plotting the
peak current versus the scan rate. The capacitance could then be determined from the
following equation

i(t) = C
dV
dt

(3)

in which i(t) is the peak current during the scan, C is the capacitance of the electrode, and
dV
dt is the rate of the scan. From this equation, the capacitance can be taken as the slope of

the peak current as a function of the scan rate.
The electrodes were further characterized using electrochemical impedance spec-

troscopy (EIS) in 1 M H2SO4 at an the open circuit potential from 100 kHz to 100 mHz.
Galvanostatic charging and discharging tests were performed on a BioLogic BCS-

805 battery cycler. Cells were constructed by modifying two platinum disk electrodes as
previously described and placing them in a solution of 1 M H2SO4 to simulate a symmetric
capacitor. Cells were made using either two electrodes that were modified with no magnetic
field or two electrodes that were both modified in the presence of a magnetic field.

The magnet was never applied to the system during characterization. All references to
the effect of the magnetic field refer to its application during electropolymerization.

2.4. Experimental Setup

For the electropolymerizations in a magnetic field, the cell was placed on top of a
block magnet such that the working electrode was suspended over the center of the top
face of the magnet, as shown in Figure 1A. The electrode was brought as close as possible
to the bottom of the cell to ensure maximum field strength, and the cell could be moved up
or down with 1 mm spacers to control the strength of the field. The electrode was placed at
the same depth for the control polymerizations. The magnet was oriented such that the
field lines were normal to the plane of the electrode surface, and the position and size of
the working electrode permits the assumption that the magnetic field lines were parallel at
the electrode surface, as shown in Figure 1B. For the experiments in which the magnetic
field was oriented parallel to the plane of the electrode surface, the magnet was placed on
its side and the cell was raised such that the surface of the electrode was in line with the
pole of the magnet.
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Figure 1. (A) Schematic of experimental setup for a magnetic field oriented perpendicular to the
surface of the Pt disc working electrode; (B) Schematic of magnetic field lines and MHD at the
working electrode surface; (C) Image of electrode surface during polymerization under no magnetic
field, in which the polyaniline can be seen to drift down off the electrode surface in a column due
to gravity; (D) Image of electrode surface during polymerization under 530 mT, in which the MHD
effect creates a cone around which the polyaniline rotates as it drifts away from the electrode surface.
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2.5. Scanning Electron Microscopy Images

The SEM images were taken on an FEI Apreo VolumeScope SEM scanning electron
microscope after affixing an adhesive carbon tab to the working electrode, growing the
polymer on the tab, allowing the tab to dry, and then transferring the tab to an SEM stub.

3. Results
3.1. Traditional Polymerization Techniques

In order to show that the magnetic field would affect the electropolymerization of
aniline, the electrode was first modified using the potentiostatic method, holding it at 1.1 V
for 30 s in a solution of 1 M aniline and 2 M HCl. The potential of 1.1 V was selected
after determining, using cyclic voltammetry (CV), that it was appropriately high enough
to oxidize aniline but not so high as to promote the oxygen evolution reaction (OER) on
the working electrode. The modified electrode was then characterized using CV in 1 M
sulfuric acid, and the peaks matched the expected peaks for polyaniline [55,56]. When
the procedure was repeated under the influence of a 530 mT magnetic field, it was found
that the average capacitance of the resultant PANI film was improved over that of the
control by +28% ± 6%. Figure 1C,D shows the effect that the magnet has on the solution
dynamics. When no magnetic field is applied, the polyaniline that does not deposit on the
electrode surface drifts to the bottom of the cell in a column, but when a 530 mT field is
applied, convection is induced via the MHD effect, causing the polyaniline to rotate in a
wide cone as it descends. This forced convection decreases the size of the diffusion zone,
which increases the yield of the electropolymerization. The electrode was then modified
using the swept-potential, or cyclic voltammetry, method. The electrode was swept from
−0.1 to 1.1 to −0.1 V for 10 cycles at a scan rate of 100 mV/s. When the procedure was
repeated under the influence of a 530 mT magnetic field, the capacitance of the PANI film
was found to have improved by +19% ± 9%.

