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Abstract: The crucial dynamic path planning of autonomous vehicles is achieved via obstacle avoid-
ance path planning technology. The reduction of the tire adhesion coefficient on icy and snowy roads
(ISRs) increases the difficulty of autonomous vehicles’ control. In this paper, the driving character-
istics of vehicles on ISRs are established, and the artificial potential field function is introduced to
avoid collision risk when planning a path. A dynamic path planning algorithm for autonomous
vehicles based on the artificial potential field (APF) is established. The adjustment factor is added
to the gravitational potential field, and a judgment coefficient is added to the repulsive potential
field to improve the artificial potential field function, based on the low adhesion of vehicles on
ISRs. Moreover, a path with a continuous curvature is generated to achieve the driving comfort and
driving safety of the planned path via trajectory smoothing. By establishing the Carsim/Simulink
co-simulation platform, the effectiveness of dynamic path planning for autonomous vehicles under
different algorithms and different obstacle models is compared. The results show that the improved
APF algorithm has an obvious effect on the smoothness of the path and the reduction of the curvature
mutation and can generate a safe and efficient path on icy and snowy roads. The dynamic obstacle
avoidance of the improved APF algorithm improves the pre-judgment accuracy of the collision risk
assessment of autonomous vehicles and shows the superiority of the improved algorithm.

Keywords: autonomous vehicle; artificial potential field; dynamic path planning; smooth trajectory;
icy and snowy road surface

1. Introduction

The path planning of autonomous vehicles refers to planning an optimal path from
the starting point to the target point while completing obstacle avoidance. Accurate path
planning is critical to the safe and stable operation of autonomous vehicles. Therefore, many
scholars have conducted research on path planning for autonomous vehicles. Currently,
such research has mainly focused on path planning algorithms under different constraint
conditions. These algorithms establish environmental domain cost functions in road spaces
for path planning. Basic methods, such as the A* algorithm [1], Vector Field Histogram
(VFH) [2], Artificial Potential Field (APF) [3], and so on, have been used. The curvature of
the path planned using the A* algorithm is discontinuous, resulting in significant changes
in motion parameters at turning points and making it difficult to apply it reasonably in the
field of vehicles. In complex environments that require sensitive obstacle avoidance, the
VFH method cannot be used, as it compresses obstacle information into a one-dimensional
representation. The basic idea of the APF algorithm is to construct a human potential field
in the working environment of vehicle movement. Under the action of the potential field,
the vehicle trajectory moves along the gradient direction in which the resultant force field
decreases the fastest, making it more suitable for the path planning of vehicle trajectories.

However, due to the two problems of the local minimum and an unreachable target,
traditional artificial potential algorithms have limitations. By improving the gravitational
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and repulsive potential fields, the drawbacks of APF can be avoided. At present, there are
many measures to improve the repulsive potential field, including introducing a repulsive
field adjustment factor [4] and reconstructing the repulsive field range of obstacles [5,6] and
the repulsive field range of road boundaries [7]. Some scholars have introduced dangerous
potential fields [8], or velocity-difference potential fields and acceleration-difference po-
tential fields [9], to improve traditional artificial potential algorithms. Some scholars have
comprehensively considered the distance adjustment factor, dynamic road repulsion field,
velocity repulsion field, and acceleration repulsion field to complete autonomous driving
trajectory planning [10]. In addition to improving the potential field function, the APF
algorithm can also be integrated with other algorithms. This includes the Rapid Exploration
Random Tree (RRT) algorithm [11], A* algorithm [12], complex resistivity method [13],
ant colony algorithm [14], and cyclic reinforcement learning algorithm [15]. The fusion
algorithm can enable autonomous vehicles to avoid obstacles more safely and achieve the
purpose of complementary advantages.

Different smoothing functions can be introduced to address the problem of uneven
planned path trajectories obtained using the APF algorithm; for example, using the Se-
quential Quadratic Programming (SQP) algorithm to solve precise paths that meet safety
requirements [16] and introducing the LC algorithm to provide smoother and safer hu-
manoid trajectories [17]. In addition, it is also possible to consider establishing constraints
on vehicle dynamics and different types of obstacles [18] and safety distance models in
different scenarios [19], as well as providing adaptive motion planning strategies for fuzzy
systems [20]. These measures can improve the safety and smoothness of traditional APF
path planning by correlating a vehicle’s automatic collision avoidance system with changes
in the collision area.

The actual road scene is complex and unpredictable. So, the effectiveness of vehi-
cle path planning algorithms can be verified through different experimental scenarios.
Road scenes can be viewed from different perspectives, including different obstacle envi-
ronments [21], dynamic obstacle environments [22], constant-speed and variable-speed
obstacle vehicle environments [23], and different manual-driving vehicle environments [24].
The artificial potential field algorithm can be improved from various perspectives to adapt
to different road scenarios. For example, in order to solve the problem of path planning
under different velocities and different types of obstacles, Liu et al. (2021) proposed an
adaptive path planning system with two fused potential fields [25].

