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Abstract: For the first time, cobalt ferrite spinel (CoFe2O4) was used as a catalyst in the Fenton
process for Remazol Red RR dye degradation in water. CoFe2O4 was synthesized via gel combustion
using tris(hydroxymethyl)aminomethane as an alternative fuel in one step with a ratio of Ψ = 0.8.
Its structural, surface optics, magnetic properties, and the optimal conditions of the Fenton reagents
for dye degradation were evaluated. The saturation magnetization and remanence (Ms and Mr,
respectively) for the as-prepared powder were 65.7 emu/g and 30.4 emu/g, respectively, and the
coercivity (Hc) was 1243 Oe, indicating its ferromagnetic nature and suitability as a magnetic catalyst.
Red Remazol RR dye degradation tests were performed using the Fenton process to evaluate the
influence of the catalyst dosage and H2O2 concentration. The tests were performed in a batch reactor
in the dark with constant agitation for 24 h. The best result was obtained using 1 g/L of catalyst
with a dye degradation of 80.6%. The optimal concentration of H2O2 (1.0 M) resulted in 96.5% dye
degradation. Nanoparticle recyclability testing indicated that the material could be satisfactorily
reused as a catalyst for at least three cycles. The potential use of the CoFe2O4 synthesized in this
study as a catalyst for dye degradation by the Fenton process was demonstrated.

Keywords: spinel ferrites; cobalt ferrite; advanced oxidative process; textile dye; reuse; degrada-
tion pathway

1. Introduction

The increasing concentration of organic contaminants in groundwater and surface
water has become a source of great concern. The textile industry is a major consumer of
synthetic dyes and water. Therefore, it is one of the primary industries responsible for
generating and discharging liquid effluents. The discharge of pollutants from the textile
industry into aquatic environments can cause serious health and environmental problems,
as well as negative visual impacts due to water coloration [1–3].

Many treatment processes are used to remove organic contaminants from contam-
inated water in the textile industry. Conventional treatment processes, which include
chemical, physical, and biological treatment steps [4], do not always provide satisfactory
results because many organic substances produced by the chemical industry are toxic or
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resistant to biological treatment [5–7]. For example, textile industry effluents have a low
level of biological degradation, which makes conventional treatment processes even more
challenging [8]. An effective alternative for the degradation of these organic pollutants is
the use of oxidation processes such as the Fenton reaction, in which iron ions interact with
hydrogen peroxide in an acidic medium to form highly reactive hydroxyl radicals (·OH) [9].
These radicals react non-selectively with almost all organic compounds, oxidizing them
to intermediates, such as alcohols, carboxylic acids, or aldehydes, and then to water and
carbon dioxide [10].

The Fenton reaction can occur in the homogeneous form, where iron ions and H2O2
react directly in solution to produce Fe3+, OH, and HO−, or in the heterogeneous form,
where a solid iron-based catalyst is used to initiate the decomposition of H2O2 into hy-
droxyl radicals [11]. Metallic spinel ferrites with the general formula MFe2O4 (M = Fe2+,
Zn2+, Mn2+, Cu2+ or Co2+) have attracted great interest from the scientific community be-
cause of their excellent physicochemical stability and magnetic recovery performance [12].
Among the different types of ferrites, cobalt ferrite (CoFe2O4) has a spinel structure and has
been shown to be an excellent material for environmental remediation owing to its high
catalytic activity, stable crystalline structure, low metal dissolution, high saturation magne-
tization, large specific surface area, and ability to easily separate water magnetically [13–16].
These properties distinguish it from other heterogeneous iron precursor catalysts used in
Fenton processes [17–19]. Cobalt ferrite has also been used as a solid catalyst for ozonation
reactions [16,20]. Because it is a low-bandgap semiconductor (approximately 1.08 eV) and
is highly stable as a photocatalyst [21,22], CoFe2O4 can also be a more advantageous alter-
native to TiO2 and other photoactive materials, such as the perovskite structure (ABO3), in
photocatalytic processes [23–26].

