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Abstract: This study underscores serious issues in the South African fruit export sector, notably
highlighting the persistent fruit damage after 2016 that could boost microbial growth, jeopardising
food safety. To enhance the supply chain and safeguard food, identifying and strategising the types
of fruit damage during distribution is critical. The data bring to light intricate and varied trends
in damage claims across different fruit types and years, indicating a need to understand each fruit
type’s specific vulnerabilities and adjust handling and farming techniques accordingly to minimise
losses after harvest. The analysis reveals key insights into seasonal patterns in fruit damage claims,
with notable increases especially in January and February, and clear fluctuations throughout the year.
Utilising this knowledge, stakeholders can optimise operations and formulate guidelines tailored
to high-risk seasons for fruit handling and transportation. Looking forward, both SARIMA and
linear regression models predict an increasing trend in damage claims, highlighting a pressing need
for improved planning and risk management strategies. This proactive approach will be crucial in
mitigating future damage claims and enhancing food safety amid the growing challenges posed by
climate changes and shifting global standards and regulations.
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1. Introduction

Climate change stands as one of the most pressing challenges of our time, with its
effects reverberating through human and natural systems worldwide. As new insights on
this topic emerge daily, it is evident that global disruptions caused by weather extremes
will persist well into the future, leaving lasting impacts on physical, biological, human
and managed systems [1]. Among the numerous industries vulnerable to these changes,
the South African fruit export supply chain and marine cargo insurance face significant
impacts. Surprisingly, however, there is a lack of research explicitly examining the effects
of climate change on these critical components of global trade.

According to the Intergovernmental Panel on Climate Change (IPCC) estimates, hu-
man activities releasing greenhouse gases have caused global temperatures to rise by 1.1 ◦C
since the pre-industrial era (1850–1900). The past decade (2011–2020) has seen a pronounced
escalation in this warming trend [1]. This rise in temperatures poses a significant threat
to various economic sectors, including the fruit export industry of South Africa [2]. To
understand the impact of climate change on the marine cargo insurance industry in South
Africa, Du Plessis et al. [3] analysed claims over the last decade. The results were alarming,
revealing an increasing trend in weather-related cargo claims and extreme outlier years.

The South African fruit export supply chain plays a vital role in the country’s economy,
annually exporting fruit valued at over USD 3 billion [4]. With the country’s favourable con-
ditions for fruit production, this thriving industry contributes significantly to employment
opportunities while strengthening trade relationships with over 100 countries worldwide.
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The supply chain, however, operates within stringent guidelines and protocols, especially
concerning temperature control, due to the perishable nature of the products. Any tem-
perature break in the cold chain can lead to non-conformance and potential food safety
concerns, which can result in damage claims [5,6].

Despite the sensitive nature of the South African fruit export supply chain, a concern-
ing trend emerges from global port statistics. Nearly 50% of ports worldwide currently
lack strategies to mitigate the impacts of climate change [7,8]. Such a lack of preparedness,
coupled with the known and projected climatic disruptions, creates a highly vulnerable
supply chain with low levels of resilience [9].

This research delves into the vulnerabilities of South African fruit exports (as evidenced
through damage claims) and its implications for food safety within the maritime supply
chain. The main objective of the fruit export industry is to deliver fresh fruit in a safe
condition for human consumption. However, when the fruit is rejected due to damages, it
goes against this goal and leads to insurance claims. By carefully monitoring these claims
for any patterns or trends, one can identify the root causes of these rejections, creating
a valuable feedback loop for the industry. Armed with this information, one can take
preventive measures to avoid future occurrences of damaged fruit and improve the overall
delivery process.

Although there is an existing body of research documenting the implications of tem-
perature fluctuations on fruit damage during distribution [5,6,10,11], what sets this study
apart is its unique risk-based viewpoint on fruit exports and food safety through a risk
transfer mechanism—which has not been thoroughly explored in previous research. By
addressing this critical aspect, the research contributes valuable insights to understanding
the complexities and potential solutions for ensuring food safety during the export process.

The structure of the remaining sections is as follows: Section 2 provides a literature
review covering three main topics central to this research. Section 3 outlines the methodol-
ogy and conceptual framework, while Section 4 presents the analysis and results. This is
followed by a discussion in Section 5, a conclusion in Section 6 and an overview of potential
future work in Section 7.

2. Literature Review

Through a literature overview, this section presents a concise summary of the main
topics covered in this article, namely (1) South African fruit exports and food safety,
(2) South African ports and (3) maritime supply chain risk management. This section aims
to provide readers with a broad understanding of these topics and the theoretical framework
supporting the research. Firstly, it delves into the significant impact of weather-related risks
on the fresh food system, including the cold chain, and highlights the growing concern
over food safety and security. Secondly, it focuses on South African ports, which are vital
in the global logistics network [3]. It addresses the vulnerability of these ports to weather-
related risks and extreme weather events, leading to disruptions and congestion in the
supply chain—further affecting the cold chain. Lastly, this section explores the concept of
maritime supply chain risk management, including using marine cargo insurance as a risk
transfer mechanism. It outlines a layer model for maritime transportation risk management,
incorporating risk identification and evaluation into maritime logistics networks. By the
end of this section, readers should have gained a general understanding of the core topics
and theoretical framework that set the stage for the subsequent research questions.

2.1. South African Fruit Exports

In South Africa, the fruit industry annually exports approximately 3.2 million tons (or
USD 3.3 billion) of fruit [4]. Out of this, only the highest quality surplus fruit, accounting for
roughly 70% of the total fresh fruit produced, is exported to nearly 110 countries, creating a
thriving industry that provides employment opportunities for many [12–14].

The fruit export industry in South Africa is prospering and witnessing substan-
tial growth. According to the National Department of Agriculture, Forestry and Fish-
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eries [15], the agricultural sector (including forestry and fisheries) has experienced an
average annual growth rate of 7.6% since 1994, confirming this upward trend. South
Africa’s favourable conditions make it suitable for fruit production, leading to cultivation
in various parts of the country. During the 2018–2019 season, more than 250 million cartons
of fresh fruit were exported to major destinations, including the European Union (35.43%),
Asia (20.62%), the United Kingdom (14.04%), the Middle East (12.74%) and the Russian
Federation (6.89%) [16].

When exporting fruit, it is crucial to control time and temperature factors in the supply
chain. Failure to do so can result in the fruit not meeting market requirements, leading to
a decline in quality, shelf life and food safety. This, in turn, can lead to price reductions,
rejection or loss of market [10,14]. The series of refrigeration steps implemented throughout
the supply chain to maintain perishable food at the appropriate temperature is known as the
cold chain [17]. Maintaining specific temperatures within the cold chain and continuously
monitoring temperature within reefer containers are essential for preserving the quality of
the fruit [5,11,18].

Although different types of fruit have distinct cold chain handling processes, the han-
dling process after loading the fruit into the reefer container is the same for all types [6]. The
Perishable Products Export Control Board (PPECB), established in 1926 and currently man-
aged by the Department of Agriculture, Land Reform and Rural Development (DALRRD),
oversees all South African perishable product exports. They establish export protocols and
guidelines, including ideal temperature ranges for each perishable product, and ensure
exporters adhere to quality standards.