3.2. Optimization of Polymerization Technique

In order to maximize the effect of the Lorentz force, a pulsed-potential method was
employed to increase the average current during polymerization. The waveform employed
is shown in Figure 2A, and the parameters are defined as follows: the pulse time, tp, is the
length of time each individual pulse lasts; the downtime, td, is the length of time between
each pulse, during which the electrode is charged to some potential below the polymerizing
region; the pulse potential, Ep, is the potential at which the electrode is charged during
each pulse (maintained at 1.1 V for all the experiments); and the downtime potential, Ed, is
the potential to which the electrode was set in between pulses.

A variety of pulse times and downtime combinations were tried to find the optimal
combination. All the combinations used a pulse potential of 1.1 V and a downtime potential
of −0.1 V, and the runtime was normalized such that the total amount of time spent in the
polymerizing region (tp × n, where n = the number of cycles) was 30 s. The various times
and their resulting changes in capacitance when polymerized under a magnetic field are
shown in Table 1. The change in capacitance was determined by comparing the areas of
the CVs of the modified electrodes, measured in 1 M H2SO4, to the same polymerization
protocol performed in the absence of a magnetic field, as shown in Figure 2C.

The effect of the magnet began to decrease as the pulse time approached zero, likely
because the shorter pulses did not induce a meaningful level of convection. When em-
ploying longer pulse times, the average current density decreases as the pulse current is
given longer to decay, minimizing the influence of the Lorentz force on the polymerization.
Multiple cycles are necessary to maintain a high average current density, while too many
cycles (i.e., shorter pulse times) prevent convection from causing significantly increased
mass transport.



Sustainability 2023, 15, 15419 6 of 15Sustainability 2023, 15, x FOR PEER REVIEW 6 of 16 
 

 
Figure 2. (A) General applied potential waveform; (B) i vs. t curve of pulsed-potential polymeriza-
tion; (C) an example of a comparison of two characterization CVs. 

A variety of pulse times and downtime combinations were tried to find the optimal 
combination. All the combinations used a pulse potential of 1.1 V and a downtime poten-
tial of −0.1 V, and the runtime was normalized such that the total amount of time spent in 
the polymerizing region (tp × n, where n = the number of cycles) was 30 s. The various 
times and their resulting changes in capacitance when polymerized under a magnetic field 
are shown in Table 1. The change in capacitance was determined by comparing the areas 
of the CVs of the modified electrodes, measured in 1 M H2SO4, to the same polymerization 
protocol performed in the absence of a magnetic field, as shown in Figure 2C. 

Table 1. The change in capacitance when polymerized under a magnetic field with the following 
pulse time and downtime combinations. 

Pulse Time (s) Downtime (s) % Change in C 
0.1 0.1 −3 ± 3 
0.1 1 −1 ± 12 
1 0.1 +34 ± 15 
1 1 +30 ± 29 
2 0.1 +39 ± 12 
2 1 +47 ± 10 
2 5 +35 ± 6 
3 0.5 +46 ± 4 
3 1 +48 ± 7 
3 5 +46 ± 7 

Figure 2. (A) General applied potential waveform; (B) i vs. t curve of pulsed-potential polymerization;
(C) an example of a comparison of two characterization CVs.

Table 1. The change in capacitance when polymerized under a magnetic field with the following
pulse time and downtime combinations.

Pulse Time (s) Downtime (s) % Change in C

0.1 0.1 −3 ± 3
0.1 1 −1 ± 12
1 0.1 +34 ± 15
1 1 +30 ± 29
2 0.1 +39 ± 12
2 1 +47 ± 10
2 5 +35 ± 6
3 0.5 +46 ± 4
3 1 +48 ± 7
3 5 +46 ± 7

3.75 1 +45 ± 8
4.29 1 +47 ± 7

5 1 +42 ± 9
15 1 +35 ± 9
30 0 +28 ± 6

Interestingly, the influence of the magnetic field strength, shown in Figure 3A, is
asymptotic within the range obtainable with the permanent magnetic used. Within this
range of field strengths, it is not believed that the magnet has a significant influence on the
formation of aniline radicals [57]. Instead, the dominant influence of the magnet is believed
to be convection induced by the MHD effect. Increasing the strength of the magnetic field