The researchers improved the artificial potential field algorithm from three aspects:
potential field function, path smoothing, and obstacle avoidance in different scenarios. The
above research has improved the APF algorithm from different perspectives. However,
vehicle dynamics and APF potential field functions in special environments, such as ice
and snow, need to be redesigned. At the same time, different types of obstacles to vehicles
also have a significant impact on the dynamic obstacle avoidance path planning of vehicles.
Therefore, this article proposes a dynamic path planning algorithm for autonomous vehicles
on ISRs based on an improved APF. This algorithm considers the driving characteristics of
vehicles on ISRs, ensuring the applicability of the planned path. Meanwhile, by improving
the APF algorithm, curvature continuous paths can be generated, meeting the driving
comfort and safety requirements of the planned path. Finally, the proposed method was
simulated and validated through Carsim/Simulink to determine the effectiveness and
reliability of the algorithm. The flowchart of this article is shown in Figure 1.

The research contents of this paper are as follows: Section 2 introduces the improved
algorithm proposed in this paper in detail. Firstly, the principle of the traditional APF
algorithm is introduced. According to the influence of the driving characteristics of the
vehicle in an ISR environment, the gravitational potential field and the repulsive potential
field are improved. Finally, the dynamic processing and trajectory smoothing of the
planning path results are carried out, and the dynamic planning path of the autonomous
vehicle in an ISR environment, based on the improved artificial potential field algorithm, is
obtained. Section 3 introduces the simulation platform for testing the effectiveness of the
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improved APF algorithm. The comparative experiments of vehicle performance parameters
under different algorithms and different models are designed and discussed. Section 4
summarizes the full paper.
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2. Methods
2.1. Traditional APF Algorithm

For path planning problems, the entire artificial potential field U in the motion space is
the vector superposition of the gravitational potential field (Uatt) and the repulsive potential
field (Urep) [26], that is U = Uatt + Urep. The gravitational potential field ensures the vehicle’s
global tracking of the target state, while the repulsive potential field ensures the vehicle’s
safe avoidance of multiple obstacles. By calculating the direction of the combined force of
the gravitational and repulsive potential fields, the path along which the potential function
descends is selected to reach the global minimum potential field. According to the definition
of a potential field, vehicles always have a tendency to move towards low-potential-energy
regions. Therefore, starting from the planning starting point, vehicles use the potential
energy difference of the virtual potential field to move, and their movement trajectory is
the planning path of the APF algorithm.

2.1.1. Gravitational Potential Field

The gravitational potential field potential energy of a vehicle monotonically increases
as its distance from a target increases. In path planning problems, vehicles can be treated
as particles, X = (x,y)T, in a two-dimensional space environment, with their motion space
being a two-dimensional space. In traditional APF algorithms, the gravitational potential
field (Uatt) generated using the target point is generally expressed as:

Uatt(X) =
1
2

katt × ρm(X, Xg
)

(1)
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In this formula: katt indicates the positive proportional gain factor of the gravitational
potential field; X denotes the position coordinate of the vehicle; Xg represents the position
coordinates of the target point; m indicates the gravitational potential field factor—in this
paper, m = 2; and ρ

(
X, Xg

)
=
∥∥Xg − X

∥∥ represents the relative distance between the vehicle
and the target.

The gravitational force generated by the vehicle, Fatt, represents the fastest descent
direction of the gravitational potential field (Uatt), and its expression is as follows:

Fatt(X) = −∇Uatt(X) = −katt ·
(
X, Xg

)
(2)

2.1.2. Repulsive Potential Field

The repulsive potential field potential energy of a vehicle monotonically decreases as
its distance from the obstacle increases. When reaching an obstacle, the repulsive potential
energy of the vehicle is infinite, indicating that the repulsive potential field should try to
avoid colliding with the obstacle as much as possible. In traditional APF algorithms, the
repulsive potential field (Urep) generated via obstacles can usually be expressed as follows:

Urep(X) =

{
1
2 krep

(
1

ρ(X,X0)
− 1

ρ0

)
ρ(X, X0) ≤ ρ0

0 ρ(X, X0) > ρ0
(3)

In this formula: krep indicates the positive proportional gain factor of the repulsive
potential field; X0 represents the position coordinates of obstacles; ρ0 represents the maxi-
mum influence distance of the obstacle repulsive potential field; and ρ

(
X, Xg

)
=
∥∥Xg − X

∥∥
indicates the relative distance between the vehicle and the obstacle.

The repulsive force (Frep) generated via obstacles represents the fastest descent direc-
tion of the repulsive potential field (Urep), and its expression is as follows:

Frep(X) =

{
krep

(
1

ρ(X,X0)
− 1

ρ0

)
1

ρ2(X,X0)
∂ρ(X,X0)

∂X , ρ(X, X0) ≤ ρ0

0 , ρ(X, X0) > ρ0
(4)

2.1.3. Composite Potential Field

The total potential field function U(X) is the composite potential field that combines
two potential fields:

U(X) = Uatt(X) + Urep(X) (5)

Similarly, the resultant force F(X) on the vehicle is the vector resultant force of the
gravitational force Fatt(X) and the repulsive force Frep(X), as shown in Figure 2.
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Using Formulas (5) and (6), the potential energy and potential field resultant force of
each point in the moving space can be calculated. The vehicle moves under the guidance of
a synthetic potential field until it reaches the target point. The trajectory of a vehicle is the
planned path. According to the potential energy difference of the potential field, the curve
with the fastest descent along the potential field function U(X), which is the global optimal
path, is selected.

