
Citation: Bu, X.; Liu, K.; Liu, J.; Ding,

Y. A Harmful Algal Bloom Detection

Model Combining Moderate

Resolution Imaging

Spectroradiometer Multi-Factor and

Meteorological Heterogeneous Data.

Sustainability 2023, 15, 15386.

https://doi.org/10.3390/su152115386

Academic Editors: Ying-Ning Ho,

Hung-Tai Lee and Te-Hua Hsu

Received: 21 August 2023

Revised: 17 October 2023

Accepted: 25 October 2023

Published: 27 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

A Harmful Algal Bloom Detection Model Combining Moderate
Resolution Imaging Spectroradiometer Multi-Factor and
Meteorological Heterogeneous Data
Xiangfeng Bu, Kai Liu, Jingyu Liu * and Yunhong Ding *

School of Computer Science and Information Engineering, Harbin Normal University, Harbin 150025, China;
donghao@stu.hrbnu.edu.cn (X.B.); liukai@stu.hrbnu.edu.cn (K.L.)
* Correspondence: rgzn2020@hrbnu.edu.cn (J.L.); dingyunhong@hrbnu.edu.cn (Y.D.)

Abstract: Over the past few decades, harmful algal blooms (HABs) have occurred frequently world-
wide. The application of harmful algal bloom detection when based solely on water quality measure-
ments proves challenging in achieving broad generalization across various regions. Satellite remote
sensing, due to its low risk, cost effectiveness, and wide ground-coverage capabilities, has been exten-
sively employed in HAB detection tasks. However, relying solely on remote sensing data poses issues
of false positives, false negatives, and the incomplete consideration of contributing factors in HAB
detection. This study proposes a model for harmful algal bloom detection by integrating MODIS mul-
tifactor data with heterogeneous meteorological data. Initially, a dataset named MODIS_MI_HABs is
constructed by gathering information from 192 instances of harmful algal bloom events worldwide.
Subsequently, remote sensing data corresponding to specific regions are collected; all were obtained
from a moderate resolution imaging spectroradiometer (MODIS) aboard an ocean-color-detecting
satellite. This dataset encompasses variables such as chlorophyll-a concentration, the sea surface
temperature, photosynthetically active radiation, the relative radiation stability differences, the six
seawater-absorption coefficients, and three scattering coefficients. By fusing six meteorological fac-
tors, latitude and longitude information, and remote sensing data, a regression dataset for harmful
algal bloom detection is established. Finally, employing harmful algal bloom cell concentration as
the data label, seven machine learning models are employed to establish correlations between the
remote sensing data, heterogeneous meteorological data, and harmful algal bloom cell concentrations.
The root mean square error (RMSE), mean absolute error (MAE), explained variance (EV), and
coefficient of determination (R2) parameters are used to evaluate the regression performance. The
results indicate that the extreme gradient boosting (XGR) model demonstrates the best predictive
capability for harmful algal blooms (leave-one-out: RMSE/MAE = 0.0714). The XGR model, trained
with the entire dataset, yields the optimal predictive performance (RMSE = 0.0236, MAE = 0.0151,
EV = 0.9593, R2 = 0.9493). When compared to the predictions based on the fixed-area water quality
analysis and single-source remote sensing data usage, the proposed approach in this paper displays
wide applicability, offering valuable support for the sustainable development of marine ecology.

Keywords: harmful algal blooms; remote sensing; water quality measurements; machine learning

1. Introduction

In recent years, with the increasing pollution and eutrophication of marine environ-
ments, harmful algal blooms have been occurring frequently worldwide, thus posing
a serious threat to global marine ecosystems [1–5]. The descriptor “HAB” refers to the
proliferation of toxic or harmful phytoplankton that have detrimental effects on marine
organisms [6]. On the one hand, the excessive growth in HABs not only leads to the
discoloration of water bodies and reduced oxygen levels in aquatic habitats but also causes
mass fish mortality [7]. On the other hand, the “red tide toxins” released by certain algae
can cause respiratory irritation, coughing, and asthma-like symptoms when inhaled by
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humans [8–11]. In order to promptly detect the occurrence of HABs, scholars from various
countries have conducted extensive research on harmful algal blooms.

In the early studies on harmful algal blooms, which were based on seawater oxygen
levels, researchers predicted the occurrence of HABs by analyzing field-sampled seawater
data. Due to the potential toxin release from HABs and uncertainties such as offshore
wind and waves [12,13], researchers collected seawater samples using water samplers at
the boundaries of HAB occurrence areas and obtained seawater analysis data through
relevant equipment assays. These field sampling data provided effective data support for
researchers seeking to predict the occurrence of HABs via machine learning models.

Wang et al. [14] collected 96 sets of harmful algal bloom data from offshore areas
proximate to Fujian Province in China. After data cleaning and normalization, they trained
a backpropagation neural network (BPNN) model to detect harmful algal blooms, achieving
an average accuracy of 79%. However, the model has a narrow coverage and a less-than-
optimal accuracy when considering HAB-related factors. Chen et al. [15] proposed a
HAB risk-assessment method which was based on a cross-correlation-based reliability and
importance technique for intercriteria correlation (CRITIC), using Tolo Harbor in Hong
Kong as a study area. This method demonstrated significant effectiveness in assessing
the possibility of HAB occurrences. However, it lacked real-time applicability to specific
regions. Qin et al. [16] proposed a HAB prediction model that integrated the autoregressive
integrated moving average (ARIMA) and deep belief network (DBN) techniques with the
experimental data collected from the coastal waters of Wenzhou and introduced a particle-
swarm optimization algorithm (POS) to improve the model training speed. That model
reached a coefficient of determination of 0.798 on the measured dataset. Nevertheless, that
model has certain limitations, as it can only be applied to specific environmental conditions
in the study area, i.e., it is difficult to generalize to other regions.

