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Abstract: The complexity of aquifers poses a challenge for fully comprehending the impact of climate
change on groundwater. In this study, we employed a suite of hydrological and statistical methods,
including the water table fluctuation (WTF) method, wavelet analysis, the Hurst exponent, and
temporal trend analysis, to assess groundwater storage (GWS) changes and their correlation with
precipitation in Alabama, located in the southeastern United States. These approaches were used to
evaluate the temporal variability of GWS as derived from well data and large-scale model estimates
that incorporated satellite observations. The results unveiled a nuanced and regionally variable
relationship between GWS changes and precipitation over the past two decades. While the Mann–
Kendall test did not reveal any statistically significant overarching trends in GWS changes, Sen’s
slope analysis indicated subtle regional variations, including a minor decline of −0.2 mm/year for
GWS in southern Alabama and modest increases of 0.5 mm/year and 0.38 mm/year in the western
and northern regions, respectively, from 2000–2021. Wavelet coherence analysis showed significant co-
variation between GWS and precipitation in cycles ranging from 8 to 32 months, suggesting potential
cyclic or intermittent influences. Furthermore, we detected strong persistence within the groundwater
system using the Hurst exponent, indicating the substantial temporal memory impact. These findings
are useful for developing effective groundwater management strategies in a changing climate.

Keywords: groundwater storage change; precipitation; water table fluctuation method; statistical
analysis

1. Introduction

Groundwater plays a crucial role in sustaining human societies, ecosystems, and
economies. Therefore, understanding how climate change affects groundwater is essential
for effective water management [1–4]. Particularly, investigating the impact of climate
change on the long-term evolution of groundwater sustainability provides valuable insights
for water management [5–7]. For example, changes in precipitation patterns and long-term
temperature trends can affect recharge rates and groundwater availability. Numerous
studies have documented the influence of climate change on groundwater storage (GWS)
in various regions. For instance, changes in precipitation patterns due to climate change
have the potential to impact groundwater recharge rates and storage levels in aquifers in
the western United States (U.S.), albeit with large uncertainties regarding the magnitude
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of groundwater recharge changes [8]. Similarly, changes in precipitation and temperature
have been observed to affect groundwater recharge and storage variations in the Indo-
Gangetic Basin, India [9]. Variations in precipitation patterns, driven by factors such as
climate change, can profoundly impact the distribution of water across landscapes [10].
These changes can alter the timing and quantity of water percolating into the ground,
resulting from shifts in rainfall patterns that may lead to more intense storms or extended
dry periods. Understanding the impact of climate change on groundwater remains a
challenge due to the intrinsically dynamic nature of groundwater systems. This challenge
motivated this study.

Climate change has both direct and indirect consequences for groundwater resources,
many of which remain not fully understood [11]. Directly, climate change can alter pre-
cipitation patterns, causing variable rates of water infiltration into soil and refilling of
aquifers. Additionally, increasing temperatures can lead to higher evapotranspiration rates,
which can, in turn, limit groundwater recharge. Indirect effects include changes in land use,
alterations in surface water availability, and shifts in water demand from both ecosystems
and human communities. A study conducted by Hoe et al. [12] specifically examined
the seasonal impacts of temperature and precipitation on vegetation water-use efficiency
(WUE) in China’s Loess Plateau. This research identified a temporal decline in seasonal
WUE from 2001 to 2019 utilizing Sen’s slope and the Mann–Kendall test. The most notable
decrease occurred during the summer season, with temperature and precipitation identified
as the primary influencing factors. Such changes can have cascading effects; for instance,
water scarcity driven by climate change may necessitate shifts in agricultural practices and
urban development, potentially leading to increased groundwater extraction and new land
management approaches [13]. In this study, we will demonstrate the need for a combination
of quantitative analyses due to the complex and fluctuating responses of groundwater
systems to climate change, exacerbated by limited hydrological and climatological data.

Several methods are available for evaluating fluctuations in groundwater heads, in-
cluding in situ measurements, numerical hydrological simulation [14], and geophysical
techniques such as electrical resistivity and ground-penetrating radar [15–17]. In typical
groundwater hydrographs, shallow groundwater heads often exhibit fluctuation patterns.
These patterns include diurnal variations due to atmospheric pressure, seasonal precipita-
tion changes, and the consequent alternations in GWS. In this study, we will first employ the
physically based water table fluctuation (WTF) method proposed by Healy and Cook [18]
to assess changes in GWS. The WTF method has proven to be an efficient and reliable
approach for analyzing GWS changes [18], making it a valuable tool for assessing the
impacts of climate change and formulating groundwater management strategies. This
method calculates the total or “gross” recharge and can also estimate subsurface storage
changes over long-time intervals, such as seasonal or annual periods [18]. Healy and
Cook [18] identified the main limitations of the WTF method, including the identification
of the causes behind water-level fluctuations. This method is adopted in our study and
then assessed alongside other methods (as mentioned below) to estimate changes in GWS
in multiple wells located in Alabama, in the southeastern U.S.