2.2. Driving Characteristics of Vehicles in an ISR Environment and a Modeling Scenario

ISRs have an impact on the longitudinal and lateral driving of vehicles. A longitudinal
braking distance model for icy and snowy roads was constructed in terms of longitudinal
driving, and a lateral displacement model for icy and snowy roads was constructed in terms
of lateral driving. The artificial potential field can be improved using the two indicators of
longitudinal braking distance and lateral displacement as limiting conditions.

2.2.1. Longitudinal Braking Distance Model on ISRs

For the longitudinal braking distance model on icy and snowy roads, inspiration was
drawn from Macnabb’s tracking and testing of vehicle traction and braking capabilities
on winter roads [27]. Based on the test results of different vehicles and tires, taking into
account the driving speed and stopping distance of vehicles on icy and snowy roads, the
friction coefficient calculation formula is as follows:

µ =
V2

254× dl
(7)

In this formula, V represents the driving speed (km/h), and dl indicates the longitudi-
nal braking distance on ISRs (m).

When the friction coefficient in icy and snowy weather is known, the longitudinal
braking distance model of the vehicle at the corresponding speed can be obtained according
to Formula (8):

dl =
V2

254× µ
(8)

2.2.2. Lateral Displacement Model of ISRs

When a vehicle is changing lanes, mechanical balance can be used to study the balance
problem of the vehicle. By decomposing the force acting on the vehicle along the lateral
and vertical (x-axis, y-axis) of the vehicle body, the following equation can be obtained
based on the force balance:

may cos β = Ff i + Ff o + mg sin β (9)

may cos β = Ff i + Ff o + mg sin β (10)

In this formula: m represents the vehicle mass (kg); αy represents the lateral accel-
eration of vehicles on ISRs (m/s2); g indicates the gravitational acceleration (m/s2); β
represents the road slope; Ffi and Ffo represent the friction force of vehicles on ISRs (N);
and Ni and N0 indicated the supporting force of the road surface on the vehicle (N).When
the vehicle is about to slip, the maximum lateral friction force of the tires is equal to the
adhesion between the wheels and the road surface:

(Ni + No)µ = Ff i + Ff o (11)

In this formula, µ represents the road adhesion coefficient on ISRs.
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The lateral acceleration of the vehicle under the critical state of sideslip can be obtained
by combining Formulas (9)–(11), as follows:

ayc =
µg cos β + g sin β

cos β− µ sin β
(12)

In this formula, αyc represents the lateral acceleration of the vehicle in a critical
state (m/s2).

According to the “Technical Standards for Highway Engineering” [28], the recom-
mended superelevation values for curved road sections are provided, and sin β can be
converted to be approximately equal to i, and cos β to be approximately equal to 1. There-
fore, the formula can be simplified as follows:

ayc =
µg + ig
1− µi

(13)

In this formula, i indicates the superelevation value of curved road sections.
The lateral displacement value is related to the lateral acceleration and driving speed,

and the relationship formula is as follows:

dc =
V2

t −V2
0

2ayc
=

(V2
t −V2

0 ) · (1− µi)
2(µg− ig)

(14)

In this formula: V0 represents the driving speed before acceleration (km/h); Vt repre-
sents the driving speed after acceleration (km/h); and dc represents the lateral displacement
value on an ISR surface (m).

2.2.3. Modeling Scenario Description

When two vehicles are in the same lane and the obstacle vehicles in front of this lane
are moving slowly, it is necessary to change lanes or overtake to avoid traffic accidents
such as scratches and collisions between the two vehicles. The target vehicle generally
needs to turn to avoid obstacles, as the speed situation is complex and variable. Therefore,
this article only discusses the situation in which the obstacle vehicle ahead is traveling at
a uniform speed and the target vehicle is traveling at a uniform longitudinal speed in a
straight-road driving scenario. And the target vehicle’s speed is greater than the obstacle
vehicle ahead, and there are no other vehicles or obstacles around the two vehicles. When
this scenario is taken as the research content, the effectiveness of dynamic path planning
for an autonomous vehicle was verified under two working conditions for static obstacle
vehicles and dynamic obstacle vehicles. The straight-lane scenario is shown in Figure 3, in
which the red vehicle is the target vehicle, with a longitudinal speed V1 of 8 m/s, and the
white vehicle is the obstacle vehicle, with a speed V2 of 10 m/s.
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2.3. Improved APF Algorithm in an ISR Environment

Due to the low friction coefficient of ISRs, the driving dynamics characteristics of a
vehicle will change significantly. Based on the driving characteristics of vehicles on ISRs, it
can be concluded that changes in the braking distance and control direction of vehicles will
have an impact on traditional APF algorithms. The specific analysis is as follows.

2.3.1. The Influence on the Gravitational Potential Field

Vehicles should reserve sufficient braking and steering space on ISRs, which can
increase the adjustment factor (αatt) on the original gravitational potential field (Uatt). The
ISR conditions will affect αatt. The lower the friction coefficient on ISRs, the larger αatt, and
the greater Uatt, which is the line connecting the vehicle and the target position that points
towards the target point. The regulatory factor (αatt) and the gravitational potential field
(Uatt) are represented as follows:

αatt =

√
d2

l + d2
c√

D2
l + D2

c

(15)

U∗att(X) =
1
2

αatt · katt · ρ2(X, Xg
)

(16)

In this formula, Dl represents the longitudinal braking distance on a normal road
surface (m) and Dc represents the lateral displacement value on a normal road surface (m).