Sustainability 2023, 15, 15419 7 of 15

increases the rate of rotation. However, in a highly concentrated solution, such as described
in Section 2.2, the diffusion zone is already very small. Induced convection may further
reduce its size, but the difference between two very high rotation speeds is negligible, as
evidenced by the asymptotic trend of the data shown in Figure 3A. Further increases in the
magnetic field strength within the same order of magnitude are not expected to produce
significant improvements beyond what is achieved at 530 mT.
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Figure 3. (A) The effect of the magnet at various magnetic field strengths versus the control. The
electrode was modified with a pulse of 1.1 V for 3 s and a downtime of −0.1 V for 1 s for 10 cycles in
1 M aniline and 2 M HCl. (B) The effect of a 530 mT magnetic field on the resulting capacitance of
the polymer versus the control when running the polymerization for different lengths of time. The
electrode was modified with a pulse of 1.1 V for 3 s and a downtime of −0.1 V for 1 s in 1 M aniline
and 2 M HCl. (C) The effect of 530 mT on the capacitance of the polymer versus the control at various
downtime potentials. The electrode was modified with a pulse of 1.1 V for 3 s and a downtime of 1 s
for 20 cycles in 1 M aniline and 2 M HCl.

During aniline electropolymerization, some of the polymer formed is deposited on
the counter electrode rather than on the working electrode. Some of this deposit consists of
material formed at the working electrode that does not deposit there and instead travels
to and deposits on the counter. In order to investigate the effect that the magnetic field
might have on this or other interactions with the electric field, experiments were conducted
in which the magnet was placed on its side next to the cell, such that the magnetic field
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lines ran horizontal and parallel to the plane of the working electrode surface, rather than
perpendicular as shown earlier. The cell was raised such that the surface of the working
electrode was even with the pole of the magnet and was placed as close as possible to
ensure the maximum possible field strength. In this configuration, the strength of the
magnetic field at the center of the working electrode was 390 mT. Two orientations of the
cell were used: one in which the counter electrode was placed in line with the pole of the
magnet and the working electrode, such that the magnetic field lines and electric field lines
were parallel, and one in which the counter was placed at a right angle to the line from
the pole of the magnet to the working electrode, such that the magnetic field lines were
perpendicular to the electric field, as shown in Figure 4.
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The face of the magnet is oriented towards the electrochemical cell and is centered at the face of the
working electrode.

When the magnetic field was oriented parallel to the electrode surface, its effect on
the product was slightly reduced at that field strength when compared to the previous
perpendicular orientation. There was not a significant difference between whether the
magnetic field was oriented parallel to or perpendicular to the electric field, indicating that
the dominant influence of the magnet is over processes at the working electrode surface and
not processes involving the counter. When the magnetic field was oriented perpendicular to
the electric field, the capacitance was increased by +39% ± 12%, and when it was oriented
parallel to the electric field, the capacitance was increased by 37% ± 11%. This indicates no
substantial difference between different orientations of the electric field. The effect of the
magnetic field under these conditions is slightly decreased from those shown in Figure 3A,
in which the magnetic field was oriented perpendicular to the electrode surface, and the
trend indicates that a 390 mT field would induce an improvement in capacitance of over
45%. This value does, however, fall within the range of experimental error.

When investigating the impact of runtime, the improvement caused by the magnet was
found to increase as the length of polymerization increased, until it reached an upper limit,
after which it began to decrease, as shown in Figure 3B. This is attributed not to aspects
of the magnetic field effects, but rather to the total loading capacity of the polyaniline
on the platinum electrode. At longer runtimes, both with and without the magnet being
present, visible amounts of polyaniline that had not adsorbed to either the working or
counter electrodes were found in the solution, indicating that longer runtimes approached
a finite loading capacity of the electrode for the polymer. This is further evidenced by the
sharp drop in the reproducibility of polymerizations at long runtimes, where the total yield
depends not on the current passed but on the mass retained.

The influence of the downtime potential was investigated over a voltage range between
−800 mV and +800 mV, as shown in Figure 3C. At a high downtime potential (+800 mV),
the reverse current that occurs during downtime was significantly diminished because
aniline oxidation still occurred at the working electrode surface, albeit to a lesser degree.
Thus, for nearly all of this high-potential downtime, a low-magnitude forward current
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was flowing. Therefore, the effect of this high-potential downtime was simply to reduce
the magnitude of the current, thereby reducing the effect of the Lorentz force and, in turn,
reducing convection. In the middle region (+400 mV to −400 mV), the potential dropped
low enough to cause reduction events inside the polymer, driving a reverse current, and
aniline oxidation stopped at the working electrode. This generated a high reverse current
(as seen in Figure 2B), which generated convection. If the downtime is extended to a long
period of time (>60 s), the reverse current will decay to 0 at all middle potentials. At a
large negative downtime potential (−800 mV), the effect was again reduced despite the
reverse current during downtime being very high, as the potential was low enough to fully
reduce the polymer. At this very negative potential, aniline oxidation began to occur on the
counter electrode, which promoted hydrogen evolution on the working electrode, which
could damage the polymer. It is necessary to create a large change in potential during
downtime to generate a high reverse current but not to polarize so strongly as to generate
hydrogen evolution.