Research conducted by Goedhals-Gerber et al. [6] examined temperature breaks in the
fruit export cold chain at the Port of Cape Town. They found that 41.5% of temperature
breaks occurred at the port but did not investigate the specific causes of these breaks.
A subsequent study in 2017 revealed that 81% of temperature breaks within the fruit
export cold chain via the Port of Cape Town occurred at the Port of Cape Town. Factors
such as external ambient temperatures, weather-related delays (e.g., high winds, fog,
waves), vessel ranging and strong ocean currents were identified as the dominant causes of
these breaks [11].

In 2020, a further study on the export of navel oranges through the Port of Cape
Town found temperature breaks during port operations, some lasting over 9 h. While the
study did not investigate the root causes of these breaks, it highlighted weather exposure,
transportation delays, port congestion and inspection delays as potential reasons [5,19].

Controlling the time and temperature factors throughout the fruit export supply
chain is crucial to ensuring high-quality produce comply with country-specific food safety
regulations and avoid rejections at the port of import, which leads to potential damage
claims. Mutumbo [20] state that rising natural hazards and extreme weather events have
led to additional risks in ports and shipping operations, potentially affecting the fruit export
supply chain [6]. Many exporters rely on marine cargo insurance to mitigate potential risks,
as discussed briefly in the subsequent sections.

Food Safety

Food safety and security is a growing concern, and discussions around it have in-
creased in recent years [21–23]. While progress has been made in fresh food governance
through international collaboration and advancements in science and technology, the lit-
erature now confirms that climate change has a negative impact on fresh food safety [24].
Globally, foodborne diseases make nearly one out of every ten people sick and cause over
400,000 deaths each year, and climate change is likely to exacerbate this problem [25].
Predictions indicate that climate change events will reduce food production, increase food
contamination and contribute to global food price increases from 3% to 84% by 2050, leading
to food insecurity and malnutrition [26].

Refrigeration plays a vital role in ensuring food safety [27]. Perishable food, such as
fruit, must be maintained in a chilled or frozen state throughout the entire supply chain.
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Insufficient refrigeration that fails to keep perishable food within the required temperature
range can promote the growth of harmful pathogens and spoilage microorganisms, render-
ing the product unfit for human consumption [17]. Consequently, when cases of inadequate
refrigeration of perishable food are identified and reported, it becomes necessary to reject
the food shipment to address concerns about food safety.

Decision makers must consider the direct and indirect impacts of climate change
and variability on food safety hazards throughout the entire food chain, including food
distribution [25]. Climate change (and unpredictability) can cause food safety hazards at
various stages of the fresh food value chain, from primary production to consumption [24].
For instance, rising temperatures, changes in rainfall patterns, drought stresses and extreme
weather events can increase the risks of food contamination and the occurrence of foodborne
diseases [25]. Transportation and warehousing can also create challenges in maintaining
the cold chain due to slow transfers (weather-related delays), disruptions, poor insulation
and inadequate refrigeration. This impacts the quality and safety of fresh food [24]. There
exists a significant variation in the effectiveness of cold chains among countries; developing
nations are generally less equipped to manage potential risks impacting the cold chain [17],
a situation compounded by the limited information available on temperature abuse in
these countries [28].

In conclusion, the significant impact of climate change events on the fresh food system,
including the cold chain, necessitates the involvement of all stakeholders in implementing
preventive measures. The risks posed by climate change events extend beyond the safety of
fresh food to the entire supply chain, potentially leading to further losses and compromised
safety. With food safety (quality) and security (supply) being critical concerns, decision
makers must address climate change’s direct and indirect effects on food safety hazards
throughout the cold chain. This includes identifying sources and mitigating temperature
breaches/failures during transportation, which are anticipated to increase due to climate
change events.

2.2. South African Ports

The efficient functioning of port cities is vital for the global economy, especially
in developing nations [7,8,29]. Ports serve as critical nodes in the global supply chain,
facilitating about 80% of trade volume and 70% of trade value through maritime trans-
portation [7]. However, ports face high vulnerability to the impacts of weather extremes
due to their geographical location, as demonstrated by the devastating effects of extreme
weather events [7,8,29,30]. Climate change directly affects port infrastructure, services
and operations [7].

South Africa plays a crucial role in the global logistics network, with its major ports
connecting sub-Saharan Africa to other continents. However, the country’s logistics net-
work is vulnerable to disruptions caused by extreme weather events, including floods,
storms and droughts [20]. On average, South African ports experience one weather-related
incident daily, a significant driver of congestion at these ports [31–34].

With 3000 km of coastline, South Africa is home to eight commercial ports operated
by Transnet Port Terminals, ensuring efficient connectivity of the country’s economy with
trading partners [35,36]. Climate change poses potential impacts on these ports, such as
rising atmospheric and water temperatures, strong winds, high waves, rising sea levels
and heavy rainfall [35]. Port congestion, which leads to supply chain delays, is driven by
adverse weather affecting ship and cargo operations, accidents (including strikes), sudden
trade demand surges and land-side transport congestion [33]. South African container
terminals are located at the Ports of Cape Town, Port Elizabeth, Ngqura and Durban
(see Figure 1).

The Western Cape is responsible for almost 80% of all South African fruit exports. In
2022, exports of 4.2 million tons (or nearly 70%) were shipped from the Port of Cape Town.
Durban and Port Elizabeth are the other larger export cities, both shipping just under 10%
this year [37].
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In their 2021 study, Dube et al. examined flood trends and their impact in the Western
Cape over the past 120 years. They found that regions of Cape Town (the 10th most
populous city in Africa) are frequently subjected to the detrimental effects of floods. The
infrastructure, including railway lines, parking lanes, roads and the power supply and
communication systems, are often severely impacted [38].

Fears are mounting that the impacts of these floods could exacerbate due to the rise in
sea levels induced by climate change, affecting the city and its surrounding areas [20,38].
There is growing concern about the increased frequency and impact of the El Niño–Southern
Oscillation in the Southern Hemisphere. Dube et al. [38] predict that this will likely result in
a surge of coastal flooding incidents. Indeed, over the past four decades, flood occurrences
have significantly increased compared to earlier periods [38]. Figure 2 shows the statistically
significant rise in flood events in the Western Cape during their study period.
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In addition, adverse weather conditions and powerful winds result in significant
delays at the Port of Cape Town, and extreme weather conditions account for approximately
15% of the lost time at the Port of Cape Town [34,39,40]. Recent floods, including the 2022
event in Durban, have been attributed to climate change, resulting in significant operational
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impacts caused by heavy rainfall. In addition, these ports experience shutdowns of ship-to-
shore (STS) gantries when wind speeds exceed 70 km/hour [40,41].

These impacts are not going unnoticed. In its 2020 evaluation, the World Bank ranked
the Port of Cape Town notably low in the global container port performance index, ob-
taining 347th out of 351. The situation saw little improvement by 2022, with the port
ranking 344 out of 348 [4,23]. This poor ranking is attributed to ongoing congestion issues
at the port caused by outdated infrastructure and equipment, a lack of adequate staff and
weather-related disruptions [4].

Climate change’s impacts are being felt with increasing severity, particularly in de-
veloping countries, such as South Africa [42]. These nations typically lack the necessary
resources and infrastructure to effectively adapt to these changes, often resulting in poor
responses [38]. Studies forecast increased wind velocity around the Southern African Coast
throughout the year due to climate change [43]. In addition, there is a noticeable increase
in the frequency and intensity of extreme weather events reported in South Africa by
multiple authors [38,44,45].