Traditional detection methods for harmful algal blooms are time-consuming, labor-
intensive, and dangerous. In addition, the need for real-time monitoring and macroscopic
surveillance over a wide range of areas is a huge challenge. Satellite remote sensing
offers advantages such as wide coverage, large detection areas, and regional real-time
capabilities. With the rise and development of remote sensing technology, many researchers
have combined remote sensing techniques with HAB detection. Joo et al. [17] analyzed
meteorological factors (temperature, water temperature, precipitation, sunshine duration,
solar radiation, wind speed, etc.) in the coastal waters of South Korea using satellite remote
sensing to detect the probability of HAB occurrences in areas potentially affected. However,
this method primarily relies on meteorological information and does not deeply explore the
impact of remote sensing data on HAB predictions. Liu et al. [18] proposed a HAB detection
model which was based on pseudo-color high-resolution imagery (PHA-RI), using high-
spatial-resolution satellite data. They used three spectral bands, near-infrared false-color
composite (NIR), red, and green, to detect HABs, and they demonstrated an excellent
performance in distinguishing between red tide and non-red-tide waters. Liu et al. [19] also
used high spatial resolution (16 m) data, but at a low spectral resolution, as obtained from
the GF-1 satellite, to detect HAB. They focused on a HAB event in Guangdong Province,
China in 2014, and achieved good detection results. However, because of its sensitivity
to weather conditions, its susceptibility to influence by weather, and a relatively small
coverage area, the data from GF-1 may have certain limitations in certain complex scenarios.
Moein et al. [20] studied Karenia brevis (a harmful algal species) in the Gulf of Mexico and
used the Google Earth Engine to extract MODIS-level-3 ocean color product data. Then,
they trained three machine learning models, and the final result was that XGBoost had a
higher accuracy in HAB prediction compared to other machine learning models. Although
this model deeply explored remote sensing inversion data and improved the accuracy of
HAB prediction, it overlooked the impact of meteorological factors on HAB formation.

However, these HAB detection models are highly influenced by regional and meteo-
rological factors [21–23], and they often encounter issues such as false positives and false
negatives in applications that involve multiple regions or a high spatiotemporal hetero-
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geneity of meteorological factors. On the other hand, the detection of HABs in different
regions by remote sensing satellite information alone has obvious limitations due to the
warming of seawater that is caused by climate change and the influence of ocean monsoons
on the spread of harmful algal blooms [24].

Meteorological information, as an important factor in the growth and metabolism
of HABs, is crucial for determining the spread and growth of HABs [25]. For instance,
temperature directly impacts the growth rate and life cycle of harmful algal blooms [26].
Additionally, changes in barometric pressure can affect the dissolved oxygen levels in
seawater to varying degrees, and thus the growth and dispersal of HABs [27].

The objective of this study is to combine MODIS ocean-color satellite data with het-
erogeneous meteorological information to construct a harmful multi-factor algal bloom
detection model that can be based on different geographical and meteorological characteris-
tics. However, few studies have integrated satellite data and heterogeneous meteorological
information for the construction of HAB detection models. With the rise of machine learn-
ing algorithms bringing new research prospects for processing remote sensing data [28–30],
as well as the advent of MODIS-derived ocean color products, which have been widely
used in the detection of marine disaster events [31,32], early researchers utilized ocean-
color satellite components such as SeaWiFS and MODIS to distinguish phytoplankton
(including harmful algal blooms) by inverting chlorophyll concentrations [33]. In addition,
chlorophyll-a was identified as one of the important factors for assessing harmful algal
blooms [34]. In further explorations, researchers discovered an extremely close relationship
between sea surface temperature (SST) and the distribution and growth of HABs [35,36].
These studies also fully demonstrated the significance of MODIS ocean-color satellite data
in HAB detection.

Based on previous research on harmful algal bloom detection, there are two main
issues: (1) Early HAB detection relied on on-site water quality analysis, which greatly
improved accuracy but required significant human and material resources for sampling
and testing. (2) As for HAB predictions with remote sensing data (MODIS and SeaWiFS), in
a single consideration of remote sensing inversion information, it is difficult to fully grasp
the impact of heterogeneous meteorological factors when HABs occur. Therefore, the key in
solving these two problems is to integrate remote sensing information and heterogeneous
meteorological data to achieve a more comprehensive HAB prediction. In this study, we
first collected HAB events from all over the world in different time domains and selected
severe HAB events via multiple harmful algal bloom benchmarks. We utilized MODIS
ocean-color satellite data to retrieve key information related to HAB occurrences, and then
combined these two types of information with heterogeneous meteorological data to form
a HAB prediction dataset. Next, we trained machine learning models on the HAB dataset,
seeking to select the optimal model. Finally, we analyzed the driving factors influencing
HABs and the environment through experimental results. The overall workflow of the
HAB detection model is illustrated in Figure 1.
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Figure 1. General flowchart of the harmful algal bloom detection model. Step 1: Collect harmful 
algal bloom occurrences worldwide and obtain the corresponding remote sensing data and meteor-
ological data with specific time and location information. Step 2: Handle missing data using the K- 
nearest neighbors (KNN) algorithm and perform data cleaning using the DBScan clustering method 
(The red dots are normal data and the black crosses are deleted noise.). Step 3: Evaluate the regres-
sion model using the processed dataset from Step 2.  

2. Materials and Methods 
2.1. Study Area 

This study collected data on a total of 192 harmful algal bloom events from around 
the world over the past 20 years (as shown in Figure 2), thereby illustrating the global 
distribution of HAB occurrences. 

 

Figure 1. General flowchart of the harmful algal bloom detection model. Step 1: Collect harmful algal
bloom occurrences worldwide and obtain the corresponding remote sensing data and meteorological
data with specific time and location information. Step 2: Handle missing data using the K- nearest
neighbors (KNN) algorithm and perform data cleaning using the DBScan clustering method (The red
dots are normal data and the black crosses are deleted noise.). Step 3: Evaluate the regression model
using the processed dataset from Step 2.

2. Materials and Methods
2.1. Study Area

This study collected data on a total of 192 harmful algal bloom events from around
the world over the past 20 years (as shown in Figure 2), thereby illustrating the global
distribution of HAB occurrences.
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2. Materials and Methods 
2.1. Study Area 

This study collected data on a total of 192 harmful algal bloom events from around 
the world over the past 20 years (as shown in Figure 2), thereby illustrating the global 
distribution of HAB occurrences. 