The various technological applications of CoFe2O4 have led to an extensive search for
methods to source it. Some of these techniques include the sol–gel [27], coprecipitation [28],
gel combustion [29], and hydrothermal [15] methods. Combustion synthesis has advantages
over other techniques, such as the ability to synthesize nanometric powders with the desired
crystalline structure in a single step. This eliminates the need for post-combustion heat
treatment, making the process environmentally attractive owing to its low energy and
time consumption [30]. This method is often used to obtain complex oxides and involves
an exothermic and self-sustaining reaction between a fuel and an oxidant, allowing high
temperatures to be reached in short reaction times with a simple experimental setup [31].
Previously [29], this research group synthesized new nanometric CoFe2O4 with interesting
physicochemical properties for application in the environmental field as a catalyst in the
Fenton process.

For the first time, in this study, CoFe2O4 nanoparticles were synthesized using the
combustion method as catalysts in a Fenton-like reaction for the degradation of textile dyes
present in water. Our results indicate that a simple system containing CoFe2O4 at low
concentrations can result in high degradation rates of Remazol Red RR dye. In addition,
analysis of the degradation byproducts showed significant mineralization into simple
organic acids, demonstrating the remarkable effectiveness of this catalytic system for
treating water contaminated with persistent pollutants.

2. Materials and Methods
2.1. Synthesis and Characterization of the Cobalt Ferrite (CoFe2O4) Spinel Catalyst

CoFe2O4 was synthesized via gel combustion using tris (hydroxymethyl) aminomethane
(TRIS, C4H11NO3, Neon, 99%) as an alternative fuel. Iron nitrate nonahydrate (Fe(NO3)3.9H2O,
Neon, 98%) and cobalt nitrate hexahydrate (Co(NO3)2-6H2O, Sinth, 98%) were used as oxidizers.

The synthesis of 2 g of spinel ferrite with a composition of CoFe2O4 and Ψ = 0.8 was
performed using 6.890 g of Co(NO3)2.6H2O and 2.5098 g of Fe(NO3)3.9H2O dissolved in
50 mL of distilled water. Subsequently, 2.4899 g of fuel (TRIS) was added under magnetic
stirring (HSC-F20500101, Velp, Usmate Velate, Province of Monza and Brianza, Italy) at
200 rpm for 20 min. The solution was slowly evaporated at 70 ◦C until a brown gel was
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formed. Finally, the gel was heated with a flame for 30 s until the combustion reaction
occurred. A detailed description of the synthesis parameters can be found elsewhere [29].

The crystalline phases were determined by X-ray diffraction (XRD) on Philips equip-
ment (Amsterdam, The Netherlands) using Cu-K α radiation (λ = 1.54184 Å) at 40 kV
and 40 mA with a 2θ range of 10–70◦. The samples were analyzed at 0.02◦/2s. The XRD
patterns were compared with the Inorganic Crystal Structure Database (ICSD) using the
X’Pert HighScorePlus® software to identify the crystalline phases. The crystallite sizes
were determined after refining the structures using the Rietveld method [32]. The network
parameters, occupancy, third-degree polynomial, peak scale, and shape factors were refined.
The quality of fit (GoF) was used to describe the refinement quality. The lower limit of the
average crystallite size was calculated using the Scherrer equation [32].

Raman spectra of the prepared powders were obtained under 532 nm laser excitation
(Renishaw no Via Spectrometer System). The microstructures of the prepared powders
were analyzed by field-emission scanning electron microscopy (FE-SEM; model S-4100,
Hitachi Ltd., Tokyo, Japan) at 20 kV and transmission electron microscopy (TEM) at an
accelerating voltage of 100 kV (JEM-1011 TEM, JEOL USA, Inc., Peabody, MA). The samples
were prepared on a metal stub using an adhesive and coated with gold and palladium.
The zeta potentials of the samples were measured using a NanoZ instrument (Litesizer
5000, Anton Paar GmbH, Graz, Austrian). The measurements were performed by diluting
0.1 g of each mixture in 1000 mL of distilled water using KCl (10−2 M), HCl (10−1 M), and
KOH (10−1 M) as inert electrolytes. The zeta potential (ξ) was calculated automatically
from the electrophoretic mobility of the samples.