In summary, South African ports face weather-related risks, resulting in congestion
and disruptions in the supply chain. Extreme weather events and higher wind velocities
create challenges for maintaining efficient port operations. Moreover, the frequency and
intensity of these events are projected to increase, raising concerns about their potential
future impact on fresh fruit exports and overall long-term food safety and security.

2.3. Maritime Supply Chain Risk Management

In his 1999 paper on ‘Principles of food safety Risk management’, Jùrgen Schlundt
emphasised the significance of risk management in ensuring food system safety. His steps
align with the general process for managing supply chain risks, including risk identification,
assessment, mitigation and monitoring/review [46–48]. Guerin [24] further highlights the
importance for organisations to understand and effectively engage with these risks by
allocating capital toward risk mitigation. This was echoed by Robertson et al. [21] in
their holistic risk management perspectives for food safety. The general mechanisms for
risk mitigation encompass prevention, reduction (training and education), risk transfer
(insurance) and bearing the risk internally by the company itself [49].

Marine cargo insurance is a commonly used method for transferring risk, providing
coverage for the physical loss or damage of goods during transportation and storage [50].
Risk managers gain valuable bottom-up insights into risk management by examining
marine cargo insurance claims [3]. In their paper on data-driven analytics for cargo loss,
Wu et al. [51] presented a ‘business analytics for cargo loss severity’ framework, which was
incorporated and adapted into the conceptual framework for this research in Section 3.

As ports play a crucial role in the global distribution of goods (as evidenced in Section 2.2),
it is essential to analyse potential risks in the maritime transportation process. Therefore,
Blecker and Kersten [49] developed a layer model for maritime transportation risk man-
agement to integrate risk management procedures into maritime logistics networks. This
model focuses on risk identification and evaluation, comprising four layers, and forms the
theoretical foundation of this research (see Figure 3).

The layers are described as follows:

• Layer 1. Disruptive factors: This layer identifies and defines the events that initiate
a chain of events, which can be internal (known and prepared for) or external (a
combination of known and prepared for and known and unprepared for).

• Layer 2. Processes: Relevant processes related to the system being analysed are listed
in this layer, acting as a link between Layers 1 and 3.

• Layer 3. Basic events: This layer lists non-redundant events, and the occurrence
probability is determined by assessing the processes in Layer 2, as defined through
the interactions between Layers 1 and 2.

• Layer 4. Consequences: This user-defined layer includes monetary and non-monetary
quantifiers to assess the impact of the identified events.
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This section developed the theoretical background for the risk associated with food
safety and security along with the expected future increase in climate change events.

3. Methodology

In 2019, the World Health Organization (WHO) emphasised the importance of obtain-
ing precise quantitative estimates regarding the potential effects of climate change on food
safety [25]. They stressed the urgent need for action to minimise predictable hazards.

To respond to these concerns, this research uses the theoretical perspectives from
Section 2.3 to investigate marine cargo insurance claims for fruit damage. It focuses on
research questions in Table 1, aiming to enhance understanding of distribution factors
damaging South African fruit exports and related food safety risk management.

To address the research questions, the authors meticulously studied historical claims
data from two major marine insurance companies in South Africa. These companies com-
bined represent approximately 35% of the non-life insurance market and are among the
country’s top five marine insurance companies. The authors utilised a consolidated, desen-
sitised, original dataset containing 17,727 unique claims over ten years from 1 January 2013
to 31 December 2022. This set of data served as a basis for the analysis.

Datasets included the following information: (1) the date of loss and (2) the description
of the loss. The description field’s variations (being in an open-text format that allowed
free-text descriptions for each claim) led to the use of a keyword analysis formula on the
dataset. During the pre-processing phase, a range of keywords such as weather, rain, hail,
wind, storm, water, flood, delay, damage, temperature, variation and deterioration were
searched. However, due to limited results from certain keywords, the list was refined to:
delay, damage and temperature. The keywords with few results were categorised under
‘damage’. The subsequent analysis aimed to extract two primary details from the claim
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descriptions in the dataset: (1) the type of damage and (2) the type of fruit damaged in
each claim.

Table 1. Research questions.

Research Question Justification and Potential Contribution Previous Research

1. What type of
distribution damage

affected fruit over the
period

under investigation?

By identifying the types of fruit damage during
distribution, strategies can be developed to

minimise these, enhancing supply chain efficiency
and food safety. Fewer damages reduce potential

exposure to bacteria or other contaminants,
ensuring the fruit stays safe for consumption.

Furthermore, intact fruits have a longer shelf life,
reducing consumers’ chance of purchasing and

eating spoiled or nearly spoiled fruit.

A study by [53] shows that reducing physical
damage in fruits during transportation

significantly decreases the chance of microbial
growth, improving food safety.

2. Are certain types of
fruit more vulnerable

to distribution damage
than others?

Recognising more vulnerable types of fruit allows
farmers and cold chain operators to adapt their
practices to minimise damage, enhancing food

safety. Reduced fruit damage means less exposure
to contaminants and a lower risk of spoilage. This

leads to safer, healthier food reaching the
consumer, and the increased shelf life also reduces

the likelihood of the consumer unknowingly
purchasing and consuming spoiled fruit.

Research by [54] has shown that understanding
the unique vulnerabilities of different fruit types
and modifying farming and handling practices

accordingly can significantly decrease post-harvest
losses and enhance food safety.

3. Is there a seasonal
pattern in fruit

damage claims?

A better understanding of seasonal patterns can
help ensure food safety by allowing for better
resource allocation during high-risk seasons,

reducing potential damage and contamination.
This could also lead to formulating policies or

guidelines regarding handling, storing and
transporting fruits during these seasons, further

safeguarding food quality and safety.

The Food and Agriculture Organization of the
United Nations [55] has demonstrated that

recognising and responding to seasonal trends in
agricultural yield and associated damage claims
can notably boost food safety and overall quality.
Farmers, processors, distributors and consumers

can effectively plan ahead by leveraging this
understanding of seasonal variations. This

optimises resource utilisation and mitigates risks,
ultimately leading to increased profits. This

proactive approach grounded in seasonal trends
significantly contributes to advancing food safety

standards and improving quality in the
agricultural sector.

4. How can historical
damage claims data be
used to forecast future

damage claims?

Accurate forecasting enables better planning and
preparedness, thus minimising potential

disruptions to the supply chain that could
compromise food safety. For instance, early actions
can be taken to ensure supply continuity and food

quality preservation if there is an anticipated
shortage or issue. Moreover, having a predictive

model enables more robust risk management
strategies to mitigate potential food safety risks.

A study by [56] has shown that predictive
modelling based on historical data can effectively

enhance food safety by enabling proactive
measures and comprehensive risk

management strategies.

After collecting and organising this data, a master dataset was created as the foun-
dation for analysing the research questions. It consisted of 441 unique damage claims
related to fruit. A sample post-processed master dataset is provided in Table 2, and Table 3
shows the ratio of fruit damage claims to overall claims. This trend is further examined
in Section 4.

This study’s conceptual framework, illustrated in Figure 4, was developed using the
discussion from Section 2.3. This framework guided the analysis and interpretation of
the findings.
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Table 2. Sample master dataset.