 

Figure 2. The distribution of the harmful algal bloom occurrences worldwide that were collected.
The areas where HABs occurred are represented by red markers.
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2.2. Data Collection

The harmful algal bloom event data collected for the MODIS_MI_HABs dataset
in this study are sourced from the Harmful Algal Event Database, which was estab-
lished under the auspices of the National Oceanic and Atmospheric Administration
(NOAA) of the United States Government. This database can be accessed at http://
haedat.iode.org/browseEvents.php; (accessed on 1 May 2023). Additionally, further data
were obtained from the National Office for Harmful Algal Blooms at Woods Hole Oceano-
graphic Institution (https://hab.whoi.edu/regions-resources/national-and-international/,
(accessed on 1 May 2023)) and the Florida Fish and Wildlife Conservation Commission
(https://myfwc.com/, (accessed on 1 May 2023)). By amalgamating information from the
aforementioned websites, harmful algal bloom data spanning the past two decades were
downloaded. The data we collected comprise five major categories: spatial data, temporal
data, heterogeneous meteorological information data, remote sensing data, and label data
(cell concentration). The specific distribution of the MODIS_MI_HABs data are shown in
Table 1.

Table 1. All data on harmful algal bloom events.

Variable Type Variable Name

Spatial data
Latitude

Longitude

Time data Day of the year

Heterogeneous meteorological information

Average temperature (◦F)

Dew point temperature (◦F)

Sea level pressure (hPa)

Visibility (mi)

Maximum sustained wind speed (knots)

Maximum temperature (◦F)

Remote sensing data
(including the seawater absorption coefficient,

the scattering coefficient, etc.)

rrsdiff

a_443

a_488

a_547

a_645

a_667

a_678

bb_443

bb_469

adg_443

angstrom

SST

Chlorophyll a

par

Data label cells per liter

2.3. Remote Sensing Data
2.3.1. Remote Sensing Data Acquisition

In this study, remote sensing data were obtained using the Moderate Resolution
Imaging Spectroradiometer (MODIS) ocean-color satellite component, which was devel-

http://haedat.iode.org/browseEvents.php
http://haedat.iode.org/browseEvents.php
https://hab.whoi.edu/regions-resources/national-and-international/
https://myfwc.com/
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oped jointly by the National Aeronautics and Space Administration (NASA) and the
National Oceanic and Atmospheric Administration (NOAA). This satellite measures global
ocean color and temperature, among other parameters, on a global scale. The remote
sensing data were acquired based on the latitude and longitude information, as well
as the time information, or the collected harmful algal bloom events described in Sec-
tion 2.2. First, the corresponding region (ROI) was selected based on the latitude, lon-
gitude, and time information that was obtained through NASA’s Ocean Color website
(https://oceancolor.gsfc.nasa.gov/, (accessed on 20 May 2023)); the level 2 data in Aqua
mode were specifically selected. Second, the data were processed through SeaWiFS Data
Analysis System (SeaDAS), a software system developed by NOAA for ocean-color remote-
sensing data processing, as well as analysis (https://seadas.gsfc.nasa.gov/, (accessed on
20 May 2023)).

2.3.2. Remote-Sensing Data Variables

1. Chlorophyll-a

In studies on the detection of harmful algal blooms, three common pigments are often
considered: chlorophyll-a, chlorophyll-b, and chlorophyll-c. Among them, chlorophyll-a
has been proven to be the most representative factor associated with HABs in aquatic
environments [37]. There is a strong correlation between the concentration of chlorophyll-a
and the cell density of harmful algae [38]. In general, existing studies have confirmed a sig-
nificant correlation between the distribution of HABs and the concentration of chlorophyll-
a [39]. The monthly synthesized maps of sea-surface chlorophyll-a concentration retrieved
for the Mediterranean Sea, Black Sea, and European region are illustrated in Figure 3.
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Figure 3. Monthly composite maps of the sea-surface chlorophyll-a concentration retrieved for
the Mediterranean Sea, Black Sea, and European region. In these maps, darker shades of red
indicate higher chlorophyll-a concentrations, while darker shades of blue indicate lower chlorophyll-
a concentrations. Black represents land.

2. Sea Surface Temperature (SST)

The proliferation capacity of harmful algal blooms is directly linked to sea surface
temperature (SST). Temperature exerts control over the viability and ecological demands

https://oceancolor.gsfc.nasa.gov/
https://seadas.gsfc.nasa.gov/
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of harmful algal blooms, and this association has been substantiated in prior investiga-
tions [40,41]. The monthly synthesized maps of sea surface temperature for the Mediter-
ranean Sea, Black Sea, and European region are presented in Figure 4.
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3. Photosynthetically active radiation

Photosynthetically active radiation (PAR) refers to the range of radiation utilized by
harmful algae in the photosynthesis process, and it is a key factor in the proliferation of
harmful algal blooms [42].

4. Relative Radiometric Stability Difference

Relative Radiometric Stability Difference (RRSDIFF) is a quality-control parameter in
MODIS data. Due to variations in observational conditions, data from the same region at
different times may exhibit differences. RRSDIFF is calculated to evaluate the radiometric
stability difference in data from different time periods within the same region, thus ensuring
data accuracy [43].

5. Seawater absorption coefficient

The seawater absorption coefficient refers to the ability of seawater to absorb light. It
provides valuable information about seawater in the study of harmful algal blooms [44].
The proliferation of harmful algal blooms can impact the concentrations of dissolved
organic matter and particulate matter in seawater, which, in turn, affects the seawater
absorption coefficient [45,46]. In this study, six specific bands, as shown in Table 2, were
used to determine the seawater absorption coefficient.
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Table 2. Seawater absorption coefficients of the six wavelength bands.

Sea Water Absorption Coefficient Name Wavelength Band

a_443 443 nm 8
a_488 488 nm 9
a_547 547 nm 10
a_645 645 nm 11
a_667 667 nm 12
a_678 678 nm 13

6. Backscatter coefficient

Backscattering coefficients can describe the intensity of light scattered in a backward
direction. In the study of harmful algal blooms, backscattering coefficients are used to
analyze the concentration of suspended particles in the water [47]. In water bodies where
harmful algal blooms are present, the presence of suspended particles accelerates the
proliferation of harmful algae [48]. This study utilizes two backscattering coefficients and
one depolarization ratio, as shown in Table 3.

Table 3. Scattering coefficients.