The light absorption curves of the synthesized ferrites were obtained using diffuse
reflectance spectroscopy (DRS, Cary 5000, Agilent equipment, Santa Clara, California,
USA) with an integrating sphere (DRA 1800). The gap energy was determined using the
Kubelka–Munk function [33]. The magnetic properties of the powders were measured at
room temperature (298 K) using a vibrating-sample magnetometer (Model EZ9, Microsense,
Lowell, Massachusetts, USA). The Mossbauer spectra of the powder samples were obtained
using a Wissel instrument (Wissenschaftliche Elektronik GmbH, Würmstraße, Starnberg,
Germany) operating in the constant acceleration mode with a Co57 (Rh matrix) source.
The spectra collected in the transmission geometry and at room temperature were analyzed
using the least-squares method for the discrete Lorentzian line at each hyperfine site (jbat).
The deviation of the isomer was related to metallic iron.

2.2. Remazol RR Dye Degradation

The RR dye (chemical formula: C19H16N2Na2O11S3) used in this study as a contaminant
was supplied by a partner textile industry. It is a monoazo-type dye with vinylsulfonyl (VS)
and monohalogentriazine (MHT) reactive groups. The azo group acts as a chromophore
(Figure 1) [34,35]. The solution dye content was measured in all the catalytic tests using
UV-Vis spectrophotometry (Shimadzu UV-1800, Kyoto, Japan) at the maximum absorption
wavelength (λmax = 525 nm). An analytical calibration curve, Abs = 0.0228 Cdye + 0.0035, with
R2 = 0.9992 was constructed using dye concentrations ranging from 0.5 to 40 mg/L. The curve
showed a dye detection limit of 0.585 mg/L and a quantification limit of 1.949 mg/L.

To evaluate the influence of the cobalt nanoferrite (CoFe2O4) dose on the degradation
of RR dye using a Fenton-like process, 50 mL of 40 mg/L RR dye solution and 100 mM
H2O2 were placed in contact with catalyst mass/volume ratios ranging from 0.2 to 4.0 g/L
in 100 mL Erlenmeyer flasks. The reaction flasks were covered to prevent the influence
of light on the results. The assay was performed in duplicate. The system was kept at
room temperature (24 ± 2 ◦C) under constant orbital stirring (100 rpm) (Fisatom 713D, São
Paulo, Brazil) for 24 h. Then, the samples were filtered through 0.45 µm cellulose acetate
membrane filters, and the pH was measured using a pH meter (PH0-14 Kasvi, São José dos
Pinhais, Paraná, Brazil). The residual dye concentration after the reaction was measured
using UV-Vis spectroscopy (Shimadzu UV-1800, Kyoto, Japan).
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Once the optimum CoFe2O4 dosage was determined, the optimum concentration of
H2O2 for the effective degradation of the RR dye by a Fenton-like process was evaluated;
50 mL of a 40 mg/L RR dye solution with H2O2 concentrations ranging from 20 to 200 mM
was placed in contact with the catalyst at a previously defined optimum mass/volume
ratio. The stirring and temperature conditions were the same as those used in previous tests.
The samples were then filtered, their pH was evaluated, and the residual dye concentration
was measured using UV-Vis spectroscopy.

After defining the optimal conditions for the CoFe2O4 and H2O2 dosages, kinetic
analysis of the RR dye degradation by a Fenton-like process was carried out for a solution
with a dye concentration of 40 mg/L. The test was performed in a 2 L beaker; 1 L of the RR
dye and H2O2 solution and the CoFe2O4 catalyst in the optimal proportions, as previously
defined, were maintained under constant mechanical agitation (ARE, Velp Scientifica,
Betim, Minas Gerais, Brazil) at 120 rpm and at room temperature (19 ± 1 ◦C). Every 15 min,
an aliquot of the solution was collected, and the dye concentration was evaluated using
UV-Vis spectroscopy. Pseudo-first- and pseudo-second-order kinetic models were used to
fit the experimental data and obtain the intrinsic constants of the kinetic degradation rates.
Further information regarding these models can be found elsewhere [37,38].