2.3.2. Influence on Repulsive Potential Field

The repulsive potential field is generated using several obstacles in the environment,
and its shape resembles a “high ground” in the potential field. A judgment coefficient (αrep)
is added to the original repulsive potential field function (Urep). The judgment coefficient
(αrep) and the repulsive potential field function (Urep) are expressed as follows:

αrep =
√

d2
l + d2

c −
√

D2
l + D2

c (17)

U∗rep(X) =

{
1
2 krep

(
1

ρ(X,X0)
− 1

ρ0

)
ρ(X, X0) ≤ ρ0 + αrep

0 ρ(X, X0) > ρ0 + αrep
(18)

In Formula (18), the value of αrep is influenced by the iciness and snowiness of the
road surface. The lower the friction coefficient of the ISR surface, the larger the value of
αrep and the greater the space reserved for judging conditions, thereby avoiding collisions
with obstacles.

2.3.3. The Impact on the Resultant Potential Field

The combined potential field U*(X) is obtained by overlaying the gravitational poten-
tial field (U∗att) and the repulsive potential field (U∗rep) on the icy and snowy road surface.

U∗(X) = U∗att(X) + U∗rep(X) (19)

As shown in Figure 4, for the improved APF algorithm that was constructed, a one-
way, three-lane-road-environment APF was drawn. The potential field at the centerline
of each lane is the lowest, so it can guide vehicles to travel in the middle of the lane. In
order to prevent vehicles from exiting the lane, the potential field at the road boundary is
the highest, and it grows faster as it approaches the boundary. The potential field at the
lane boundary is between the centerline of the lane and the outer boundary, meaning that
vehicles can pass through the lane boundary when changing lanes but cannot drive on the
lane boundary for a long time.
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2.4. Path Smoothing and Dynamic Planning

Curve fitting was performed on the discrete local optimal reference path points gen-
erated via the APF to ensure the smoothness and continuity of the autonomous driving
path. Due to the simple structure, low computational complexity, and continuous curves of
polynomials, this article used a fifth-degree polynomial to fit the lateral displacement and
deflection angle of vehicles. The specific formula is as follows:{

Yre f = a5X5 + a4X4 + a3X3 + a2X2 + a1X1 + a0
ϕre f = b5X5 + b4X4 + b3X3 + b2X2 + b1X1 + b0

(20)

In the formula: a and b are both undetermined coefficients, a = (a5, a4, a3, a2, a1, a0);
b = (b5, b4, b3, b2, b1, b0).

When the obstacle vehicle and the target vehicle move together, the planned path
of each sampling point is a local target path. The real-time vehicle location and road
environment information are collected by setting a fixed sampling time interval. Each time,
the vehicle path is re-planned and updated to achieve the dynamic planning of autonomous
vehicle paths. Figure 5 is a schematic diagram of the dynamic path planning when the
target vehicle overtakes.
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2.5. The Process of APF Algorithm in an ISR Environment

The process of the APF algorithm under ISR environment conditions is as follows:
Step 1: Load the drawn road map;
Step 2: Initialize vehicle-related parameters, including the starting point, target point,

initial direction, vehicle size, maximum speed and acceleration, repulsion influence range,
safety distance range, repulsion force proportion factor, etc.;
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Step 3: Before path planning, first check the legitimacy of the starting point and target
point. If the location is set in an obstacle, it will definitely not be able to reach that state,
and the planning is canceled;

Step 4: After confirming that the starting state and target state are both legal, detect
whether the target has been reached each time. If the target has been reached, the planning
will end. If the target has not been reached, continue with the next step of planning;

Step 5: Substitute the mathematical model of the improved APF algorithm to calculate
the vector size and direction of the repulsion force based on the number of obstacles,
distance, angle, etc. Also, calculate the vector size and direction of gravity. Finally, the
direction and magnitude of the entire synthetic force are obtained;

Step 6: Calculate the vehicle’s next forward direction, forward speed, forward dis-
tance, etc., based on the magnitude and direction of the synthesized force, and drive the
vehicle forward;

Step 7: Detect whether the target point has been reached. If not, continue to plan
according to the process until the target point is reached.

3. Simulation and Result
3.1. Simulation Platform Construction

Using the joint simulation platform of MATLAB 2020a and Carsim 2019, the effec-
tiveness of the improved artificial potential field algorithm for dynamic path planning on
ISRs was simulated and verified. Simulink was used for the dynamic path planning and
trajectory tracking control of vehicles. The road environment and output of the operating
parameters of the target vehicle were provided using Carsim. The joint simulation process
is shown in Figure 6. Based on dynamic road environment information and the improved
artificial potential field algorithm, global planning paths for autonomous vehicles on ISRs
were generated using MATLAB. The planned path was input into the path planning mod-
ule and the track tracking module in Simlink. The output vehicle variables, such as the
front wheel angle, which act on the vehicle dynamics model in Carsim, were output as a
real-time vehicle status. The simulation environment was MATLAB 2021a, and the hard-
ware platform was Win11+AMD R7 5800 H CPU@3.20 GHz+16 GB RAM. The simulation
parameters of the lane and target vehicle are shown in Table 1.
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Table 1. Simulation parameters.