Scattering Coefficient Name Band

bb_443 7
bb_469 8

adg_443 7

7. Angstrom Index (Angstrom)

The Angstrom exponent is an indicator that measures the impact of atmospheric
scattering and absorption on light by comparing visible light signals at different wave-
lengths. In MODIS remote sensing data, the Angstrom exponent is used to describe particle
concentrations and color variations on the surfaces of water bodies. In harmful algal bloom
monitoring, color changes reflected by the Angstrom exponent can indicate variations in
water quality and aid in identifying algal species. This parameter plays a crucial role in the
detection of harmful algal blooms by assisting in tasks related to color changes and species
identification [49].

2.3.3. Heterogeneous Weather Data

The meteorological data used in this research are the meteorological data shared
by weather stations distributed all over the world. These data are the information on
global meteorological conditions that are collected by members in various countries un-
der the auspices of the World Meteorological Organization (WMO). Moreover, the infor-
mation is openly shared with relevant researchers around the world for free. The data
used in this paper are obtained from the National Environmental Information Website
(https://www.ncei.noaa.gov/, (accessed on 20 May 2023)), which was established by the
National Oceanic and Atmospheric Administration (NOAA). The distribution of global
meteorological stations is illustrated in Figure 5.

From among these data, this paper collects six kinds of heterogeneous meteorological
data, as well as relative time data for the prediction of harmful algal blooms, as shown in
Table 4.

https://www.ncei.noaa.gov/
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Figure 5. Distribution of weather stations around the world. The purple dots represent weather
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Table 4. Heterogeneous meteorological data.

Variable Name Unit

Average temperature ◦F (Fahrenheit)
Dew-point temperature ◦F (Fahrenheit)

Sea level air pressure Hpa (Hectopascal)
Visibility Miles

Maximum sustained wind speed Knots (Nautical miles per hour)
Maximum temperature ◦F (Fahrenheit)

Relative time Day of the year

2.3.4. Data Label

Harmful algal bloom cell concentration (cells/L) was used as the target variable.
When harmful algal blooms occurred within parameters in the data collection process, the
baseline selected the harmful algal bloom events that were greater than 1,000,000 cells/L.
Where the cell concentration exceeds 1,000,000 cells/L, the water discoloration indicates
the occurrence of a severe harmful algal bloom. In cases of severe HABs, chlorophyll-a
levels can be used to detect HABs in satellite data [50,51].

2.4. Data Cleaning
2.4.1. Missing Value Filling

Remote sensing data have the advantages of strong real-time performance, wide
coverage, and high efficiency, and they are widely used in tasks monitoring the marine
environment [52]. However, due to uncertain factors—such as cloud cover, complex surface
features, and sensor damage—missing data have become a common phenomenon in remote
sensing data [53,54]. In this study, the K- nearest neighbors interpolation (KNN) was used
to fill in the missing values in the data [55,56]. Interpolating data via the KNN algorithm
involves measuring distances (typically using the Euclidean distance) to identify samples
within the dataset that occupy similar spaces. Subsequently, a feature-weighted average of
these identified samples is computed to estimate the data value for the missing point. The
missing value calculation incorporates the reciprocal of the distances as weights throughout
this process. The closer the sample point is, the greater the weight is; likewise, the farther
the sample point is, the smaller the weight is.
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The KNN interpolation method, due to its distance-based approach for filling missing
values, demonstrates wide applicability in spatially intensive remote sensing data [57,58].
On the other hand, KNN interpolation does not require a complex fitting of data or assump-
tions about data distribution, and thus offers high flexibility. It is suitable for various types
of remote sensing data, including irregular shapes or high-dimensional datasets [59].

A schematic diagram illustrating the principle of the KNN missing-data handling
method is depicted in Figure 6. The Euclidean distance formula is as follows:

Dij =

√
n

∑
k=1

(xik − xjk)
2 (1)

In the formula, Dij represents the distance between sample i and j, n represents the
number of attributes, and ik and jk represent the values of i and j on the kth attribute,
respectively.

The weight formula is as follows:

ϕi =
1
xi

(2)

In the formula, ϕi represents the weight of the ith adjacent value, and xi represents the
distance between the ith adjacent value and the unknown sample.

The interpolation formula is as follows:

ŷ =

k
∑

i=1
ϕiyi

k
∑

i=1
ϕi

(3)

In the formula, ŷ represents the predicted value of the missing value sample, yi
represents the real value of the ith adjacent value, and ϕi represents the weight of the ith
adjacent value.
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Figure 6. The KNN missing-data processing method. In the figure, A is the data-missing point, B to I
are the adjacent data samples around A, and the green dashed line and the red dashed line are the
distances from the surrounding adjacent sample points to point A. Among them, the three sample
points indicated by the red dotted line are the closest to the missing value point, that is, the adjacent
sample points with the largest weight.
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2.4.2. Data Noise Reduction

In order to ensure the quality of the data, this study uses the DBScan clustering method
for data cleaning [60]. DBScan is a density-based clustering algorithm that clusters data
points according to the distribution of density during dataset processing; at the same time,
it also identifies initial noise points or outliers. The noise reduction principle of the DBScan
clustering method is depicted in Figure 7.
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Figure 7. The noise reduction principle of the DBScan clustering method. The red points designated
as A in the figure are called the core points. (DBScan has two parameters: Epsilon—the neighborhood
size, and MinPts—the minimum number of samples. If the number of points in the neighborhood
is greater than or equal to the minimum number of samples, the point is among the core points,
and core points can hen be associated with each other. Even where a point can be reached by the
core point, if there are less than the minimum number of samples in the neighborhood, then the
point is a non-core point, which is also called a boundary point. If a point is not a core point, and
there are no core points within the neighborhood of the point, then they are marked as noise points.)
B and C designate the green points as the boundary points, and the blue point represented by E is the
noise point.

2.5. Regression Model
2.5.1. Decision Tree Regression (DT)

Decision tree regression (DT) is a non-parametric regression method based on a
decision tree. This regression method establishes a decision tree model by recursively
dividing sample features to achieve the target prediction [61].

2.5.2. Support Vector Machine Regression (SVR)

Support vector regression (SVR) is a regression method based on the support vector
machine (SVM) [62]. SVR will try to find the best fitting hyperplane (regression line) during
the training process; this method is used to achieve the purpose of regression. The main
advantage of SVR is that it can perform nonlinear regression on complex data, and it has a
strong generalization ability.