Date of Loss Description Damage Fruit

1 February 2013 Vehicle overturned—glassware—Veh reg:XYZ123 - -

2 March 2014 Damages to cntnr XYZ—oranges as result of
delay/congestion at port—severe storms ex vessel XYZ storm; delay; damage orange

3 April 2015 Damages to fresh oranges and lemons in cntnrs
ABC&XYZ—delay in transit ex vessel ABC delay; damage orange; lemon

Table 3. Fruit damage claims as a percentage of Company A + B’s total claims (data and heat map).

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

All claims 1693 1762 1836 1622 1729 1759 1759 1686 2042 1839
Fruit damage claims 7 17 14 9 36 49 125 59 52 73
Percentage of claims 0.4% 1.0% 0.8% 0.6% 2.1% 2.8% 7.1% 3.5% 2.5% 4.0%

Key: Green = lowest; Yellow = lower-middle; Orange = upper-middle; Red = highest values.
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The master dataset was analysed using Excel® to address research questions 1, 2
and 3. For research question 4, which focuses on forecasting future damages, assistance
was provided by Stellenbosch University’s Centre for Statistical Consultation, employing
Statistica 14.
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4. Analysis and Results

This section presents the analysis and results corresponding to each research question
in Table 1, Section 3.

4.1. Research Question 1—What Type of Distribution Damage Affected Fruit over the Period
under Investigation?

This section examines the variations in fruit damage during transport, essential for
devising strategies to mitigate harm and boost supply chain efficacy and food safety.
Mitigating physical damage, proven by Rolfe and Daryaei [53] to also diminish contaminant
exposure, extends shelf life and underscores the need for meticulous handling and cold
chain maintenance to deliver fruit in peak condition to consumers.

To analyse research question 1, the master dataset was filtered and categorised into
three main groups: damage, delay and temperature. Each claim was examined using keyword
filters to determine the best-fitting group. In cases where a more specific description was
unavailable, the claim was assigned to the damage group by default. Due to the nature of
agricultural practices, output volumes can vary from season to season or due to orchard
renewal programs. To ensure validity of the research outcomes, some compensation for
large-scale volume fluctuations should be included. To normalise for volume changes over
the years, each year’s total fruit export volume was indexed to the volume of the base
year, 2013. The percentages indicated are calculated using the annual number of claims
per category divided by the total claims for that category and then adjusted using the
normalisation factor. This indicates the distribution of claims across the years examined.
The results of this analysis are presented in Table 4 as a heat map, and visual representations
can be found in Figure 5.

Table 4. Indexed distribution of claims by category over the years (data and heat map). Source: SARS (2023).

Number of Claims 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Total Claims
by Type

damage 4 14 11 8 22 38 99 42 33 49 320
delay 2 1 1 1 4 5 10 6 8 15 53
temperature 1 2 2 0 10 6 16 11 11 9 68

Annual total 7 17 14 9 36 49 125 59 52 73 441

Factor to normalise
for volume 100 104 107 107 117 121 150 130 145 150 -

Heatmap (after
normalization) 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

damage 1% 4% 3% 2% 6% 10% 21% 10% 7% 10% -
delay 4% 2% 2% 2% 6% 8% 13% 9% 10% 19% -
temperature 1% 3% 3% 0% 13% 7% 16% 12% 11% 9% -
Annual total % 2% 4% 3% 2% 7% 9% 19% 10% 8% 11% -

(Green = lowest; Yellow = lower-middle; Orange = upper-middle; Red = highest values).

Focusing on damage-related claims, which fluctuated throughout the years, these
claims notably exceeded the average of the category in 2018 (10%), 2019 (21%), 2020 (10%)
and 2022 (10%), which indicates a changing situation. The sharp surge in 2019 could reflect
particular challenges faced in transportation mechanisms or quality controls during that
year. Subsequent years, while showing a decline from the peak, remained high, indicating
that challenges with damage persisted.

The delay category started at 4% in 2013, considerably below the average. However, from
2018 onwards, every year exceeded the average, culminating in a significant peak of 19% in
2022. This consistent rise over the latter part of the decade might point to recent challenges in
transportation logistics or increased sensitivity in detecting and reporting delays.
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Figure 5. Indexed claim distribution by category: 2013–2022.

Temperature-related claims experienced an irregular pattern. Years that experienced
notable increases include 2017 (13%), 2019 (16%), 2020 (12%), 2021 (11%) and 2022 (9%).
The pronounced fluctuations may hint at periodic challenges with maintaining the cold
chain’s temperature, possibly due to changes in the temperature control equipment (or
related challenges), transportation routes, or handling practices during these years.

During the study period, fruit distribution damage trends raised concerns. The
heatmap visually confirms significant changes post-2016, with persistently high figures
suggesting continued fruit damage problems. However, it is essential to consider additional
factors, such as the impact of weather conditions in specific years and any other potential
factors that could influence the number of claims in a particular year. Rolfe et al. [53]
emphasised that such damages increase microbial growth risks, affecting food safety.

4.2. Research Question 2—Are Certain Types of Fruit More Vulnerable to Distribution Damage
Than Others?

This section explores the varying susceptibilities of different fruits to damage (and
potential spoilage). Recognising these vulnerabilities could enable farmers and cold chain
operators to adapt their methods to minimise harm, leading to safer, fresher produce.
Research by the Food and Agriculture Organization of the United Nations underscores the
importance of understanding these specificities, as modifying practices accordingly can
substantially reduce post-harvest losses and increase food safety [54].

The dataset was filtered and then categorised into the different fruit groups, as dis-
cussed in Section 3. Each claim was examined using keyword filters to determine the
fruit group. In the few cases where more than one type of fruit was detected, the claim
was assigned to the other fruit group by default. To again account for volume variations
year-on-year, each fruit group’s export volumes were indexed to the base year, 2013. The
percentages indicated in Table 5 and Figure 6 are calculated using the annual number of
claims per fruit category divided by the total claims for that fruit category for the year and
then adjusted through the normalisation factor. This indicates the distribution of claims
across the analysed years.
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Table 5. Indexed distribution of claims by fruit group over the years (data and heat map). Source: [57].