The optimized procedure (a pulsed-potential deposition with a pulse of 1.1 V for
3 s and a downtime of −0.1 V for 1 s, running for 20 cycles, and applying a magnetic
field of 530 mT) was characterized via CV and EIS in sulfuric acid. A series of CVs were
performed at varying scan rates on electrodes modified with and without the presence of
a magnetic field. As shown in Figure 5A, the slope of the peak current as a function of
the scan rate represents the capacitance of the electrode. It is shown that the application
of a magnetic field increased the capacitance of the modified electrodes by 74%. For
further characterization, EIS was performed on the electrodes at the open circuit potential
(Figure 5B). It is shown that for the electrodes modified in the presence of a magnetic field,
the slope of the Warburg diffusion line was significantly increased, which also indicates
improved capacitance, as the slope of the Warburg diffusion line tends to infinity for pure
capacitors [58].
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Figure 5. (A) Peak current vs. scan rate for a series of CVs of two modified electrodes in 1 M H2SO4:
one modified under no magnetic field, the other modified under 530 mT. (B) EIS in 1 M H2SO4, from
100 kHz to 100 mHz, at the open circuit potential of an electrode modified under no magnetic field
and an electrode modified under 530 mT. All electrodes were modified with a pulse time of 3 s, a
downtime of 1 s, and a downtime potential of −0.1 V for 20 pulses in 1 M aniline and 2 M HCl.

Galvanostatic charge/discharge (GCD) is an ideal approach for investigating the
electrochemical capacitance of materials. GCD was performed on symmetric capacitor
configurations composed of PANI films synthesized in the absence (Figure 6A) and the
presence (Figure 6B) of 530 mT magnetic fields. The cells were constructed by placing two
platinum electrodes, both modified either with or without a magnetic field, into a 1 M
H2SO4 solution to simulate the behavior of a symmetric supercapacitor. The cells were
charged and discharged at currents ranging from 0.5 to 2 mA. The longer discharge times
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of the cells composed of PANI synthesized in a magnetic field at the same applied currents
confirms their improved capacitance.
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Figure 6. (A) Galvanostatic charging–discharging curves at 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2 mA
for a cell constructed from electrodes modified with no magnetic field. (B) Galvanostatic charging–
discharging curves at 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2 mA for a cell constructed from electrodes
modified under 530 mT. (C) The capacitance per cycle of galvanostatic charging and discharging
at 5 mA for two cells constructed with electrodes modified under no magnetic field and one cell
constructed of electrodes modified under 530 mT.

The cells were then tested for their durability during cycling, as shown in Figure 6C.
The cell made with the electrodes modified under no magnetic field showed significant
losses in capacitance before failure at approximately 29,000 cycles. The cell constructed
with electrodes modified under 530 mT showed a slight decrease in capacitance in the
initial 100 cycles before stabilizing and showed no further loss in capacitance for up to
75,000 cycles, at which point the experiment was ended due to time constraints.