2.5.3. Ridge Regression (RR)

Ridge regression (RR) is a linear model commonly used in regression analysis tasks [63].
When optimizing the objective function of ridge regression, the sum of squares of the
coefficients is restricted so that the variance of the model is reduced to obtain a better and
more stable model.
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2.5.4. Categorical Boosting (CATboost)

Categorical boosting (CATboost) is a machine learning framework based on symmetric
decision trees [64]. GBR has a faster training speed, higher prediction accuracy, and there is
no need for tedious feature engineering; in addition, it has stronger generalization ability
and robustness.

2.5.5. Lightweight Composite Ensemble (LCE)

Lightweight composite ensemble (LCE) is a new ensemble method combining the
random forest and XGboost approaches [65], and the prediction ability of the model is
strengthened by this combination. Compared with the former two, it has a faster training
speed, fewer hyperparameters, higher accuracy, and better performance and robustness.

2.5.6. Light Gradient Boosting Machine (LightGBM)

The light gradient boosting machine (LightGBM) is a high-performance gradient
boosting algorithm based on decision trees [66]. The LightGBM uses a histogram-based
algorithm for feature discretization, which improves the training efficiency and prediction
speed of the algorithm to a certain extent, and it is widely used in data processing.

2.5.7. Extreme Gradient Boosting (XGR)

Extreme gradient boosting (XGBoost) is an implementation of the gradient descent
(GBDT) algorithm [67]. Compared with the structure function of the traditional GBDT
algorithm, XGBoost combines the second-order Taylor expansion and the regular term
to correct the defect in which the tree model is easy to overfit. Furthermore, it has the
advantages of faster calculation and a higher precision in the integrated model.

2.6. Experiment Details
2.6.1. Experimental Environment

The experimental environment is shown in Table 5.

Table 5. Experimental environment configuration.

Name Content

Machine configuration Intel I5-10300H, 4 cores, 8 threads, 2.5 GHz;
graphics card: GTX1650Ti;

Operating System Windows 11 OS
Memory (RAM) 16 GB

Hard disk 512 GB
Programming environment Pycharm and Python 3.9 version

2.6.2. Model Parameter Settings

In this experiment, the optimal configuration of parameters in each model was finally
determined through the parameters, as shown in Table 6.
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Table 6. Model parameter settings.

Model Name Parameters

LightGBM learning_rate = 0.1, n_estimators = 1000, max_depth = 8,
reg_alpha = 0.01, min_child_samples = 1, colsample_bytree = 0.5

LCE n_jobs = −1, random_state = 10, max_depth = 5

CATboost iterations = 1000, learning_rate = 0.08, depth = 6, l2_leaf_reg = 1,
loss_function = ‘RMSE’

XGR

XGB = XGBRegressor (reg_lambda = 1), XGB.learning_rate = 0.08,
XGB.n_estimators = 1000, XGB.max_depth = 8,

XGB.colsample_bytree = 0.5, XGB.min_samples_split = 2,
XGB.min_samples_leaf = 2, early_stopping_rounds = 100,

eval_metric = “logloss”, eval_set = eval_set, verbose = True

RR alpha = 0.08, tol = 10 × 10−5, max_iter = 10,000

SVR epsilon = 0.01, random_state = 50, max_iter = 50,000

DT max_depth = 8, min_samples_leaf = 4, ccp_alpha = 0.001,
random_state = 10

2.7. Model Evaluation Metrics

In this experiment, in order to reduce the influence of data factors on the model, the
root mean square error (RMSE), mean absolute error (MAE), coefficient of determination
(R2), and explained variance score (EV) were the most commonly used evaluation indi-
cators in the regression models. However, due to the division method of leave-one-out
cross-validation, only one sample was used as the test set each time, thereby resulting in
an RMSE = MAE—which makes the coefficient of determination impossible to calculate.
Therefore, this paper uses the RMSE and MAE for evaluation when using leave-one-out
cross-validation.

R2 = 1−
∑
i
(ŷi − yi)

2

∑
i
(ŷi − yi)

2 (4)

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (5)

MAE =
1
m

m

∑
i=1
|(yi − ŷi)| (6)

EV= 1− Var(y− ŷ)
Var(y)

(7)

3. Results
3.1. Evaluation and Comparison of the Seven Regression Models

The experiment was conducted using the inversion data of oceanic information
that were collected from the Ocean Color website (https://oceancolor.gsfc.nasa.gov/,
(accessed on 20 May 2023)). Seven machine learning regression models (LCE, CATboost,
XGR, LightGBM, RR, SVR, and DT) were employed, and leave-one-out cross-validation was
performed [68,69] (with each tuple in the test set having a count of 1). Figure 8 illustrates
the scores of each model based on the evaluation metrics (RMSE/MAE). From the figure,
it can be observed that among the seven machine learning regression models, the XGR
model achieved the lowest scores for RMSE and MAE (0.0714), thus indicating the best
fitting performance for cell concentration in the dataset collected in this study. Additionally,
the CATboost (0.0922), LightGBM (0.1026), and LCE (0.1044) models demonstrated better
fitting performance compared to the other models, with minimal differences among the

https://oceancolor.gsfc.nasa.gov/
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three. The scores of the other three regression models were higher than those of the first
four models.
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In order to further explore the relationship between meteorological data and remote
sensing data in the prediction of harmful algal blooms (HABs), as well as to investigate
the model performance, all samples were used to train the seven regression models in the
experiment. The coefficient of determination (R-squared) and EV (explained variance score)
were introduced as the evaluation metrics for the models, as shown in Figure 9. The results
indicate that, based on the R-squared evaluation, the XGR (0.9493), CATboost (0.8809),
LightGBM (0.6347), and LCE (0.8835) models achieved higher scores compared to the other
models. Under the evaluation metric of the explained variance score, the performance
scores for the different models were as follows: XGR (0.9593), CATboost (0.8939), LightGBM
(0.6797), and LCE (0.8958). Furthermore, based on the RMSE/MAE evaluation metrics,
the XGR (0.0236/0.0151), CATboost (0.0381/0.0221), LightGBM (0.0662/0.0283), and LCE
(0.0382/0.0183) models exhibited better fitting performance compared to the other models.
In Figure 9, the red labels in Figure 9a represent the XGR model, which exhibited the best
performance in both the explained variance (EV) and the R-squared evaluation metrics.
In Figure 9b, the red labels again denote the XGR model, which displays the optimal
performance in both the root mean square error (RMSE) and the mean absolute error
(MAE) evaluation metrics. Based on this analysis, the XGR model demonstrated excellent
performance across all of the four evaluation metrics.