Symbols Name Value

wroad Lane width 3.50 m
lroad Lane length 100 m
nroad Lane number 2
wcar Vehicle lateral length 1.80 m
lcar Vehicle longitudinal length 4.70 m

Different types of icy and snowy road surfaces have different road adhesion coef-
ficients, and the trajectory parameters of vehicles changing lanes on ISRs with different
adhesion coefficients are also different. Table 2 shows the range variation of the adhesion
coefficient for different icy and snowy road surfaces.

Table 2. The attachment coefficient of different snowy and icy roads.

Icy and Snowy Road Surface Coefficient of Adhesion

Ice 0.05–0.1
Compacted snow surface 0.1–0.2

Ordinary snow surface 0.2–0.25
Melting snow surface 0.25–0.3

According to the actual situation of urban road vehicles, taking the urban two-lane
road as an example, the functional verification of the improved APF algorithm in the
dynamic environment was carried out. This scenario assumed that the vehicle was traveling
on two lanes, and the target lane of the main vehicle was determined to be the left lane,
according to the lane change decision. The yellow target vehicle was run at a uniform
speed of 10 m/s, the starting point coordinate was (0, 1.75), and the end point coordinate
was (100.75). There were two black obstacle vehicles with a speed of 5 m/s in front of
the target lane. The initial coordinates of the two obstacle vehicles were (20, 1.75) and
(30, −1.75), respectively. The road adhesion coefficient adopted the critical value of the
adhesion coefficient of the ordinary snow surface in Table 2, and the value was 0.25. Because
the higher the sampling frequency, the better the path result, the environment perception
update time of the autonomous vehicle was set to 0.1 s.

The simulation results obtained through MATLAB are shown in Figure 7. Figure 7
shows the trajectory planning process of a straight two-lane lane change with two dynamic
obstacles. In Figure 7, the horizontal axis represents the length of the lane (lroad), and the
vertical axis represents the width of the lane (wroad). The red solid line is the final driving
path, the white car is the target vehicle, the yellow car is the current location of the target
vehicle, and the gray car is the obstacle vehicle. The vehicle trajectories when the state of
the target vehicle changes were extracted for analysis. Starting from the starting point of
the main vehicle, the autonomous vehicle sensor transmitted the surrounding environment
state data to the improved APF algorithm, including the starting and ending position
obtained in the global path planning stage, the position and speed of the surrounding
vehicle, the road adhesion coefficient, and other information. At the starting moment,
the target vehicle was barrier-free. In addition to the repulsive potential field at the road
boundary, the target vehicle was only affected by the gravitational potential field at the
end point, so the target vehicle was run in a straight line. When an obstacle vehicle is
encountered, the target vehicle is affected by the repulsive potential field, the resultant
potential field plans a new path trajectory, and path smoothing is performed using a fifth-
order polynomial. Under the action of the resultant force potential field, the target vehicle
completed the lane change. Due to the existence of obstacle vehicles, the target vehicle
could not immediately return to the original lane; that is, it still needed to maintain the
current lane. When the target vehicle overtook the obstacle vehicle, due to the influence of
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the resultant force potential field, the vehicle would return to the original lane and complete
the entire overtaking process.
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It can be seen that the improved artificial potential field algorithm can complete
obstacle avoidance path planning with moving obstacles effectively. The planned path was
closer to the actual path of the vehicle, and the planned path was smoother, indicating that
the improved obstacle model can guide vehicles’ lane-changing behavior.

3.2. Analysis of the Dynamic Obstacle Avoidance Effectiveness of the Improved APF Algorithm

In order to verify the effectiveness and reliability of the improved APF algorithm for
dynamic obstacle avoidance on ISRs, the vehicle dynamics parameters were analyzed under
three obstacle avoidance scenarios: the static obstacle avoidance of the traditional APF
algorithm (SOA-APF), the dynamic obstacle avoidance of the traditional APF algorithm
(DOA-APF), and the dynamic obstacle avoidance of the improved APF algorithm (DOA-
IAPF). The applicability of the improved APF algorithm when the vehicle speed was 8 m/s
and 10 m/s was compared. Simultaneously, a comparative obstacle avoidance algorithm,
the dynamic obstacle avoidance of the traditional RRT algorithm (DOA-RRT), was added.
The parameters of each obstacle avoidance scenario are shown in Table 3.

Table 3. Parameters of different obstacle avoidance scenarios.