3.3. Role of Convection

To investigate the cause of the improvement, the morphology of the polymers formed
with and without the presence of a magnetic field were investigated via scanning electron
microscopy. To perform the analysis conductive, adhesive carbon tabs were affixed to the
working electrode surface, and the PANI was deposited on the carbon. The carbon tabs
were then transferred to SEM stubs for imaging. The PANI films exhibited an intertangled
fibrous structure. The bulk of both PANI films were similar in fiber density and thickness
(as shown in Figure 7A,B), however, the edge sites show different morphologies. At some
edge sites, significantly thinner fibers were observed on the PANI film synthesized in the
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presence of a 530 mT magnetic field. These thin fibrous structures were both more common
and more pronounced in the polymer formed under 530 mT, suggesting that not only does
forced convection, driven by the MHD effect, result in a larger PANI yield, but that the
thickness of the PANI fibers can be influenced by these conditions.
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In order to determine whether the observed capacitive differences were caused solely
by the Lorentz force-induced convection, the polymerization protocol was applied to stirred
systems under no magnetic field (i.e., forced convection). A 12.7 mm long magnetic stir bar
was placed in the cell and rotated at a variety of rotation speeds using a magnetic stir plate.
The strength of the magnetic field at the surface of the stir plate was approximately 10 mT,
which was small enough to have no impact on the polymerization. It is shown in Figure 8A
that the peak current during polymerization, when performed in the presence of a magnetic
field, was less than when stirring the solution; however, the current decayed slower than
what was observed using the stirred or unstirred (no magnetic field) polymerization
protocols. Despite this decreased peak current, the total capacitance of the electrode
modified in the magnetic field was higher than for any of those modified in the presence of
forced convection (Figure 8B), having a 34% higher capacitance than that modified with
the fastest stir rate of 1000 rpm.
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Figure 8. (A) The current response of the final three pulses of polymerization when stirring at various
rates versus the control and when polymerizing in the presence of a magnetic field. (B) CVs in 1 M
H2SO4 of the electrodes modified in (A). (C) The areas inside the characterization CVs in (B) plotted
against the areas under the full polymerization curves in (A).

When the full polymerization curves are integrated, which represents the total charge
passed in the forward current that is not returned in the reverse current, it is seen that
the polymerization in the presence of the magnet passed the most total charge. It is
shown in Figure 8C that there is a linear correlation between the total charge passed
during polymerization and the area of the characterization CV (proportional to the total
capacitance) for all the electrodes modified without the use of the magnet. Here, we also
see that the electrode modified in the presence of the magnetic field lies above the trend,
with a 13% higher capacitance than expected for that yield, indicating that the increase in
capacitance of the polymer is a result of more than simply increased yield.

4. Conclusions

Herein we have shown that the application of a magnetic field during the electropoly-
merization of aniline in a strongly acidic environment can increase both the yield and capac-
itance, by upwards of 70%, of the resulting PANI films. The characterization of the PANI
films using electrochemical impedance spectroscopy and galvanostatic charge/discharge
experiments confirm the increased capacitance of the PANI films synthesized in the pres-
ence of 530 mT as compared to the PANI films formed in the absence of a magnetic field.
Moreover, the PANI films formed in the presence of magnetic fields were able to retain
their capacitance for over 75,000 cycles, indicating increased stability over the PANI formed
in the absence of magnetic fields, which exhibited an extreme loss of capacitance after
29,000 cycles. This technique allows for an improved energy storage material without
the use of any extra or expensive materials. Furthermore, the use of permanent magnets
instead of electromagnets for this application allows this improvement to be achieved
without the input of any additional energy. To the best of our knowledge, this is the first
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example in the literature to explore the effect on capacitance of a magnetic field during an
electropolymerization. This work also achieves a significant improvement in the polymer
product with field strengths notably lower than many of those found in comparable studies
of magnetoelectropolymerizations. The results suggest that this method could be applied
to other electroactive polymers, provided their monomers are charged in solution and, thus,
able to be influenced by the Lorentz force.

Although the primary influence of the magnet on the polymerization process is from
forced convection via the MHD effect, it remains to be shown what effect the magnet has
on the electropolymerization beyond increased yield from induced convection. Figure 8C
suggests that the magnetic field creates an improvement in the capacitive behavior of the
polymer beyond increased yield; however, the nature of this influence remains unidentified.
While there does appear to be a slight difference in morphology, this does not appear to be
significant enough to account for the improvement. Future work related to magnetically
influenced electropolymerization will aim to investigate (i) whether intrinsic properties of
the polymer, such as average molecular weight or branching, are altered when polymerized
in the presence of magnetic fields, (ii) whether the magnetic field has a meaningful effect
on the stability of the radical intermediates at various field strengths, and (iii) the effects of
other field orientations, such as strongly diverging or converging field lines. Furthermore,
for device applications, investigations using compatible substrates (e.g., carbon mesh,
indium tin oxide (ITO), etc.) are necessary to determine if the influence of the magnet is
equally advantageous to justify integration into supercapacitor applications.
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