Number of Claims

Group Fruit 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Group
total

citrus fruit
citrus; clementines;
grapefruits; lemons;
mandarins; oranges

2 6 4 2 13 12 66 17 6 4 132

grapes table grapes 1 2 2 0 3 9 13 20 27 50 127

other fruit litchis; mangos
pineapples; other 4 3 3 2 11 16 40 15 10 16 120

pome fruit apples; pears 0 1 4 5 6 10 5 7 5 2 45

stone fruit nectarines; peaches;
plums 0 5 1 0 3 2 1 0 4 1 17

Annual total 7 17 14 9 36 49 125 59 52 73 441

Factor to normalise for volume
Group Fruit 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

citrus fruit
citrus; clementines;
grapefruits; lemons;
mandarins; oranges

100 100 102 97 109 123 120 140 147 146 -

grapes table grapes 100 96 116 139 150 177 126 149 153 192 -

other fruit litchis; mangos
pineapples; other 100 201 187 168 220 111 730 41 225 111

pome fruit apples; pears 100 92 100 108 108 103 106 122 118 155 -

stone fruit nectarines; peaches;
plums 100 104 102 99 100 90 81 85 133 152 -

Heatmap
Group Fruit 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

citrus fruit
citrus; clementines;
grapefruits; lemons;
mandarins; oranges

2% 5% 3% 2% 9% 7% 42% 9% 3% 2% -

grapes table grapes 1% 2% 1% 0% 2% 4% 8% 11% 14% 21% -

other fruit litchis; mangos
pineapples; other 3% 1% 1% 1% 4% 12% 5% 31% 4% 12% -

pome fruit apples; pears 0% 2% 9% 10% 12% 22% 10% 13% 9% 3% -

stone fruit nectarines; peaches;
plums 0% 28% 6% 0% 18% 13% 7% 0% 18% 4% -

(Green = lowest; Yellow = lower-middle; Orange = upper-middle; Red = highest values).
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The dataset, adjusted for volume increases, presents an insightful analysis of fruit
damage claims between 2013 and 2022, categorised into citrus fruits, grapes, pome fruits, stone
fruits and other fruits. Over this period, citrus fruits, which include varieties like clementines
and oranges, had notable variations in the claim rate. The year 2019 was particularly
concerning, registering a claim rate of 42%—far exceeding the average. Similarly, the claim
percentages for 2017 and 2020 were above average. Over the past decade, grapes had a stable
claim rate between 2013 and 2016. However, starting from 2018, there has been a steady
increase in claims, culminating in 14% in 2021 and reaching a high of 21% in 2022. Pome
fruits, mainly apples and pears, consistently surpassed the average between 2017 and 2020;
the highest being 22% in 2018. Stone fruits like nectarines and peaches recorded elevated
claims in 2014 and 2017 at 28% and 18%, respectively, which stood out. Lastly, the category
of other fruits, encompassing litchis, mangos and pineapples witnessed higher-than-average
claims in 2018 and 2020 at 12% and 31%, respectively. Please see Section 7 for suggested
future work on this topic.

4.3. Research Question 3—Is There a Seasonal Pattern in Fruit Damage Claims?

Understanding seasonal patterns in fruit damage claims can reveal potential risk fac-
tors like handling, transportation and weather-related influences that affect food quality and
safety during specific times of the year. Recent studies, such as the Food and Agriculture
Organization’s 2021 report, emphasise recognising seasonal trends to optimise resources,
mitigate risks and increase profits [55]. This section analyses the master dataset from 2013
to 2022, identifying key monthly seasonal patterns in fruit damage claims. It is important
to note that the input data reflects the reported date of loss associated with the claim. This
analysis aims to inform strategies and policies to enhance food safety and quality during
high-risk seasons, contributing to the overall resilience of the agricultural sector.

The dataset is presented in Table 6, and a graphical representation in Figure 7. The
percentages indicate the monthly proportion of fruit-related claims out of Company A + B’s
total claims for that month. This highlights the monthly trends over the years in fruit claims
development. The researchers would have preferred to normalise for total claims variations
across all insurance companies to balance any long-term trends in other insurance markets;
however, this data was not available to the researchers.

Table 6. Seasonal trends in claims as a percentage of Company A + B’s total claims (heat map).

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Jan 0% 0% 1% 0% 0% 2% 2% 3% 4% 7%
Feb 0% 1% 0% 1% 2% 1% 4% 3% 6% 11%
Mar 1% 1% 0% 0% 1% 4% 2% 7% 11% 4%
Apr 1% 1% 0% 0% 0% 0% 3% 4% 2% 1%
May 0% 0% 1% 1% 2% 3% 4% 4% 3% 2%
Jun 0% 1% 1% 1% 1% 3% 7% 4% 0% 1%
Jul 1% 1% 3% 1% 8% 4% 8% 5% 1% 3%
Aug 1% 2% 0% 2% 6% 7% 19% 5% 1% 2%
Sep 0% 1% 1% 1% 3% 6% 22% 5% 1% 1%
Oct 0% 0% 1% 0% 1% 1% 12% 0% 0% 0%
Nov 0% 1% 1% 0% 1% 1% 3% 2% 0% 4%
Dec 1% 3% 1% 0% 1% 1% 2% 4% 3% 2%

(Green = lowest; Yellow = lower-middle; Orange = upper-middle; Red = highest values).

The dataset analysis reveals several key insights regarding seasonal patterns in fruit
damage claims as a percentage of total claims for that month from the original dataset. The
first notable observation is an increasing growth trend in damage claims over the years,
most noticeably in January and February. This increase might indicate specific fruit type
vulnerabilities, changes in handling, transportation, weather conditions impacting the
freshness or quality of the produce, increased demand leading to quicker and potentially
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rougher shipping methods, variations in packaging materials or techniques, fluctuations in
quality control measures or changes in regulations or standards.
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Figure 7. Seasonality in fruit damage claims: 2013–2022.

Secondly, there are evident seasonal fluctuations throughout the years. June to Septem-
ber tends to have escalating claims, with substantial peaks observed in August and Septem-
ber across several years (e.g., 19.1% in August 2018 and 22.1% in September 2019). Equally,
December to February initially saw relatively low claims, but a consistent increase is no-
ticeable in later years, notably in February 2022 at 11.3%. March to May generally sees
moderate damage claims, with minor variations year-on-year, suggesting a relatively stable
situation in this period. A spike in claims was anticipated in April 2022 due to the Durban
storms. However, two factors affected this: (1) As mentioned in Section 2.2, in 2022, 70%
of fruit was exported via the Port of Cape Town, and (2) general storm damage claims
in Durban would have largely overshadowed any fruit-related claims. A final important
insight is the presence of sudden, significant fluctuations in certain months, such as Au-
gust 2019 (19.1%) and September 2019 (22.1%). Interestingly, there are declines in certain
months, specifically October and April, where the number of claims has reached zero in
several instances.

4.4. Research Question 4—How Can Historical Damage Claims Data Be Used to Forecast
Future Damage?

In food safety, accurate forecasting is a powerful tool for risk mitigation and, thus,
the integrity of the cold chain. The potential to predict future damages allows for early
interventions, preserving food quality and ensuring a continuous supply. The application
of predictive modelling, using historical data as illustrated by a study by Rejeb et al. [56],
effectively enhances food safety.

Two primary statistical techniques were explored to address the third research question
of whether historical data can be employed to forecast future situations. Section 4.4.1
delves into using the seasonal autoregressive integrated moving average (SARIMA) model.
Following this, Section 4.4.2 focuses on regression analysis, a different approach that
provides additional insights into the relationships between the variables.

4.4.1. SARIMA Forecasting

To forecast monthly damage claims to fruit, one needs a model that can use time series
data to forecast these potential liabilities. The model should be able to predict the volume
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of claims and consider the seasonal volatility inherent to the type of monthly claims. The
seasonal autoregressive integrated moving average (SARIMA) model offers this solution.

This model is an extension of the ARIMA (autoregressive integrated moving aver-
age) model, which considers seasonality in the data, as evidenced in research question 3.
SARIMA is particularly useful for time series data exhibiting trend and seasonality [58]. It
can handle trends and seasonality, making it versatile for real-world time series data.