Position DOA-RRT SOA-APF DOA-APF DOA-IAPF

Start point (0, 1.75) (0, −1.75) (0, −1.75) (0, 1.75)
End point (100, 1.75) (100, 1.75) (100, 1.75) (100, 1.75)
Obstacle 1 (20, 1.75) (25, −3) (15, 1.75) (20, 1.75)
Obstacle 2 (30, −1.75) (50, 3) (45, −2.5) (30, −1.75)
Obstacle 3 / (75, −3) / /

Obstacle status Motion Stillness Motion Motion

With a target vehicle speed was 8 m/s, the simulation results of the yaw angle,
yaw rate, and front wheel angle under different obstacle avoidance scenarios are shown
in Figure 8. SOA-APF achieved the worst performance, with maximum yaw angles of
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−19.95 dge and 17.33 dge for two lane changes, respectively. The yaw angle fluctuated
greatly, and the trajectory was not smooth, which caused a sudden change phenomenon
from 10 s to 12 s. DOA-APF performed relatively well, but the fluctuation amplitude was
still high, with a maximum yaw angle of 14.72 dge. The overall fluctuation of DOA-RRT
was relatively low. But when the target vehicle overtook, there was a sudden change in
the front wheel angle and yaw intersection of the target vehicle. At the same time, the
path planned using DOA-RRT did not achieve the constraint of a safe vehicle distance.
DOA-IAPF achieved the best performance, with a maximum yaw angle of −9.30 dge for
both lane changes. Compared to the other three methods, the yaw angle fluctuation of
DOA-IAPF was low, and there was no sudden change phenomenon. Similar to the trend in
yaw angle variation, the limit values and fluctuation of the yaw rate and front wheel angle
obtained using DOA-IAPF were relatively low and superior to the other three methods.
The effectiveness of the improved APF algorithm for dynamic obstacles was proven.
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When the target vehicle speed is 10 m/s, the yaw angle, yaw rate, and front wheel
angle are shown in Figure 9. It can be found that DOA-IAPF is still superior to the other
three methods at different speeds. However, when the target vehicle speed is 10 m/s, the
angle change per unit time becomes larger. Therefore, the variation amplitude and peak
value of various parameters are all less than the vehicle speed of 8 m/s.
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3.3. Analysis of Obstacle Avoidance Effectiveness for Different Obstacle Vehicle Types

In order to verify the adaptability of the algorithm in different scenarios and compare
the impact of different obstacle vehicle types on DOA-IAPF, the vehicle dynamic parameters
when overtaking under different obstacle vehicle types were analyzed. This paper divided
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obstacle vehicles into three types of vehicles, with the length and width of the vehicles
taking the average of the current vehicle classification standards. The specific parameter
values for obstacle vehicles of different models are shown in Table 4.

Table 4. Obstacle vehicle parameters.

Vehicle Type Longitudinal Length/m Lateral Length/m

Large vehicles 7.18 2.55
Medium vehicles 6.00 2.15

Small vehicles 4.70 1.80

With a target vehicle speed was 8 m/s, the simulation results of the yaw angle, yaw
rate, and front wheel angle for different obstacle vehicle types are shown in Figure 10.
Evading large-obstacle vehicles started from the 5.2nd second and ended at the 13.5th
second, lasting for 8.3 s, for which the maximum yaw angle was 3.60 rad. Evading medium-
obstacle vehicles started from the 8.9th second and ended at the 15.1st second, lasting for
6.2 s, for which the maximum yaw angle was 6.00 rad. Evading small-obstacle vehicles
started from the 10.0th second and ended at the 15.4th second, lasting for 5.4 s, for which
the maximum yaw angle was 7.65 rad. Due to the large volume of large vehicles, the
generated repulsive potential field was large, which caused the target vehicle to change
lanes ahead of time and resulted in a long lane-changing time and small changes in the
yaw angle. Therefore, the yaw rate and front wheel angle of large vehicles are also lower
compared to other models.
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4. Conclusions

In this paper, we proposed an improved artificial potential field algorithm to improve
the efficiency and accuracy of autonomous vehicle path planning in an ISR environment.
The reliability of the model was verified by comparing the vehicle planning trajectories at
different speeds and under different obstacle avoidance conditions.

• Considering the driving characteristics of vehicles on ISRs, the gravitational field and
repulsive field models of the traditional APF algorithm were improved by adding
adjustment factors and judgment coefficients. The improved APF algorithm proposed
in this paper can plan a smooth lane change and overtaking path, effectively avoid
obstacle vehicles, and guide autonomous vehicles to drive safely and stably.

• The effectiveness of the improved APF algorithm was verified by comparing it with
the traditional APF algorithm under dynamic planning path and vehicle conditions.
The results show that, compared with the static obstacle avoidance and dynamic
obstacle avoidance of the traditional APF algorithm, the trajectory of the dynamic
obstacle avoidance path planned using the improved APF algorithm was smoother,
and there was no mutation.

• The obstacle avoidance accuracy and efficiency of autonomous vehicles for different
obstacle models were analyzed. The results show that the improved APF algorithm
can generate different planning paths for different types of obstacle vehicles and can
safely and effectively guide an autonomous vehicle to complete obstacle avoidance
and lane changes.

Future work will consider more complex traffic scenarios, as well as different driving
styles for decision-making and motion planning. For example, the article’s assumption was
that the motion state of the obstacle vehicle remained unchanged. We did not consider a
situation in which a car was driving around a bend and the movement status of obstacle
vehicles changed randomly. For more complex driving environments, such as multiple
lanes, unsignalized intersections, and roundabouts, the reliability of the algorithm needs
to be verified by considering different driving environments. At the same time, the speed
required in this paper was manually preset. If the required speed can be determined
according to different driving conditions and driving styles, the APF algorithm can be
further improved. In addition, it is necessary to test the motion planning performance of
the improved APF algorithm in a real scene through a real vehicle platform, which will be
the focus of future research.