We chose Alabama as our study site due to the absence of a systematic evaluation of
long-term, large-scale groundwater resource changes in response to a changing climate
in the state. Prior to 2008, the U. S. Geological Survey (USGS) employed various method-
ologies to explore changes in GWS within Alabama’s aquifers. These methods included
the utilization of groundwater flow models [19,20] and the application of geophysical
techniques [21]. The computational expense associated with the modeling approach and
the limited coverage of classical geophysical tools often precluded a comprehensive assess-
ment of the entire state. As a result, the WTF method combined with statistical analysis
emerges as a better choice for evaluating long-term (specifically, the past two decades,
which were not covered by the USGS assessment), large-scale (statewide) changes in GWS
driven by precipitation.
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Therefore, this study aims to investigate the untapped potential of the WTF method in
estimating GWS changes within Alabama’s aquifers from 2000 to 2021, while also shedding
light on the implications of climate change for groundwater resources. It is important
to note that this study focuses on the long-term evolution of GWS change rather than
GWS itself. This emphasis is crucial because the variability in GWS change determines
groundwater’s safe yield, which is essential for maintaining healthy ecosystems and a
robust economy. Particularly, the integration of the WTF method with statistical analysis
enables us to delve more deeply into long-term trends and the persistence of changes in
GWS. By applying the Hurst exponent, a measure of a time series’ long-term memory [22],
we gain a better understanding of the inherent characteristics of GWS fluctuations. Ad-
ditionally, trend analysis offers a quantitative representation of changes over time [23],
aiding in establishing correlations between these changes and prevailing climatic condi-
tions. Through a combination of the WTF method with statistical methods, we can assess
trends in GWS changes over an extended period and establish relationships between GWS
changes and precipitation.

Notably, by employing a multifaceted approach that integrates various techniques
and data across different scales, we have achieved a comprehensive understanding of
spatiotemporal variations in GWS in regional-scale aquifers. This constitutes the primary
scientific contribution of this study. It is also noteworthy that precipitation and temperature
are key climate factors. Precipitation primarily influences aquifer water infiltration, while
temperature affects factors such as snow–rain transition, potential evapotranspiration,
and groundwater recharge mechanisms. Temperature can also influence GWS changes,
although this study focuses solely on precipitation’s impact. The effects of temperature on
GWS changes will be explored in a future study.

2. Materials and Methods
2.1. Data and Study Area

Alabama features a subtropical climate characterized by hot, humid summers and
mild winters, with an average annual precipitation of approximately 55 inches (1397 mm)
in the northern regions and 65 inches (1651 mm) near the coastal zone [24]. The state
of Alabama is divided into five distinct hydrogeologic provinces (Figure 1), namely, the
East Gulf Coastal Plain (i.e., southeastern plains), Piedmont Upland, Valley and Ridge,
Cumberland Plateau, and Highland Rim [25]. These provinces are closely aligned with
the state’s physiographic regions and significantly influence the dynamics and storage of
groundwater. The classification of these hydrogeologic provinces is primarily based on
variations in rock water-bearing properties, rock type, structural geology, and physiography,
all of which play a role in determining the types of aquifers present in these areas.

Daily groundwater depth readings spanning from 1 January 2000 to 28 September
2021 were collected from the Geological Survey of Alabama’s (GSA) groundwater database
(https://waterstar-al.cstestsite.com/, accessed on 2 November 2022). We carefully selected
three observation wells in Alabama (Figure 1) from a comprehensive dataset containing a
total of twenty-seven wells. Our selection process involved a thorough analysis of depth-
to-groundwater information and consideration of the wells’ geographic locations. We also
considered Alabama’s varying precipitation levels, which increase from the northern to
the southern regions of the state. Each of the chosen wells was verified to be unconfined,
ensuring they provided a reliable representation of the local water table with minimal
influence from pumping or injections, meaning they were subject to fewer anthropogenic
impacts. Many records from various locations were excluded due to insufficient length
or significant data gaps. In the case of one of the three selected wells, well 92197, we
encountered missing data points. These gaps were addressed using a machine learning
technique called long short-term memory (LSTM). Specifically, we applied the groundwater
LSTM model [26], which is designed to handle missing data by incorporating both dynamic
inputs such as precipitation and static inputs such as hydraulic conductivity, soil depth,

https://waterstar-al.cstestsite.com/
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soil porosity, and maximum water content. This approach enables the model to accurately
capture essential hydrogeological characteristics of the aquifer.
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We also gathered daily precipitation data from 1 January 2000 to 28 September 2021, from
the National Oceanic and Atmospheric Administration (NOAA). NOAA manages an extensive
network of climate stations throughout the study area, offering a comprehensive database of
daily precipitation records and other meteorological data (accessible at https://www.ncei.noaa.
gov/cdo-web/datasets, accessed on 21 April 2023). In our analysis, we meticulously selected
precipitation data from the NOAA climate station nearest to each well under consideration.