SARIMA has several components. The AR (autoregressive) component captures the
relationship between an observation and its previous ones. The integrated (I) component
involves differencing observations to make the time series stationary, ensuring consistent
mean and variance. Differencing over a lag of 1 means subtracting the prior observation
from the current one. The MA (moving average) component relates an observation to the
residual error from a moving average model applied to past data. In addition, SARIMA
has seasonal counterparts to these components: seasonal autoregressive (SAR), seasonal
integrated (SI) and seasonal moving average (SMA), emphasising periodic patterns in the
data and residuals.

To apply a SARIMA model, one needs to identify and then specify the order of each
component (p, d, q) for the non-seasonal part and (P, D, Q, S) for the seasonal part, where:

• p: order of AR term.
• d: number of differencing required to make the series stationary.
• q: order of the MA term.
• P: seasonal order of the AR term.
• D: seasonal differencing.
• Q: seasonal order of the MA term.
• S: number of observations in each season.

The order of the data are the months in sequence and the analysis of damage prediction
started with a data transformation phase. Due to the variance instability of the damage for
prediction purposes (see Figure 8), a log transformation was applied, a commonly used
method for stabilising variance and making the data more suitable for linear modelling
(see Figure 9).
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The rough regression on the monthly data summary suggested a decent level of
predictability for the model with an R-Square value of 0.2384, meaning the regression
model explains 23.84% of the variation in the data. The F-Statistic (F(1,118) = 36.944) and the
corresponding p-value (p < 0.00000) demonstrated that our model is statistically significant.
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Following the regression analysis, several diagnostic tests were performed to check
the validity of the model assumptions. The normal probability plot of residuals suggested
that the residuals can be assumed to be normally distributed according to the Shapiro–Wilk
test with a p-value of 0.827. The p-value is much larger than the significance level of
0.05, suggesting no evidence to reject the null hypothesis that the residuals are normally
distributed (see Figure 10).
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The Durbin–Watson test showed a result of 1.086, indicating positive autocorrelation in
the residuals, a conclusion echoed by a serial correlation estimate of 0.455, which shows that
the residuals are seriously autocorrelated at lag 1. This, coupled with the Breusch–Pagan
test pointing to heteroskedasticity with a p-value of 0.00, lends weight to the consideration
of a model addressing these serial correlations. Both tests suggest SARIMA’s potential to
address the observed concerns in the residuals.

The next step was to address zeros in the damage data. The transformation ln(Damage + 1)
was used. Refer to the resultant plot of variables in Figure 11. To control for the non-
stationary nature of the data, a first-difference transformation (where ‘d’ is substituted by
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the differencing order) was executed before performing the spectral analysis (see Figure 12).
This transformation helped eliminate any potential trends in the data, which could have
otherwise led to misleading results in the spectral analysis.
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Moreover, the stationarity of the series was tested using the augmented Dickey–Fuller
(ADF) test. For the original logarithmically transformed series, the ADF test statistic was
−1.11 with a p-value of 0.26 at four lags without considering an intercept, failing to reject
the null hypothesis of a unit root and indicating non-stationarity. Consequently, after
applying first-differencing the ADF test yielded a test statistic of −9.12 with a significant
p-value of 0.01 at three lags, allowing us to reject the null hypothesis and affirming that the
differenced series is stationary and suitable for SARIMA modelling.

Autocorrelation (Figure 13) and partial autocorrelation plots (Figure 14) suggested
seasonality. The periodogram analysis further affirmed this, which detected a 6-month
seasonality, enhanced by Parzen weights for clarity (see Figure 15).
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In light of the detected seasonality and serial correlation, a SARIMA model was fitted
to the monthly data, specifically a SARIMA (1,1,1)(1,0,0)6 model. The model fit revealed
a mean square residual of 0.47404. Each of the model’s parameters, p(1) and q(1), were
statistically significant (see Table 7). While not statistically significant, the Ps(1) coefficient
has a small p-value. This model is the best fit found for the monthly logged data.

Table 7. Sarima (1,1,1)(1,0,0)6 model fit results.

Paramet. Param. Asympt.
Std.Err. Asympt. t (116) p Lower 95%

Conf
Upper 95%

Conf

p(1) 0.420922 0.099966 4.22333 0.000048 0.223521 0.618323
q(1) 0.924597 0.037381 24.73419 0 0.850558 0.998635
Ps(1) 0.155226 0.101211 1.53369 0.127828 −0.045235 0.355687
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Figure 15. Spectral analysis after Parzen smoothing.

Upon reflecting on potential outliers and their impact on the model, an intervention
analysis was conducted considering a possible outlying observation at time 82 as a spike in
the data or abrupt, temporary intervention. Despite the discernible presence of this spike,
the intervention analysis demonstrated it to be non-significant, thereby not necessitating
an explicit model in the SARIMA context. Consequently, the forecasts derived from the
SARIMA(1,1,1)x(1,0,0)6 model remain reliable and are not significantly affected by this
non-significant intervention.

After the model fit, the residuals were analysed by inspecting their autocorrelation
function (Figure 16) and partial autocorrelation function (Figure 17). The Ljung–Box–
Pierce portmanteau Q-test on the residual autocorrelations and the tests on the partial
autocorrelations indicate that the residuals can be assumed to be white noise.
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Finally, the SARIMA model was used to forecast ‘Damage’ for the next two years (see
Figure 18). These forecasts provide insights into future patterns and help with planning
and decision making.
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Figure 18. SARIMA forecasting.

The model predicts damage values, captured in the ‘FORC DAMAGE’ column (see
Table 8), ranging approximately from 3.87 to 4.72 over the forecast period (cases 121 to 144).
This provides a forecasted range of potential damage magnitudes that can be expected.
The damage values in ‘FORC DAMAGE’ are calculated using X = exp(Y) − 1, where Y
is the ln(DAMAGE + 1). This transformation helps in interpreting the forecasts in their
original scale.

To check the forecasting accuracy of the SARIMA model, the data was cut-off at time
point t = 108 (December 2021) and the same model fitted to the shorter series. The last
twelve months is then forecasted. The forecasted ln(DAMAGE + 1) series until t = 120 yield
a MAE of 0.9233, an RMSE of 0.7687 and a MAPE of 47.47%, indicating reasonable average
accuracy, control over prediction errors and a robust initial framework, respectively. This
groundwork provides substantial potential for enhancing predictive accuracy in future
research and iterations of fruit damage forecasting.

In summary, the SARIMA model predicts a consistent uptrend in damage over the
forecasted cases with slight fluctuations. The transformed ‘FORC DAMAGE’ values pro-
vide monthly actionable forecasts that can be more directly used for planning and risk
management regarding fruit damage claims.
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Table 8. SARIMA forecasts of fruit damage claims.