Author Contributions: Conceptualization, Y.P. and S.Z.; methodology, S.Z. and Y.P.; software, S.Z.;
validation, Y.P. and S.Z.; formal analysis, S.Z.; investigation, Y.P. and S.Z.; resources, Y.P.; data curation,



Sustainability 2023, 15, 15377 16 of 17

Y.P. and S.Z.; writing—original draft preparation, Y.P. and S.Z. All authors have read and agreed to
the published version of the manuscript.

Funding: The research was funded by the Key Project of National Natural Science Foundation of
China (Grant No. 51638004).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in
the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yershov, D.S.; LaValle, S.M. Simplicial Dijkstra and A* Algorithms for Optimal Feedback Planning. In Proceedings of the 2011

IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp.
3862–3867.

2. Borenstein, J.; Koren, Y. The Vector Field Histogram-Fast Obstacle Avoidance for Mobile Robots. IEEE Trans. Robot. Autom. 1991,
7, 278–288. [CrossRef]

3. Barraquand, J.; Langlois, B.; Latombe, J.-C. Numerical Potential Field Techniques for Robot Path Planning. IEEE Trans. Syst. Man
Cybern. 1992, 22, 224–241. [CrossRef]

4. Wu, H.; Zhang, Y.; Huang, L.; Zhang, J.; Luan, Z.; Zhao, W.; Chen, F. Research on Vehicle Obstacle Avoidance Path Planning
Based on APF-PSO. Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. 2023, 237, 1391–1405. [CrossRef]

5. Wang, P.; Gao, S.; Li, L.; Sun, B.; Cheng, S. Obstacle Avoidance Path Planning Design for Autonomous Driving Vehicles Based on
an Improved Artificial Potential Field Algorithm. Energies 2019, 12, 2342. [CrossRef]

6. Rasekhipour, Y.; Khajepour, A.; Chen, S.-K.; Litkouhi, B. A Potential Field-Based Model Predictive Path-Planning Controller for
Autonomous Road Vehicles. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1255–1267. [CrossRef]

7. Ji, J.; Khajepour, A.; Melek, W.W.; Huang, Y. Path Planning and Tracking for Vehicle Collision Avoidance Based on Model
Predictive Control with Multiconstraints. IEEE Trans. Veh. Technol. 2017, 66, 952–964. [CrossRef]

8. Zheng, L.; Zeng, P.; Yang, W.; Li, Y.; Zhan, Z. Bézier Curve-Based Trajectory Planning for Autonomous Vehicles with Collision
Avoidance. IET Intell. Transp. Syst. 2020, 14, 1882–1891. [CrossRef]

9. Xie, S.; Hu, J.; Bhowmick, P.; Ding, Z.; Arvin, F. Distributed Motion Planning for Safe Autonomous Vehicle Overtaking via
Artificial Potential Field. IEEE Trans. Intell. Transp. Syst. 2022, 23, 21531–21547. [CrossRef]

10. Li, Y.; Yang, W.; Zhang, X.; Kang, X.; Li, M. Research on Automatic Driving Trajectory Planning and Tracking Control Based on
Improvement of the Artificial Potential Field Method. Sustainability 2022, 14, 12131. [CrossRef]

11. Ma, H.; Pei, W.; Zhang, Q. Research on Path Planning Algorithm for Driverless Vehicles. Mathematics 2022, 10, 2555. [CrossRef]
12. Pan, R.; Jie, L.; Zhao, X.; Wang, H.; Yang, J.; Song, J. Active Obstacle Avoidance Trajectory Planning for Vehicles Based on Obstacle

Potential Field and MPC in V2P Scenario. Sensors 2023, 23, 3248. [CrossRef] [PubMed]
13. Huang, Y.; Ding, H.; Zhang, Y.; Wang, H.; Cao, D.; Xu, N.; Hu, C. A Motion Planning and Tracking Framework for Autonomous

Vehicles Based on Artificial Potential Field Elaborated Resistance Network Approach. IEEE Trans. Ind. Electron. 2020, 67,
1376–1386. [CrossRef]

14. Yuan, C.; Wei, Y.; Shen, J.; Chen, L.; He, Y.; Weng, S.; Wang, T. Research on Path Planning Based on New Fusion Algorithm for
Autonomous Vehicle. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420911235. [CrossRef]

15. Wang, Z.; Yang, J.; Zhang, Q.; Wang, L. Risk-Aware Travel Path Planning Algorithm Based on Reinforcement Learning during
COVID-19. Sustainability 2022, 14, 13364. [CrossRef]

16. Qin, P.; Liu, F.; Guo, Z.; Li, Z.; Shang, Y. Hierarchical Collision-Free Trajectory Planning for Autonomous Vehicles Based on
Improved Artificial Potential Field Method. Trans. Inst. Meas. Control 2023, 1423312231186684. [CrossRef]

17. Wu, P.; Gao, F.; Li, K. Humanlike Decision and Motion Planning for Expressway Lane Changing Based on Artificial Potential
Field. IEEE Access 2022, 10, 4359–4373. [CrossRef]