To facilitate comparison, we obtained daily GWS estimates derived through the as-
similation of terrestrial water storage (TWS) data from the Gravity Recovery and Climate
Experiment (GRACE) and its follow-on (FO) mission into the catchment land surface model
(CLSM) [27] (https://giovanni.gsfc.nasa.gov/giovanni/, accessed on 31 January 2023). The
GRACE and GRACE FO (referred to as GRACE/FO) missions utilize measurements of
the Earth’s gravity field to estimate TWS variations, encompassing soil moisture, ground-
water, snow, and surface water. Since GRACE/FO data represent vertically integrated
observations, assimilating GRACE/FO data into a land surface model is utilized to dis-
entangle these signals into individual processes, including groundwater processes [27].
This data assimilation also enables the spatial and temporal downscaling of GRACE/FO
data, which have coarse temporal and spatial scales (monthly with an effective resolution
of approximately 150,000 km2 [28]). The GRACE/FO GWS data used in this study were
downscaled to a daily resolution with a spatial resolution of 0.25 degrees [27] and are
available for the period spanning from 2003 to 2021. To gain a better understanding of
groundwater dynamics, the daily GWS estimates were further processed to derive monthly
changes in GWS.

https://www.ncei.noaa.gov/cdo-web/datasets
https://www.ncei.noaa.gov/cdo-web/datasets
https://giovanni.gsfc.nasa.gov/giovanni/
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2.2. Estimation of Groundwater Storage Change

We utilized the depth-to-groundwater level data to estimate changes in GWS using
the WTF method. The WTF method operates on the principle that rises in groundwater
levels in unconfined aquifers result from net recharge reaching the water table [18]. The
change in GWS (denoted as ∆Sgw) is calculated based on the following equation:

∆Sgw = Sy dh/dt = Sy∆h/∆t (1)

where Sy [dimensionless] is the specific yield, h [L] is the water table height, ∆h [L] is the
change in the water table over the time interval ∆t, and t [T] is time. Here, ∆h is computed
as the net change in the hydraulic head for each month, which is the difference in heads
between the end and the beginning of the month. The specific yield values are estimated
in the range of 0.19 to 0.21 based on a thorough review of land surface and groundwater
studies by Lv et al. [29], which considered similar aquifer materials, due to the absence of
local aquifer-specific information.

2.3. Hurst Exponent

The Hurst exponent (denoted as H) is a statistical measure used to analyze the long-
term memory within time series data. It was developed by Harold Edwin Hurst in the
1950s for studying the Nile river’s water levels over time, particularly to optimize reser-
voir storage evaluations for dam sizing [22]. The Hurst exponent quantifies long-range
dependence in a time series based on its autocorrelation. A value of 1 for H indicates
the presence of pink noise, distinguishing it from noise series (0 < H < 1) and random
walk series (H > 1) [30]. H values between 0 and 0.5 signify an anti-correlated structure,
denoting an anti-persistent process, while H values between 0.5 and 1 indicate a long-term
autocorrelated structure, signifying a persistent process. An anti-persistent process implies
that if a series’ fluctuations decrease/increase for a period, they are likely to reverse to
increasing/decreasing subsequently. Conversely, a persistent process suggests that in-
creases/decreases are likely to be followed by further increases/decreases. In terms of
the fractal structure, fast evolving fluctuations occur when H < 1, while random walks
with slowly evolving fluctuations occur when H > 1. The specific case of H = 1 represents
the critical transition between noises and random walks. In this study, the Hurst expo-
nent is calculated using the detrended fluctuation analysis (DFA) method introduced by
Peng et al. [31]:

F(s) ∼ sH (2)

Y(j) = ∑i

k=1
[Xk− < x >] (3)

F2
k (s) =

1
S∑L

J=1

(
Yj,k − Pn

j,k

)2
(4)

F(s) = [
1
m∑m

k=1
F2

k (s)]
1/2

(5)

In Equation (2), the scaling function, F(s), is approximately equal to the scale, s, raised
to the Hurst exponent, H. Equation (3) computes a cumulative sum (Y) where Xk denotes a
specific value and <x> represents the mean of the time series. Equation (4) determines the
variance (F2) of each section by subtracting a best-fit polynomial of order, n (Pn). Finally,
Equation (5) calculates the square root of the average variance for all segments, which
defines the scaling function. Different values of the Hurst exponent, H, indicate distinct
properties in a system. In this investigation, H is calculated within the range of 0 to 1.

We examined the transition of the scaling structure among the factors through the
distribution of the timescale local Hurst exponent (TS–LHE). The probability density
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function (PDF) of the local Hurst exponent (LHE) is constructed using the Gaussian kernel
method, as outlined below:

g(h) =
1√
2πσ

exp

[
− (h− H0)

2

2σ2

]
(6)

where σ denotes the standard deviation of H and H0 represents the mean exponent. We
define the main Hurst exponent, H, as the LHE corresponding to the maximum of the
PDF. The resulting PDF is then plotted on a semi-logarithmic coordinate system to better
facilitate a more detailed examination of its tailing characteristics [32].

2.4. Integrated Time-Series Techniques and Trend Analysis

In this study, we also employ time-series and trend analysis methods to discern
underlying patterns and relationships within the hydrologic and climate data. These
integrated techniques include the seasonal-trend decomposition procedure based on Loess
(STL), the Mann–Kendall significance test, Thiel–Sen’s slope, and wavelet analysis, each of
which is briefly described below.

2.4.1. Time Series Decomposition and Trend Analysis

To gain a deeper insight into the trends in GWS changes, we employed the STL, as
detailed in Appendix A. STL is considered one of the most effective methods for dissecting
variations in time data series across various temporal scales [33,34]:

GWSobs = GWStrend + GWSseasonal + GWSresidual (7)

where GWStrend represents the long-term trend component, GWSseasonal denotes the sea-
sonal cycle, and GWAresidual is the residual component.