Based on the aforementioned discussion, we observed that XGR, CATboost, LightGBM,
and LCE performed well in harmful algal bloom detection. In order to further validate the
significance of the heterogeneous meteorological data in harmful algal bloom monitoring
tasks, as well as to avoid the limitations of relying solely on remote sensing data that have
been obtained by previous researchers, we conducted additional experiments by excluding
the heterogeneous meteorological data and solely using the remote sensing data with the
four regression models instead. The comparison of the four evaluation metrics is depicted
in Figure 10. As shown in Figure 10a, the integration of the heterogeneous meteorological
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information in the evaluation metrics improved the performance of all four models. In
Figure 10b, the incorporation of heterogeneous meteorological data enhanced the models’
performance in the R-squared evaluation metric. Similarly, in Figure 10c,d, the method of
fusing meteorological heterogeneous information with remote sensing data yielded lower
score tolerances than did using remote sensing data alone for both the RMSE and MAE
evaluation metrics. Furthermore, considering the combined results from Figure 10a–d,
we observed that the XGR model also exhibited a favorable performance in harmful algal
bloom detection tasks when using only remote sensing data (EV = 0.9226; R2 = 0.9216;
RMSE = 0.0187; and MAE = 0.0326).
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3.2. Feature Sorting and Analysis

In the evaluation analysis of the seven regression models mentioned above, XGR,
CATboost, and LCE demonstrated superior performances when compared to the other
regression models. Therefore, in this section, we will utilize these three models to conduct a
feature ranking based on their weights (the feature indices for this are listed in Appendix A
Table A1). The feature rankings for the three models are illustrated in Figure 11. In the XGR
model, the red section displays the feature ranking, in which the order is chlorophyll-a
(0.1524), maximum sustained wind speed (0.1252), dew-point temperature (0.0820), bb_443
(0.0797), day of the year (0.0737), longitude (0.0733), sea surface temperature (0.0727),
latitude (0.0626), bb_469 (0.0555), average temperature (0.0360), par (0.0339), rrsdiff (0.0304),
a_547 (0.0292), a_443 (0.0238), Angstrom exponent (0.0167), sea-level pressure (0.0155),
a_678 (0.0111), a_488 (0.0109), adg_443 (0.0103), a_645 (0.0097), visibility (0.0091), maximum
temperature (0.0087), and a_667 (0.0038). In a tan shade in Figure 11, the CATboost model’s
feature ranking was as follows: chlorophyll-a (0.1479), day of the year (0.1232), longitude
(0.1140), latitude (0.0998), maximum sustained wind speed (0.0946), adg_443 (0.0510),
maximum temperature (0.0416), average temperature (0.0385), bb_469 (0.0285), par (0.0280),
dew-point temperature (0.0267), sea-level pressure (0.0243), a_678 (0.0216), a_488 (0.0206),
sea surface temperature (0.0182), a_645 (0.0146), Angstrom exponent (0.0142), visibility
(0.0136), bb_443 (0.0098), a_547 (0.0085), rrsdiff (0.0075), a_443 (0.0069), and a_667 (0.0024).
In a light blue shade in Figure 11, the LCE model’s feature ranking was as follows: day
of the year (0.1460), longitude (0.1410), latitude (0.1011), maximum sustained wind speed
(0.0792), Angstrom exponent (0.0250), average temperature (0.0240), dew-point temperature
(0.0192), chlorophyll-a (0.0160), maximum temperature (0.0138),sea-level pressure (0.0133),
bb_469 (0.0126), visibility (0.0112), par (0.0097), bb_443 (0.0097), rrsdiff (0.0077), a_488
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(0.0076), a_645 (0.0058), a_443 (0.0053), a_678 (0.0031), adg_443 (0.0030), a_547 (0.0027), sea
surface temperature (0.0022), and a_667 (0.0006).
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sensing data with the heterogeneous meteorological information under the evaluation metric EV.
(b) The comparison scores for using only remote sensing data versus fusing the remote sensing
data with the heterogeneous meteorological information under the evaluation metric R2. (c) The
comparison scores for using only remote sensing data versus fusing the remote sensing data with the
heterogeneous meteorological information under the evaluation metric RMSE. (d) The comparison
scores for using only remote sensing data versus fusing the remote sensing data with the heteroge-
neous meteorological information under the evaluation metric MAE. In the figure, “-atmosphere”
represents the condition in which the heterogeneous meteorological information was not integrated,
while “+atmosphere” indicates the condition where heterogeneous meteorological information was
fused. Red labels in the graph indicate higher scores.
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Through the analysis and explanations provided above, it became evident that, in the
XGR model’s weight distribution, the five most important variables (chlorophyll-a, the
maximum sustained wind speed, the dew-point temperature, bb_443, and the day of the
year) included two instances of remote sensing data and two meteorological data variables.
However, in the CATboost and LCE models, longitude and latitude had significant weight
proportions. Furthermore, through the weight comparisons, chlorophyll-a emerged as
a pivotal factor in harmful algal bloom monitoring, and it held greater weight when
compared to other factors. In terms of meteorological factors, the maximum sustained
wind speed also had a relatively high importance.

Through the feature analysis, we discovered that the models were sensitive to geo-
graphical characteristics, meteorological factors, and some of the remote sensing data, thus
indicating variations in the harmful algal bloom characteristics across different regions. The
feature weights among the three regression models were relatively evenly distributed. The
difference between the highest weight, chlorophyll-a (0.1524), and the lowest weight, a_667
(0.0038) for XGR, was 0.1486. For CATboost, the difference between the highest weight,
chlorophyll-a (0.1479), and the lowest weight, a_667 (0.0024), was 0.1455. In the case of
LCE, the difference between the highest weight, the day of the year (0.1460), and the lowest
weight, a_667 (0.0006), was 0.1454. These results indicated that the differences among the
three models were not substantial.