Case No. Forecast Lower
90.00%

Upper
90.00% Std.Err. Forc Damage

121 1.089763 −0.051843 2.231369 0.688504 3.97357031
122 1.188694 −0.08579 2.463177 0.768643 4.28279004
123 1.137321 −0.177845 2.452486 0.793178 4.11840216
124 1.053391 −0.280497 2.387279 0.80447 3.86735794
125 1.313179 −0.032775 2.659134 0.811747 4.71797542
126 1.17514 −0.180502 2.530781 0.817589 4.23859528
127 1.23847 −0.157086 2.634026 0.841662 4.45032979
128 1.254569 −0.161292 2.670431 0.853908 4.5063278
129 1.246908 −0.183012 2.676827 0.862386 4.47956587
130 1.234011 −0.207651 2.675673 0.869469 4.43497983
131 1.274392 −0.178063 2.726848 0.875978 4.57652776
132 1.252988 −0.209833 2.71581 0.88223 4.500789
133 1.262829 −0.213618 2.739275 0.890447 4.53540793
134 1.265332 −0.222754 2.753417 0.897467 4.54426883
135 1.264144 −0.234753 2.763041 0.903987 4.54006227
136 1.262143 −0.247187 2.771473 0.910279 4.53298519
137 1.268412 −0.251155 2.787979 0.916453 4.55520148
138 1.265089 −0.264594 2.794773 0.922554 4.54340948
139 1.266617 −0.273588 2.806821 0.9289 4.54882629
140 1.267006 −0.283392 2.817403 0.935047 4.55020557
141 1.266821 −0.293595 2.827238 0.94109 4.54955122
142 1.266511 −0.303817 2.836838 0.947067 4.54844881
143 1.267484 −0.312675 2.847642 0.952996 4.5519033
144 1.266968 −0.322952 2.856888 0.958883 4.550072

4.4.2. Regression Analysis

Regression analysis is a powerful statistical method widely used in time-series datasets
for forecasting [59]. In a time-series context, the goal is to analyse sequential data points,
ordered by time, to identify underlying patterns or trends. Regression analysis models the
relationship between a dependent variable (the variable to be predicted) and one or more
independent variables (the predictors) that are believed to influence the dependent variable.

A linear regression analysis was conducted to investigate the relationship between the
year and the total number of fruit damage claims and provide insights into potential future
damage claims. Figure 19 presents the scatterplot of fruit damage claims over ten years,
and Table 9 the regression summary statistics.

Table 9. Regression summary statistics. * = standardized beta coefficient.

Regression Summary for Dependent Variable: TOTAL FRUIT DAMAGE CLAIMS R = 7.1600293 R2 = 5.1266020 Adjusted
R2 = 4.5174272 F(1,8)=8.4157 p < 0.01986 Std.Error of estimate: 27.040

N = 10 b* Std.Err. of b* b Std.Err. of b t(8) p-Value
Intercept −3.4000 18.4721 −0.18 0.86
Year# 0.72 0.25 8.6364 2.9771 2.90 0.02

The regression model demonstrated a strong positive correlation (R = 0.716) between
the year and the claims, accounting for 51.3% of the variability (R2 = 0.513). Statistically
significant results (F(1,8) = 8.4157, p < 0.0199) support the validity of the relationship,
indicating it is likely not a result of random chance. Figure 20 presents the predicted versus
the observed values at a 0.95 confidence interval.

In practical terms, this translates to an average increase of 8.6364 units in fruit damage
claims per year. Forecasted data are presented in Table 10. The standard error indicates the
typical deviation from the regression line, and the confidence interval for the slope adds
further assurance to these conclusions.
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The model’s statistical significance at the 95% confidence level, coupled with a p-value
of 0.0199, strongly suggests that the observed relationship is substantive and not due to
random fluctuations. To ensure the reliability of these findings, tests were conducted to ver-
ify key assumptions of linear regression, such as the independence and constant variance
of residuals. Specifically, the Durbin–Watson statistic (1.912180) found no significant auto-
correlation and the Breusch–Pagan test (BP = 0.45, p = 0.50) detected no heteroskedasticity,
validating the model’s robustness.

In conclusion, the insights from both SARIMA and regression, in line with the recom-
mendations by Rejeb et al. [56], can be adeptly integrated into planning and risk manage-
ment. This proactive approach aids in mitigating fruit damage claims, further enhancing
food safety.
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Table 10. Forecasted fruit damage claims.

Year Damages Type

2013 7 Observed

2014 17 Observed

2015 14 Observed

2016 9 Observed

2017 36 Observed

2018 49 Observed

2019 125 Observed

2020 59 Observed

2021 52 Observed

2022 73 Observed

2023 94 Forecasted

2024 102 Forecasted

2025 111 Forecasted

2026 119 Forecasted

2027 128 Forecasted

5. Discussion

Climate change’s impact on various global systems and industries constitutes a com-
plex and pressing issue, with the South African fruit export supply chain and marine cargo
insurance sectors facing significant challenges that affect food safety. This study examined
these vulnerabilities through a unique risk-based perspective.

International research findings highlight that human activities have led to a rise of
1.1 ◦C in global temperatures since the pre-industrial era, with a marked escalation in
the past decade. This warming severely affects South Africa’s economy, particularly its
vital fruit export industry, which contributes over USD 3 billion annually and employs a
significant portion of the workforce. Du Plessis et al. [3] revealed an alarming increase in
weather-related cargo claims in South Africa, including extreme outlier years, indicating
the marine cargo insurance industry’s vulnerabilities. Similarly, the International Union of
Marine Insurance has reported a rising trend in such claims worldwide.

Discussions covered climate change, South African fruit exports, food safety and an
analysis of marine insurance claims for fruit damage. Nearly half of the world’s ports
lack strategies to mitigate climate change impacts, resulting in a highly vulnerable and
low-resilience supply chain [7]. According to industry experts, South Africa experienced
significant logistical challenges in 2019 due to a surge in fruit exports, with increased
demands for cold storage and refrigerated trucks, further exacerbated by port conges-
tion from extreme weather damage, labour slowdowns and container buildup, ultimately
harming fruit quality, safety and sales (M Marais 2023, personal communication, 02 Au-
gust) [4]. This aligns with the overall trend revealed in the analysis of fruit damage during
distribution from 2013 to 2022, showing increased damage claims after normalising for
volume, peaking at 21% in 2019. Concurrently, the table grape industry was recovering
from the 2018–19 drought’s impact on quality, which saw increased damage claims (M
Marais 2023, personal communication, 02 August). In South Africa, the agricultural sector
is significantly impacted by climate variations, affecting crop yields, quality and food safety.
The repercussions of climate change on food production, agricultural livelihoods and food
security have emerged as top national policy concerns, with unstable conditions elevating
risks of contamination and spoilage [55].

The complexities deepened further In 2022 when the EU made abrupt changes to the
importation requirements for South African citrus, including mandatory cold treatment
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at short notice for implementation (M Marais 2023, personal communication, 02 August).
This coincides with a spike in delay-related claims in 2022. In addition, the forecast for
South Africa’s orange production in 2022–23 has been reduced by 1% to 1.63 million metric
tons, reflecting weather-related damages and the varying impact of weather conditions on
different regions (M Marais 2023, personal communication, 02 August) [37].

From 2017 to 2022, claims related to temperature showed significant deviations above
the average, indicating that weather-related events could have affected the fruit export
supply chain. This observation aligns with Du Plessis et al.’s [3] findings, which also
reported a similar upward trend in weather-related marine cargo insurance claims during
this timeframe. The findings emphasise the importance of properly handling and trans-
porting fruit to minimise damage and enhance supply chain efficiency and food safety.
These insights emphasise the vital interaction among weather conditions, logistical dif-
ficulties and regulatory alterations, accentuating the necessity for a supply chain that is
both adaptive and resilient to particular weather conditions and shifting international
standards. Consequently, recognising types of fruit damage during distribution enables
the enhancement of strategies, amplifying supply chain efficiency and food safety. Fewer
damages translate to a safer product for consumers.