We determined the trends in GWS changes for our study site using the Mann–Kendall
test and Thiel–Sen’s slope [33]. The non-parametric Mann–Kendall (MK) trend test is
a commonly employed method for evaluating the statistical significance of monotonic
trends in hydro-meteorological time series. In this study, we employed the MK test to
assess the trends in groundwater storage and precipitation. Thiel–Sen’s slope offers an
accurate trend estimation without the need for specific data distribution assumptions and
with minimal sensitivity to outliers. By organizing the data based on the time variable,
calculating differences between dependent variable values at different time points, and
computing slopes for each pair of differences, the resulting median slope provides a robust
estimate of the overall trend or rate of change in the time series. This non-parametric
approach ensures reliable trend estimation that remains resilient to outliers and accounts
for unknown data distributions. The application of Thiel–Sen’s slope estimation to our
time series dataset yields precise trend estimation, enhancing the robustness and accuracy
of our analysis by mitigating the influence of outliers and avoiding assumptions about the
data distribution.

2.4.2. Wavelet Analysis

Wavelet analysis is a potent time-frequency method that enables examining data across
various scales and resolutions [35]. Through the decomposition of the time series into
wavelet components, we can identify and characterize local variations, transient features,
and trends within the data. This method is particularly useful for detecting patterns and
anomalies in non-stationary data, such as precipitation and GWS changes considered
in our study. It is noteworthy that hydrologists have used wavelet analysis to uncover
complex relationships at various scales and locations. For instance, Si et al. [36] used
wavelet coherence analysis to show how saturated hydraulic conductivity relates to soil
properties such as sand content and organic carbon content at different scales and locations.
Lu et al. [37] applied wavelet analysis to understand spatial patterns and controls on deep
soil bulk density, such as soil depth, magnetic susceptibility, organic carbon, and particle
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size composition. These successful applications inspire us to use cross-wavelet and wavelet
coherence to explore potential correlations between GWS changes and precipitation. In
future studies, we aim to investigate GWS changes in relation to multiple potential drivers.

3. Results
3.1. Groundwater Storage Changes and Trend Analysis

Figure 2 illustrates the evolution of monthly GWS changes (estimated using the WTF
method) and precipitation from 2000 to 2021 for the three selected representative wells, as
shown in Figure 1. In each plot, the upper curve (represented by the blue line) displays the
temporal changes in GWS, revealing distinct fluctuation patterns for each well sited in a
different region in the state of Alabama. This direct comparison within the same timeframe
provides a compelling visual representation of their interconnectedness. We created a
spatiotemporal map (refer to Figure A2 in Appendix B) using GWS change data estimated
from 27 monitoring wells. This map visually illustrates annual changes in GWS across
Alabama from 2000 to 2021 (further details can be found in Appendix B).
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Figure 2. Time series of monthly groundwater storage change and precipitation at three individual
wells: Well 92197 (South), Well 119684 (West), and Well 125687 (North).

Figure 3 displays the GWS changes estiamted for Alabama using the GRACE/FO
data assimilation alongside the area-averaged precipitation data. The monthly state-wide
GWS changes reveal October 2016 as one of the driest months (with a state-wide GWS
change of −87 mm), coinciding with the severe to extreme drought that affected much
of the Southeastern U.S. throughout 2016. Another noteworthy observation is the driest
month in August 2019, marked by a GWS decrease of −120 mm. Interestingly, these dry
conditions, while significant at the state-wide level, were not reflected in the data from the
three individual wells depicted in Figure 2. This discrepancy will be explained below in
the discussion section.
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Figure 3. Time series of area-averaged monthly precipitation and the GRACE/FO-derived ground-
water storage change for Alabama.

Expanding upon these observations, Figures 4–7 offer a more detailed analysis, show-
casing the trends in changes in GWS and precipitation at the three distinct wells across
Alabama: Well 92197 in the southern region, Well 119684 in the western region, and Well
125687 in the northern region. Although the Mann–Kendall test (as detailed in Appendix C)
did not reveal statistically significant trends at a 90% confidence level for these wells, Sen’s
slope analysis did detect subtle changes. Well 92197, situated near the coastline, showed
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a marginal decrease in GWS, indicated by a negative Sen’s slope of −0.20 mm/yr. In
contrast, the western region (Well 119684) exhibited an increase, with a positive Sen’s slope
of 0.50 mm/yr, more than two times larger than the GWS loss observed in the south. Well
125687 in the northern region also showed a minor increase in GWS, with a Sen’s slope of
0.38 mm/yr. A similar analysis was applied to the precipitation data, revealing a range
of Sen’s slopes: 0.08 mm/yr, 0.018 mm/yr, and 0.08 mm/yr for Well 92197, 119684, and
125687, respectively. These results suggest an overall increasing trend of monthly precip-
itation across Alabama, with slightly more precipitation in the south than in the north,
consistent with historical trends. These trends underscore regional variations in both GWS
changes and precipitation and highlight distinct spatiotemporal evolution patterns between
GWS changes and precipitation. This complexity indicates the multifaceted response of
groundwater systems to climate change in Alabama.
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Figure 7. 2003–2021 Alabama area-averaged precipitation and GRACE/FO groundwater storage changes.

Furthermore, the analysis of area-averaged precipitation data for Alabama, as depicted
in Figure 7, revealed a moderate increase, with a Sen’s slope of 0.033 mm/yr. Meanwhile,
the GRACE GWS change data exhibited a positive trend of 0.002 mm/yr, indicating a
generally increasing trend across the state of Alabama in the last two decades. Notably,
this trend is one order of magnitude less than the increasing trend observed in average
precipitation. It is worth noting that approximately 10% of precipitation is believed to
infiltrate into aquifers in Alabama).