To further compare the gap between using only remote sensing data and integrating
heterogeneous meteorological data, we analyzed the feature weights of the above three
models when using only remote sensing data. In Figure 12, red represents the XGR model
and blue represents the CATboost model. The feature weights of the XGR model when using
only remote sensing data were as follows: bb_469 (0.1481), sea surface temperature (SST)
(0.1357), latitude (0.1074), longitude (0.1025), bb_443 (0.0936), day of the year (0.0839), a_443
(0.0522), adg_443 (0.0521), chlorophyll-a (0.0437), par (0.0364), a_488 (0.0332), Angstrom
exponent (0.0242), a_667 (0.0228), a_645 (0.0215), a_678 (0.0162), rrsdiff (0.0133), and a_547
(0.0131). For the CATboost model when using only remote sensing data, the feature weights
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were as follows: day of the year (0.2311), longitude (0.1860), latitude (0.1302), chlorophyll-a
(0.0728), adg_443 (0.0612), Angstrom exponent (0.0521), a_547 (0.0328), SST (0.0309), a_443
(0.0266), bb_443 (0.0257), a_667 (0.0245), a_488 (0.0232), a_678 (0.0224), par (0.0209), bb_469
(0.0205), a_645 (0.0203), and rrsdiff (0.0188).

Sustainability 2023, 15, x FOR PEER REVIEW 19 of 27 
 

 
Figure 12. The feature weight diagrams of the three regression models. The red color represents 
XGBoost (XGR), and the blue color represents CATboost. 

It is worth noting that, in the analysis of LCE when using only remote sensing data, 
the importance of spatial information (longitude) was significantly higher than other var-
iables, with a feature weight proportion of 0.5821 for longitude. Figure 13 displays the 
feature weight comparison chart of the LCE model, in which the highest feature point 
(longitude: 0.5820) is marked by a red circle and the lowest feature point (a_678: 0.0005) is 
marked by a blue circle. The feature weight span of the LCE model reached 0.5815. How-
ever, such a large span in feature weights can lead to increased numerical instability, 
thereby affecting the regression performance of the model. From the distribution of the 
feature weights, it can be observed that in the context of harmful algal bloom detection 
when using only remote sensing data, the model�s perception of spatial information sig-
nificantly increases. Due to the extensive nature of the data collection, this heightened 
spatial awareness could greatly influence the accuracy of harmful algal bloom detection 
tasks worldwide. 
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When using only remote sensing data for harmful algal bloom detections, it was
observed that the importance of the critical indicators like chlorophyll-a decreased after
removing meteorological data. Conversely, the importance levels associated with the
proportion of spatial and temporal information (longitude, latitude, and the day of the year)
increased, which is not advantageous for harmful algal bloom detection tasks. However,
in the XGR model, the sea surface temperature (SST) continued to play a significant
role in harmful algal bloom detection, thus indirectly emphasizing the importance of
heterogeneous meteorological data in these tasks.

It is worth noting that, in the analysis of LCE when using only remote sensing data, the
importance of spatial information (longitude) was significantly higher than other variables,
with a feature weight proportion of 0.5821 for longitude. Figure 13 displays the feature
weight comparison chart of the LCE model, in which the highest feature point (longitude:
0.5820) is marked by a red circle and the lowest feature point (a_678: 0.0005) is marked by a
blue circle. The feature weight span of the LCE model reached 0.5815. However, such a
large span in feature weights can lead to increased numerical instability, thereby affecting
the regression performance of the model. From the distribution of the feature weights,
it can be observed that in the context of harmful algal bloom detection when using only
remote sensing data, the model’s perception of spatial information significantly increases.
Due to the extensive nature of the data collection, this heightened spatial awareness could
greatly influence the accuracy of harmful algal bloom detection tasks worldwide.
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Through feature analysis, it was observed that the models were more sensitive to
geographical characteristics, meteorological factors, and certain remote sensing data, thus
indicating the variability of harmful algal bloom features across different regions. Among
the three regression models, the feature weights were relatively evenly distributed. The
difference between the highest weight, chlorophyll-a (0.1524), and the lowest weight, a_667
(0.0038), for XGR was 0.1486. For CATboost, the difference between the highest weight,
chlorophyll-a (0.1479), and the lowest weight, a_667 (0.0024), was 0.1455. In the case of
LCE, the difference between the highest weight, the day of the year (0.1460), and the lowest
weight, a_667 (0.0006), was 0.1454. In terms of feature diversity, the standard deviations of
the feature weights are compared in Figure 14 with XGR (0.0391), CATboost (0.0417), and
LCE (0.0425). The results indicate that XGR and CATboost had smaller standard deviations
of feature weights compared to the other models, thus making them more stable.
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Therefore, considering both the model evaluation metrics and feature analysis, XGR
demonstrated a better regression performance. In this study, the XGR model was employed
to achieve a regression prediction for harmful algal blooms with MODIS multifactor and
heterogeneous meteorological data.

4. Discussion

The aim of this study was to develop a harmful algal bloom detection model that
combines remote sensing and heterogeneous meteorological data, specifically one that is
suitable for wide-ranging regions. This research primarily addresses the following: (1) the
difficulty in collecting traditional marine data and its limited generalization to broader
regions, and (2) the incomplete predictive factors that result from solely relying on remote
sensing data. To address these issues, we integrated remote sensing and heterogeneous
meteorological data to construct a harmful algal bloom detection model. This approach
leverages the regional coverage and high temporal resolution of remote sensing informa-
tion, while utilizing the diversity and high spatiotemporal correlation of heterogeneous
meteorological data.

In response to the issues identified above, researchers have addressed the problem of
low spatial resolution in MODIS images by employing super-resolution techniques that
are based on deep learning algorithms. This is crucial for the precise identification and
detection of harmful algal blooms within small-scale areas [70,71]. On the other hand, in
the extensive monitoring of harmful algal blooms, MODIS channel data, when representing
the information most responsive to regional changes in marine areas, significantly enhances
the real-time monitoring of harmful algal blooms within larger regions [72].

Within the broad scope of harmful algal bloom monitoring tasks, the timely extraction
of water quality information and information describing variations in sea surface color
within maritime areas is challenging. This presents a significant challenge for researchers
in predicting the lifecycle and spread of harmful algal blooms [73]. To enhance monitoring
timeliness, researchers have adopted a data-driven approach for harmful algal bloom
detection. While this method effectively utilizes water quality data during harmful algal
bloom occurrences, it overlooks the crucial impact of relevant meteorological factors on
harmful algal bloom incidents. Furthermore, due to the regional nature of water quality
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data and the uncertainty in harmful algal bloom occurrence locations, the applicability of
models solely driven by water quality data is limited within extensive regions.