The analysis of fruit damage from 2013 to 2022 categorised the claims into five key
groups: citrus fruits (30% of total claims), grapes (29%), other fruits (27%), pome fruits (10%)
and stone fruits (4%). Citrus fruits had the most significant portion due to a higher market
volume. After normalising for volume, the trend was relatively moderate for most of the
years except for 2019, which witnessed a significant surge. The damage rate for table grapes
after normalising for volume has steadily increased over the years, especially from 2019
onwards, with a peak of 21% in 2022. The different fruit groups exhibited varied patterns,
suggesting complex and multi-faceted influences on damage susceptibility. The dataset
revealed intricate and varied trends in fruit damage claims across types and years, poten-
tially reflecting factors from susceptibility variations to industry practices. Acknowledging
the unique vulnerabilities of each fruit type is paramount, as validated by research from
the Food and Agriculture Organization of the United Nations [55]. Understanding specific
fruit vulnerabilities and adapting farming and handling methods can significantly reduce
post-harvest losses, thereby minimising fruit damage and ensuring safe food products
for consumers.

The analysis of fruit damage claims from 2013 to 2022 reveals key seasonal patterns
that may inform risk mitigation and quality enhancement strategies. An increasing trend
in fruit claims, relative to all claims, is noted, particularly in January and February, possibly
reflecting changes in handling or transportation. There are apparent seasonal fluctuations,
with June to September experiencing escalating fruit-related claims, peaking in August and
September. December to February initially had low claims but showed consistent growth
in later years, which coincides with the growth in table grape claims. The months of March
to May maintained moderate and relatively stable levels. Sudden spikes were observed
in particular months like August 2018 and September 2019, with corresponding declines
in October and April over time. Some of these patterns align with Cape Town’s winter
storms from June to August due to cold fronts and low-pressure systems and the area’s
intense wind conditions that persist for days during the summer months (December to
February) [34]. By accurately allocating resources during perilous seasons and potentially
devising season-specific fruit handling, storage and transport guidelines, stakeholders can
optimise operations and mitigate risks, with these findings proffering a crucial comprehen-
sion of the seasonal dynamics in fruit damage claims, thereby fortifying the agricultural
sector’s resilience and enhancing overall food safety.

In the forecasted cases 121 to 144, the SARIMA model predicts values between ap-
proximately 3.87 to 4.72 per month, a notable uptrend. Concurrently, the linear regression
analysis revealed a strong positive correlation between years and total fruit damage claims
and predicted a statistically significant increase of 8.6 units in claims annually. Both the
SARIMA and regression models indicate an ascending trend in damage claims. These
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insights can be effectively harnessed for improved planning and risk management. This
proactive stance can help mitigate fruit damage claims, enhancing food safety.

Our findings emphasise the urgent need for targeted policies, preventive strategies
and comprehensive investigation into the underlying causes to minimise future dam-
age claims. Attention must be directed towards developing resilience strategies in the
maritime supply chain and implementing risk management practices to ensure the con-
tinued success and safety of South Africa’s fruit export industry in the face of escalating
weather-related challenges.

6. Conclusions

Our marine insurance claims data analysis reveals an uptrend in fruit damage reports
over the past decade. While our dataset does not enable a direct linkage in every instance
of this growth to particular causes, owing to limitations in the description of claims, it is
noteworthy that this trend correlates with the period of escalated climate change impact,
as documented in various studies [1,38,60] and the troubling rise in weather-related cargo
insurance claims in South Africa, as detailed by Du Plessis et al. [3].

Global climate change has been associated with increased temperatures and unpre-
dictable weather patterns, which can harm fruit quality during farming operations, trans-
portation and storage, directly affecting food safety [53]. Furthermore, there are reports of
increased port operation disruptions due to extreme weather events, which could poten-
tially affect the handling and storage of perishable goods [20,31,33,34,38].

While climate change presents a compelling potential explanation for the observed
increase in fruit damage claims, we acknowledge that other contributing factors could also
be at play. These might include changes in agricultural practices, new fruit varieties more
prone to damage or even changes in the insurance industry’s reporting or claim assessment
practices. Therefore, further research is necessary, using more detailed datasets, to isolate
the specific factors contributing to this trend.

This study underscores the necessity of a comprehensive approach to managing risks
in the fruit supply chain, which may increasingly need to include mitigation and adaptation
strategies for climate change. Such measures are paramount to ensuring food safety and
maintaining a consistent, quality food supply.

7. Future Work

Based on the extensive findings concerning the interplay between climate change,
South African fruit exports, marine cargo insurance and food safety, there is a pressing
need for targeted future work to reduce fruit damage and enhance food safety. The key
areas to explore and the corresponding actions include:

1. Investigating climate change impact: The observed 1.1 ◦C increase in global temper-
atures and its effects on weather-related cargo claims calls for in-depth studies to
understand how climate change directly affects fruit damage. This includes assessing
extreme weather events, temperature fluctuations and their impacts on transportation,
handling and storage. Collaboration with meteorological agencies and climate experts
will enable more accurate predictions and adaptive strategies.

2. Developing resilience strategies in maritime supply chains: Nearly half the world’s
ports lack climate change mitigation strategies. Research must be directed towards
innovative solutions and technologies that bolster port and transportation resilience
against extreme weather events. This involves creating guidelines, tools and risk
management practices applicable globally and then tailored to specific regions.

3. Analysing fruit categories and damage susceptibility: The categorisation of damage
claims across different fruit types highlights the need for tailored preventive measures.
Further investigations into each fruit category’s specific vulnerabilities, market volume
and handling practices can lead to targeted strategies to minimise future damage.

4. Enhancing data collection and forecasting models: SARIMA and regression models
predicted an upward trend in claims. Future work must focus on continuous data
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collection and annual updates to enhance accuracy and insights for insurers and the
supply chain sectors. In addition, the quality and level of detail included in the claim
descriptions should be addressed.

5. Evaluating handling and transportation practices: The detailed analysis of fruit dam-
age claims has shown clear patterns and seasonal fluctuations. Future work should
conduct audits and on-site evaluations of handling and transportation practices to
identify areas for improvement, implement best practices and use new technologies
to enhance supply chain efficiency and food safety.

6. Interdisciplinary research to isolate contributing factors: The complex interplay be-
tween climate change events, agricultural practices, fruit varieties and insurance
practices requires an interdisciplinary approach. Engaging experts across fields will
allow for a nuanced understanding of the contributing factors and the development
of comprehensive solutions.

7. Applying FAR models to supply chain management: Investigate the utility of Func-
tional AutoRegressive (FAR) models, proven effective in short-term traffic flow fore-
casting [61], for predictive management in fruit export logistics. Focus on lever-
aging FAR models to anticipate maritime transport conditions, optimise logistics
and enhance decision making across the supply chain, with an eye toward reducing
climate-related damage of exported fruits.

In conclusion, the significant uptrend in fruit damage reports over the past decade,
correlated with escalated climate change impacts, demands a multi-faceted and proactive
approach. The above future work suggestions aim to foster a comprehensive and targeted
response to this complex issue, safeguarding South Africa’s vital fruit export industry and
contributing to the global goals of food safety and climate resilience.
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