Figure 8 shows time series of monthly GWS changes at the three wells in comparison
to the average GRACE/FO GWS change data at the three well locations. One of the initial
observations is the marked difference in the magnitude of GWS changes. Furthermore,
the well measurements display more significant fluctuations when contrasted with the
GRACE/FO GWS change data. These discrepancies can likely be attributed to variations in
spatial scale, the model’s limitations in capturing finer-scale subsurface property variability,
such as hydraulic conductivity, and the utilization of coarse-scale forcing fields to drive
model simulations.
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Figure 8. Time series comparison of monthly changes in GRACE/FO-derived groundwater storage
and well estimates.

It is crucial to consider that variables such as pumping rates, recharge patterns, and
geological structures may impact GWS changes at the point scale (i.e., at the observation
well). The heterogeneity of these factors across different locations can lead to substantial
variations in GWS changes, even over relatively short distances. Since these variables may
not be adequately captured in the coarse-scale GRACE/FO GWS and the land surface
model, this could potentially explain the discrepancies observed between the GRACE/FO
data and well measurements in Figure 8.

We also conducted a comparison between the GWS change results from the WTF
method and a process-based numerical model obtained from Ponprasit et al. [38]. The
comparative results can be found in Appendix D, showing that the WTF method applied
by this study is reliable.

3.2. Wavelet Analysis

Figure 9 illustrates the wavelet coherence between precipitation and groundwater
depth at the three well locations. The wavelet coherence In the case of Well 92197, a
pronounced covariance (depicted in yellow) is evident for periods exceeding 512~1024 days
and persists over multiple years. This suggests a robust correlation between precipitation
and water depth on time scales longer than 512~1024 days. The covariance appears to be
sporadic in the 256–512-day range, and synchronization between water depth and rainfall
is more fragmented on an annual basis. In the case of Well 119684, the area demonstrating
high covariance between precipitation and water depth is relatively limited. Notable
coherence is sporadically observed across both monthly and yearly time scales. Finally,
for Well 125687, the results reveal a clear correlation between water depth and rainfall
throughout the study duration. The most significant areas of coherence predominantly
occur in periods shorter than 128 days, as well as in the annual and 1024–2048 day ranges.

Figure 10 shows that GWS change and precipitation do not exhibit the regular char-
acteristics of strong coherence at Well 92197 (Figure 10a). However, there is noticeable
co-variation between the GWS change and precipitation over a period of 16~32 months
(Figure 10b). Moreover, similar phase (anti-phase) characteristics are observed in regions
that pass the significance test. In addition, variations in the relationship between GWS
and precipitation are evident over periods of less than one year at different times. For fur-
ther insights into the wavelet analysis results for Well 119684 and Well 125687, please
refer to the cross wavelet and wavelet coherence spectrum provided in Appendix E
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(Figures A4 and A5). These results do not display the typical patterns or characteristics
observed in such analyses, suggesting a lack of clear correlation between the GWS changes
and precipitation for these two wells.
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Figure 9. Wavelet coherence spectrum between precipitation and groundwater depth. The thick black
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Shading indicates the strength of coherence. The color bar indicates the correlation coefficient of the
two-time series.
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Figure 10. Cross wavelet (a) and wavelet coherence spectrum (b) between GWS change and precipi-
tation at Well 92197. The arrows reflect the relative phase relationship: the arrows to the right (left)
illustrate an in-phase (anti-phase) relationship. The thick contours indicate 5% significance levels
against red noise. The pale region indicates the cone of influence, which might distort the results due
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3.3. Time-Scale Local Hurst Exponent

In this study, we computed the time-scale local Hurst exponents for each well and the
GRACE/FO GWS changes to investigate their comparative dynamics. The total period
of investigation was divided into twenty-two discrete intervals, each approximately one
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year in duration, starting on 1 June 2000 and ending on 30 September 2021. Within these
intervals, we detected notable variations in the main Hurst exponent (H). In certain years,
H exceeded 1.0, showing strong persistence within the well data. In contrast, during other
years, H fell below 1.0, indicating less persistent behavior. Higher H values during certain
periods underscore the presence of long-range dependence or memory within each system.
Figures 11 and 12 visually illustrate these fluctuations in the Hurst exponent over the
twenty-two-year span for the three wells and the GRACE GWS changes.
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The results of the wavelet coherence analysis reveal significant correlations between
the trend of precipitation (area-averaged) and GWS change using GRACE/FO data. In
Figure 13, the darker region above the significance contours highlights these notable
coherence values. The phase relationship, depicted by the arrows, provides additional
insights: rightward arrows indicate an in-phase relationship, suggesting that changes in
precipitation coincide with corresponding changes in GWS (most arrows in Figure 13 follow
this direction). Conversely, leftward arrows indicate an anti-phase relationship, indicating
opposing changes in precipitation and GWS changes.
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Figure 13. The wavelet coherence power spectrum between the trend of the precipitation (Alabama
area-averaged) and GRACE GWS changes. The arrows reflect the relative phase relationship: the
arrows to the right (left) illustrate an in-phase (anti-phase) relationship. The thick contours indicate
5% significance levels against red noise.