However, in broad-scale monitoring tasks, marine satellites exhibit exceptional per-
formance, with wide coverage and remote sensing capabilities. This makes them ideal
monitoring tools for phenomena such as harmful algal blooms [74]. The diverse channel in-
formation provided by marine satellites offers more accurate data within extensive regions,
thus laying a valuable foundation for the utilization of remote sensing data and machine
learning models in the broad-scale monitoring of harmful algal blooms.

To achieve this, we collected hundreds of harmful algal bloom events globally, and
obtained corresponding MODIS data through ocean-color -detecting satellite instruments.
We combined these data with heterogeneous meteorological information to build the
MODIS_MI_HABs dataset, and we then conducted an in-depth exploration. This approach
helps to overcome deficiencies in harmful algal bloom prediction. By fusing multi-band
information and meteorological heterogeneous data, we harnessed the advantages of the
remote sensing data. The collected harmful algal bloom dataset, combined with machine
learning, provided new insights into the use of satellite remote sensing technology for
harmful algal bloom detection.

To achieve an accurate detection of harmful algal blooms, this study maximized the
use of remote sensing information in combination with heterogeneous meteorological data,
including temperature, pressure, and wind speed. Previous research has demonstrated
that climatic conditions are crucial for harmful algal bloom occurrences and spread [75,76].
However, current predictive studies often overlook meteorological factors. Furthermore,
harmful algal bloom predictions that are based on ocean field data in broad regions have
significant limitations. Thus, combining the extensive coverage of remote sensing in broad
regions, we collected the multi-factor remote sensing data that were related to harmful
algal blooms, as well as adding elaborations by means of the data collection process, to
establish the MODIS_MI_HABs dataset.

To account for uncertainty-induced missing remote sensing data and to maintain data
quality, we used the KNN algorithm for missing data imputations, and employed DBScan
for data denoising. These steps resulted in a harmful algal bloom detection dataset that
integrated remote sensing data and heterogeneous meteorological information.

In order to address issues such as missed detections, false alarms, and incomplete
factor consideration in wide-ranging harmful algal bloom detection, we validated the corre-
lation of various features with seven regression models that were based on heterogeneous
harmful algal bloom data. The results indicated that regression models can effectively
predict the cell concentration range of harmful algal blooms and perform predictions. The
evaluation of the XGR model revealed its ability to accurately predict harmful algal bloom
occurrences in broad regions. Additionally, due to limitations in the quantity of harmful
algal bloom data, the XGR model exhibited performance advantages over deep learning.

Considering the limitations of fixed-area water-quality-analysis-based harmful algal
bloom predictions, which face difficulties in data collection and generalization to other
regions, our proposed harmful algal bloom monitoring model (which fuses remote sensing
information with heterogeneous meteorological information) is timelier and more effective
in wide-ranging regions. Furthermore, when compared to harmful algal bloom detection
that is solely based on remote sensing information, our findings suggest that relying solely
on remote sensing data yields biased results, and the stability of feature weights is also poor.

In conclusion, the XGR cell concentration prediction model based on the MODIS_MI_HABs
dataset exhibited a superior performance in harmful algal bloom detection. The data
collection methods proposed in this study, as well as the collected dataset, offer new
research directions for scholars in the field of harmful algal bloom detection. In the
future, we plan to expand the dataset further and delve deeper with harmful algal bloom
information into the impacts of regional harmful algal blooms on human health. We also
encourage researchers engaged in remote sensing and harmful algal bloom detection tasks
to explore and extend the MODIS_MI_HABs dataset.
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5. Conclusions

In this paper, we proposed a harmful algal bloom detection model that combines
remote sensing and heterogeneous meteorological data. Due to the complexity of field water
quality measurements in wide-ranging regions, and the limitations of solely considering
remote sensing data for harmful algal bloom prediction, traditional models that are solely
based on remote sensing data are prone to false alarms and missed detections. We collected
hundreds of harmful algal bloom events globally and obtained corresponding MODIS data
through ocean-color satellite modules, and we then combined them with heterogeneous
meteorological data to construct a new dataset (MODIS_MI_HABs) for harmful algal bloom
prediction. This dataset is built upon the MODIS multi-band information, and it further
incorporates heterogeneous meteorological information. Simultaneously, we employed
seven regression models to investigate the relationship between the data and harmful algal
bloom concentration information. To assess the model’s performance, we first employed a
leave-one-out cross-validation to train the data, and we used RMSE (MAE) to evaluate the
model’s performance. To further validate the model, we trained it with all of the available
data, introduced the coefficient of determination, and explained the variance as evaluation
metrics. The results showed that, among the seven regression models, the XGBoost (XGR)
model exhibited the best fitting effect. The XGR model achieved the lowest RMSE/MAE
score, of 0.0714, when using leave-one-out cross-validation, and it demonstrated a superior
prediction performance when trained with all of the data (R2 = 0.9493, EV = 0.9593, RMSE
= 0.0236, MAE = 0.0151). In the feature analysis based on the regression models, the
XGR model had the lowest standard deviation of feature weights (0.0391). However, the
CATboost model (0.0417) showed a comparable performance. Furthermore, based on the
XGR model’s feature weights, chlorophyll-a, maximum sustained wind speed, dew-point
temperature, and bb_443 were the four most influential features in the harmful algal bloom
detection task. In a comprehensive evaluation, the XGR model was better suited for harmful
algal bloom detection when using remote sensing and heterogeneous meteorological data.
We have made the MODIS_MI_HABs dataset publicly available, hoping thereby that more
researchers in the field of harmful algal blooms can explore its potential. In the future,
we will further collect time-series data associated with global harmful algal blooms to
contribute positively to the sustainable development of marine environments.
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Appendix A

Table A1. Feature numbers.

Name Parameter

1 Dimension

2 Longitude

3 SST

4 Chlorophyll a

5 PAR

6 Day of the year

7 Average temperature (◦F)

8 Dew-point temperature (◦F)

9 Sea level air pressure (HPa)

10 Visibility (mi)

11 Maximum continuous wind speed (knots)

12 Maximum temperature (◦F)

13 rrsdiff

14 a_443

15 a_488

16 a_547

17 a_645

18 a_667

19 a_678

20 bb_443

21 bb_469

22 adg_443

23 Angstrom
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