18. Li, H.; Liu, W.; Yang, C.; Wang, W.; Qie, T.; Xiang, C. An Optimization-Based Path Planning Approach for Autonomous Vehicles
Using the DynEFWA-Artificial Potential Field. IEEE T. Intell. Veh. 2022, 7, 263–272. [CrossRef]

19. Yuan, C.; Weng, S.; Shen, J.; Chen, L.; He, Y.; Wang, T. Research on Active Collision Avoidance Algorithm for Intelligent Vehicle
Based on Improved Artificial Potential Field Model. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420911232. [CrossRef]

20. Wahid, N.; Zamzuri, H.; Amer, N.H.; Dwijotomo, A.; Saruchi, S.A.; Mazlan, S.A. Vehicle Collision Avoidance Motion Planning
Strategy Using Artificial Potential Field with Adaptive Multi-Speed Scheduler. IET Intell. Transp. Syst. 2020, 14, 1200–1209.
[CrossRef]

21. Sun, L.; Fu, Z.; Tao, F.; Si, P.; Song, S.; Sun, C. Apf-Bug-Based Intelligent Path Planning for Autonomous Vehicle with High
Precision in Complex Environment. Int. J. Robot. Autom. 2023, 38, 277–283. [CrossRef]

https://doi.org/10.1109/70.88137
https://doi.org/10.1109/21.148426
https://doi.org/10.1177/09544070221088364
https://doi.org/10.3390/en12122342
https://doi.org/10.1109/TITS.2016.2604240
https://doi.org/10.1109/TVT.2016.2555853
https://doi.org/10.1049/iet-its.2020.0355
https://doi.org/10.1109/TITS.2022.3189741
https://doi.org/10.3390/su141912131
https://doi.org/10.3390/math10152555
https://doi.org/10.3390/s23063248
https://www.ncbi.nlm.nih.gov/pubmed/36991959
https://doi.org/10.1109/TIE.2019.2898599
https://doi.org/10.1177/1729881420911235
https://doi.org/10.3390/su142013364
https://doi.org/10.1177/01423312231186684
https://doi.org/10.1109/ACCESS.2022.3141075
https://doi.org/10.1109/TIV.2021.3123341
https://doi.org/10.1177/1729881420911232
https://doi.org/10.1049/iet-its.2020.0048
https://doi.org/10.2316/J.2023.206-0741


Sustainability 2023, 15, 15377 17 of 17

22. Luo, J.; Wang, Z.-X.; Pan, K.-L. Reliable Path Planning Algorithm Based on Improved Artificial Potential Field Method. IEEE
Access 2022, 10, 108276–108284. [CrossRef]

23. Duan, Y.; Yang, C.; Zhu, J.; Meng, Y.; Liu, X. Active Obstacle Avoidance Method of Autonomous Vehicle Based on Improved
Artificial Potential Field. Int. J. Adv. Robot. Syst. 2022, 19, 17298806221115984. [CrossRef]

24. Wang, S.; Lin, F.; Wang, T.; Zhao, Y.; Zang, L.; Deng, Y. Autonomous Vehicle Path Planning Based on Driver Characteristics
Identification and Improved Artificial Potential Field. Actuators 2022, 11, 52. [CrossRef]

25. Liu, Z.; Yuan, X.; Huang, G.; Wang, Y.; Zhang, X. Two Potential Fields Fused Adaptive Path Planning System for Autonomous
Vehicle under Different Velocities. ISA Trans. 2021, 112, 176–185. [CrossRef]

26. Koren, Y.; Borenstein, J. Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation. In Proceedings
of the 1991 IEEE International Conference on Robotics and Automation Proceedings, Sacramento, CA, USA, 7–12 April 1991;
Volume 2, pp. 1398–1404.

27. Macnabb, M.J.; Baerg, R.; Sanderson, S.; Chafe, B.; Navin, F. Tire/Ice Friction Values; SAE Technical Paper 960959; SAE International:
Warrendale, PA, USA, 1996.

28. JTGB01-2014; Technical Standard of Highway Engineering. Ministry of Transport of People’s Republic of China: Beijing,
China, 2014.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2022.3212741
https://doi.org/10.1177/17298806221115984
https://doi.org/10.3390/act11020052
https://doi.org/10.1016/j.isatra.2020.12.015

	Introduction 
	Methods 
	Traditional APF Algorithm 
	Gravitational Potential Field 
	Repulsive Potential Field 
	Composite Potential Field 

	Driving Characteristics of Vehicles in an ISR Environment and a Modeling Scenario 
	Longitudinal Braking Distance Model on ISRs 
	Lateral Displacement Model of ISRs 
	Modeling Scenario Description 

	Improved APF Algorithm in an ISR Environment 
	The Influence on the Gravitational Potential Field 
	Influence on Repulsive Potential Field 
	The Impact on the Resultant Potential Field 

	Path Smoothing and Dynamic Planning 
	The Process of APF Algorithm in an ISR Environment 

	Simulation and Result 
	Simulation Platform Construction 
	Analysis of the Dynamic Obstacle Avoidance Effectiveness of the Improved APF Algorithm 
	Analysis of Obstacle Avoidance Effectiveness for Different Obstacle Vehicle Types 

	Conclusions 
	References