The coherence values presented in Table 1 further support these findings. For instance,
the average coherence value at the scale of <4 months is 0.7139, indicating a moderate to
strong correlation between the precipitation trend and GWS change at that specific time
scale. Similar interpretations apply for the average coherence values at other scales.

Table 1. The average coherence between the trend of the precipitation and groundwater storage
changes (using GRACE/FO GWS data) at different scales. In the legend, “all scales” means the
average value at all scales (in units of month).

<4 4–8 8–16 16–32 32–64 >64 All Scales

0.7139 0.6832 0.6487 0.7558 0.7066 0.7522 0.7042

4. Discussion
4.1. Groundwater Storage Trends

The Mann–Kendall test results indicated no significant trend in GWS change for all
wells, including Well 119684 in the western region, or the GRACE data. This suggests that
the overall trend of GWS changes might be static across the state or vary too randomly
to discern a clear trend. However, this result should not be interpreted as implying that
no changes are occurring. On the contrary, a more detailed analysis using the Sen’s slope
method revealed a different perspective. In the southern region, Well 92197 displayed a
negative Sen’s slope for GWS change (−0.20 mm/yr), implying a possible gradual depletion
of the groundwater resource in southern Alabama. This is concerning given the necessity
of groundwater for both anthropogenic activities and natural systems in the region. This
decline points to a potential mismatch between groundwater recharge and withdrawal rates,
with withdrawals possibly exceeding the natural replenishment. Interestingly, the Sen’s
slope for precipitation at this location showed a positive trend (0.08 mm/yr). This finding
somewhat contradicts the common expectation that increased precipitation would naturally
lead to an augmentation in GWS [39]. Therefore, the continuous decrease in GWS at this
location implies the possible impacts of other external factors. For example, anthropogenic
factors such as increased groundwater pumping for irrigation, industrial usage, or urban
water supply could be contributing to the decrease in GWS [40,41]. Additionally, changes
in land use and land cover, as well as alterations to the natural drainage patterns, could
also affect the groundwater recharge capacity of the area, leading to a decline in GWS even
with increased precipitation.

Well 119684 in the western region tells a different story, with a positive Sen’s slope
for GWS changes (0.50 mm/yr). The rise in GWS suggests an effective balance between
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recharge and withdrawal processes, leaning towards a surplus. However, a curious ob-
servation is that the Sen’s slope estimate for precipitation is notably lower (0.018 mm/yr),
indicating a less pronounced positive trend. This inconsistency hints at the influence of
factors other than precipitation in boosting groundwater storage. It is possible that changes
in land use, decreased extraction, and/or geological factors are enhancing groundwater
recharge or reducing withdrawals, leading to the observed increase in GWS.

In the northern region, Well 125687 shows a modest positive Sen’s slope for GWS
(0.38 mm/yr). This upward trend in GWS aligns with the observed Sen’s slope for precipi-
tation (0.08 mm/yr), suggesting that rainfall might be playing a crucial role in augmenting
the groundwater reservoir in this area.

The comparison of individual well data with the area-averaged GRACE GWS change
data (Sen’s slope: 0.033 mm/yr) for Alabama reveals a critical aspect of groundwater
dynamics in the state. The trends observed for Well 119684 and Well 125687 closely align
with the trends in the area-averaged GRACE GWS changes, indicating a degree of regional
consistency. However, Well 92197 in the southern region deviates from this regional pattern,
again pointing to the significance of local site-specific factors in groundwater dynamics.

4.2. Response of Groundwater Storage to Climate Change

The analysis of the relationship between GWS changes and precipitation at Well
92197 reveals a complex interplay between these two variables. These findings have
important implications for understanding the impact of climate variability on groundwater
resources. Climate variability, including changes in precipitation patterns and intensity,
can significantly impact GWS [42,43]. However, based on wavelet analysis, the results
do not consistently indicate strong coherence between these factors, indicating that the
dynamics of GWS change at this location may not be directly and predictably tied to
precipitation data. This observation raises the possible influence of other unidentified
factors or a more complex underlying process. Nevertheless, our analysis also identified
periods of 8 to 32 months where GWS changes and precipitation significantly co-varied.
This result suggests that peaks in precipitation might correspond to minimum GWS levels,
implying a lag time of approximately half the observed cycle (16 months). This lag time
signifies the response of GWS changes to precipitation.

Regarding phase characteristics, we observed both in-phase and anti-phase patterns
within the dataset, indicating that GWS and precipitation can sometimes move in the same
direction and other times in opposing directions. This variability further demonstrates
the complexity of the relationship between these two variables and suggests that different
factors or mechanisms might influence them at different times. In our wavelet coherence
analysis, we discovered that the strongest and most consistent co-variability between GWS
changes and precipitation occurred over a period of 8 to 32 months. This highlights the
potential importance of multi-year climatic or hydrological cycles in driving changes in
both GWS and precipitation. Contrarily, Appendix E, which depicts the cross-wavelet and
wavelet coherence spectrum, does not show regular characteristics or patterns. The lack
of clear patterns suggests that the relationship between GWS changes and precipitation is
more complex and likely dependent on additional variables or conditions, which need to
be identified in future studies.

4.3. Time-Scale Local Exponent and System Memory

The significant fluctuation of the Hurst exponent, H, across the study period (2000~2021)
reveals intricate dynamics within both the well and GRACE datasets. The instances where
H exceeded 1.0 signify strong persistence, implying that previous states in these systems
exert a considerable influence on future states. This persistent behavior reflects a long-
range dependence or memory within these systems, where present and future values
show significant correlations with historical data. Interestingly, the variation in the Hurst
exponent over time challenges the traditional assumption of stationary dynamics, revealing
a significant temporal component to the system’s dynamics [44].
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4.4. Comparison between GWS Changes Derived from Wells and GRACE/FO Data Assimilation

Groundwater level observations provide a microscale perspective, offering intricate
insights into localized changes with fine details. In contrast, GRACE/FO GWS data depict
changes in GWS at a much larger spatial scale (0.25◦). Consequently, GRACE GWS data
represent averaged variability, which inherently may not capture localized anomalies
accurately. While this large-scale perspective is valuable for identifying broader trends and
patterns, it might have limitations in accurately capturing localized nuances, resulting in
less high-frequency variability in GWS changes when compared to well data.

Further exacerbating these disparities are the distinct methodologies employed by
the WTF and GRACE/FO data assimilation. WTF relies on direct observations of water
levels at specific locations, providing precise and highly localized measurements. This level
of detail enables the detection of subtle variations and fluctuations in GWS, contributing
to the higher magnitude of changes observed in the well data. In contrast, GRACE/FO
GWS estimates were derived by assimilating coarse-scale satellite measurements into a
land surface model that has not been calibrated using well data. The precipitation and
other atmospheric forcing fields used to drive GRACE/FO data assimilation were derived
from re-analysis outputs, which may not capture precipitation variability at individual well
locations [27]. Consequently, GRACE/FO GWS may not as effectively discern minor local-
ized changes as direct observations. Additionally, the coarse-scale nature of GRACE/FO
data cannot identify smaller-scale variations as observed by individual wells.

5. Conclusions

This study revealed a nuanced relationship between groundwater storage trends and
their responses to climatic changes in the state of Alabama. Despite the initial absence
of an evident trend in groundwater storage across all locations, a deeper analysis indi-
cated a complex scenario with trends exhibiting considerable variation. This variability
underscores the influence of factors beyond precipitation, including local recharge, pump-
ing rates, and geological conditions, all of which may significantly affect groundwater
storage dynamics. Moreover, the findings suggested a multifaceted interaction between
groundwater storage changes and precipitation. This interplay did not exhibit consistent
correlation; however, it did reveal certain intervals of significant co-variability, hinting at
possible cyclic or intermittent influences that merit further investigation. The variability in
phase patterns and the strong periodicity observed in the data might indicate the impact of
seasonal changes, though more detailed studies are necessary to confirm these hypotheses.

Furthermore, the local Hurst exponent identified the presence of strong persistence
within the groundwater system. This persistence implies a high degree of correlation
between current, future, and historical data, thus indicating the system’s memory. The tem-
poral variability in this Hurst exponent challenges the traditional assumption of stationary
dynamics, highlighting a substantial temporal component in the system’s behaviors.

In conclusion, this study demonstrated the high complexity in groundwater storage
dynamics and its correlation with climate variables. Recognizing and comprehending these
complex dynamics is essential for the development of effective and sustainable ground-
water management strategies, particularly with increasing climate variability and change.
Further research should focus on a more profound exploration of these relationships, the
potential cyclic or intermittent influences, and the effects of other environmental and
human-induced factors.

Author Contributions: Methodology, O.O. and Y.Z.; software, O.O.; Conceptualization, Y.Z.; valida-
tion, O.O.; formal analysis, O.O., H.G. and X.G.; investigation, O.O. and Y.Z.; resources, O.O. and
B.L.; data curation, O.O.; writing—original draft preparation, O.O., Y.Z. and B.L.; writing—review
and editing, Y.Z., B.L. and C.L.; visualization, O.O.; supervision, Y.Z.; project administration, Y.Z.;
funding acquisition, Y.Z. and H.S. All authors have read and agreed to the published version of
the manuscript.



Sustainability 2023, 15, 15324 17 of 23

Funding: This research was partially funded by the Department of the Treasury under the Resources
and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast
States Act of 2012 (RESTORE Act). The statements, findings, conclusions, and recommendations are
those of the authors and do not necessarily reflect the views of the Department of the Treasury or
ADCNR. H.G.S. was partially funded by the National Natural Science Foundation of China (Grant
No. 41931292 and 11972148). X.F.G. was funded by The Belt and Road Special Foundation of The
National Key Laboratory of Water Disaster Prevention (No. 2022490711). The results of this study do
not reflect the view of this finding agency.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: Y.Z. thanks Chaloemporn Ponprasit for providing the numerical model data
used in Figure A3, and Yu Yang for calculating the Hurst exponent.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Detrend Analysis

This appendix applies the seasonal trend decomposition approach based on Loess
(STL) to analyze the patterns within the hydrologic data. Using STL, we divided the time
series of GWS changes obtained from the GRACE data (top row in Figure A1) into three
components: the long-term trend (second row, Figure A1), the seasonal cycle (third row,
Figure A1), and the residual component (bottom row, Figure A1).
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Appendix B. Spatiotemporal Distributuion of Annual GWS Changes in Alabama in
the Last Two Decades

This appendix investigates the spatial characteristics of the annual GWS changes in the
state of Alabama from 2000 to 2021. Figure A2 offers a comprehensive visual representation
of the GWS changes throughout this 22-year time frame.
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observations from 27 wells marked in Figure 1.

Two primary characteristics are discernible from Figure A2. Firstly, GWS exhibits
significant spatial and temporal variations across most regions of the state. In particular, the
eastern part of Alabama, encompassing Piedmont and a portion of the southeastern plains,
has experienced notable GWS fluctuations over at least four cycles in the past two decades.
The relatively high frequency and substantial amplitude of these GWS changes suggest
that groundwater resources in this zone are highly sensitive to climate change and more
susceptible to future droughts compared to other regions in Alabama. Gholizadeh et al. [26]
also noted a significant drop in the groundwater table within this zone, irrespective of well
screen depth. On the other hand, the southern coastal aquifers in Alabama, including those
beneath Baldwin County, Alabama (where four wells with reliable data were identified),
have exhibited relatively stable GWS changes over the course of two decades, with a slight
decreasing trend (as discussed in Section 4.1). GWS depletion and increase can occur
simultaneously in different regions of Alabama, necessitating region-specific management
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strategies for the state. Therefore, the development of a spatiotemporal evolution map
for GWS changes in Alabama, which can only be reliably constructed using the method
proposed in this study, is imperative for the formulation of effective groundwater resource
management strategies.

Secondly, the overall trend in GWS changes does not immediately align with the drought
conditions in the same year, likely due to the delayed response (spanning > 16 months) of
groundwater systems to climate variations. For instance, during the study period, Alabama
experienced noticeable droughts in 2000, 2007–2008, and 2011–2012 (as well as rapid-onset
droughts, referred to as flash droughts, in 2016 and the fall of 2019). However, the resulting
decrease in GWS across the state primarily manifested in the subsequent year or even the
following year(s), such as in 2001–2002, 2009, and 2013. The delayed response of GWS
changes to droughts, along with the contrasting trend of GWS changes to precipitation
trends in the last two decades in Alabama coastal aqufiers highlighted in Section 4.1,
suggests a disparity in the effective management of surface water and groundwater.

Appendix C. Mann–Kendall Trend Test

The Mann–Kendall trend test is a non-parametric test for analyzing consistently
increasing or decreasing trends (monotonic) embedded in time-series data. Table A1
shows the results for all three wells and the GRACE GWS data. In the legend, “Trend”
represents the trend at a 90% level of significance, “p-Value” represents the probability, and
“Mann–Kendall’s Score” represents the Mann–Kendall test statistics.

Table A1. Summary of Mann–Kendall test Results.

Station Trend p-Value H Mann–Kendall’s Score Tau

Well 92197 No 0.81 False −30.0 0.01

Well 119684 No 0.26 False 138 0.05

Well 125687 No 0.76 False 38 0.75

GRACE No 0.82 False 24.0 0.21

Appendix D. Comparison of GWS Changes Calculated by the Process-Based Model

In this appendix, we conducted a comparison of GWS change results obtained through
three different methods (WTF, GRACE/FO, and a process-based numerical model using
MODFLOW sourced from Ponprasit et al. [38]). Data from the numerical model is available
for the period from November 2020 to October 2021. As depicted in Figure A3, MODFLOW
is capable of capturing the overall pattern and frequency of GWS changes, but it tends to
exhibit significant overestimations (Figure A3a) or underestimations (Figure A3b) of these
changes. Several challenges hinder the ability of a flow model to precisely replicate the
observed transient flow dynamics, which may be attributed to the following factors. Firstly,
the use of a coarse-resolution model may not adequately represent the fine-resolution
transient behaviors of groundwater. Secondly, model development involves inherent
high uncertainties, including considerations related to aquifer architecture, boundary and
initial conditions, and various parameters influencing groundwater flow. For instance,
Well 119684 is situated near the northern boundary (which is the northern boundary of
the East Gulf Coastal Plain) of this process model, which, due to the absence of obser-
vational data, was approximated as a constant head boundary in the model developed
by Ponprasit et al. [38]. Consequently, this approximation resulted in a relatively stable
evolution of the wellhead. Therefore, the WTF method employed in this study offers a
more reliable estimation of GWS changes for the state of Alabama.
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Figure A3. Comparison of the GWS changes calculated on three different scales using different
methods for Well 92197 (a) and Well 119684 (b). The subplot in (b) shows the numerical model
solution.

Appendix E. Wavelet Analysis

To further correlate GWS change and precipitation, we conducted wavelet analyses
for all three selected wells. We calculated both the percentage area of significant coherence
(PASC) and average wavelet coherence (AWC) to evaluate the quantitative relationship
between the predictor factor and the response variable AWC. The variable with higher AWC
and PASC can account for a larger variety of response variable fluctuations. The bivariate
wavelet coherence is presented in Figure A4 (right) and Figure A5 (right). According to
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Figure A4 (left), the possible (anti-phase) periodicity for GWS change and precipitation
at Well 119684 is from 8~16 months during 2000~2005 and 2012~2014, while no apparent
periodicity was observed for GWS change and precipitation at Well 125687 (except for an
8~16 month weak in-phase periodicity appearing shortly around 2008~2009). Figure A4
(right) and Figure A5 (right) also identified a region with frequent fluctuations in GWS
change and precipitation during a 1~5-month period for some years.
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Figure A4 is used here.
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