2.3. Catalyst Reusability

Catalyst reuse is a fundamental aspect of heterogeneous Fenton systems, especially for
large-scale practical applications. Reuse tests are critical for evaluating the effectiveness of
a catalyst in successive cycles of use to demonstrate that the material has a longer useful life
and to avoid frequent disposal, increasing its economic viability. In the CoFe2O4 reuse tests,
50 mL of the problem solution containing 40 mg RR/L and 200 mM H2O2 was added to a
250 mL Erlenmeyer flask containing a 1.0 g/L catalyst. The solution was kept under orbital
stirring at room temperature (20 ± 1 ◦C) for 24 h, which was followed by decanting of the
solid phase for 30 min. The liquid phase was then removed from the flask and analyzed
using UV-Vis spectroscopy to determine the concentration of the dye. To complete the
reuse cycle, the flask containing the solid phase was placed in an oven at 60 ◦C overnight
to remove residual moisture, and the mass of CoFe2O4 present in the flask was determined
using an analytical balance. A new cycle was initiated by adding the same amount of
40 mg RR/L solution and 200 mM H2O2 to the flask containing the catalyst and keeping it
under orbital agitation for another 24 h. Three catalyst cycles were performed to degrade
the RR dye.
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2.4. RR Dye Degradation Pathway

Time-dependent identification of the Remazol dye degradation pathway was per-
formed using an LCMS-8045 triple quadrupole mass spectrometer (Shimadzu, Kyoto,
Japan). Mass spectra were obtained under the following conditions: electrospray ionization
mode, negative ([M-H]-); desolvation line temperature, 250 ◦C; heating block tempera-
ture, 400 ◦C; heating gas, 10 L/min; drying gas, 10 L/min; and nebulizing gas, 3 L/min.
Data were collected in the SCAN mode within an m/z range of 50–900. The analysis was
conducted by directly infusing aqueous samples into the mass spectrometer system using
a syringe pump at a 3 µL/min flow rate. The generated data were processed using the
LabSolutions software 5.6 (Shimadzu, Kyoto, Japan).

3. Results and Discussion
3.1. Characterization of CoFe2O4 Nanoparticles

Table 1 shows the influence of different fuels on the synthesis of the CoFe2O4 nanopar-
ticles using combustion synthesis. The synthesis of cobalt ferrite is a crucial process in
various technological applications, and the choice of fuel and synthesis temperature can
have a significant impact on the efficiency. In this analysis, the advantage of using Tris (with
an oxidant/fuel ratio of Ψ = 0.8) as a fuel in cobalt ferrite synthesis at 140 ◦C to other fuels
reported in the literature was compared in terms of energy savings. Synthesis at 800 ◦C
with citric acid has high energy consumption and requires high-temperature equipment.
In contrast, synthesis at 500 ◦C with tartaric, citric, and oxalic organic acids may be more
energy-efficient compared to that at 800 ◦C but can still be relatively energy-intensive
because of the required temperature. Moreover, synthesis at 700 ◦C using glycine or citric
acid can also be energy-intensive because of the high temperature required.

Table 1. Different fuels used in combustion synthesis of CoFe2O4.

Fuel Temperature (◦C) Reference

Citric acid 800 [39]
Tartaric acid, citric acid, and oxalic acid 500 [40]

Glycine or citric acid 700 [41]
Urea 700 [42]

6-aminohexanoic acid 230 [43]
Caffeine and citrulline 200–250 [44]

Tris with Ψ = 0.8 140 [29]

Although glycine and citric acid are common fuels used in synthesis, the temperature
remains a challenge in terms of energy consumption. Synthesis at 700 ◦C with urea
also requires a significant amount of energy. In contrast, synthesis at 230 ◦C with 6-
aminohexanoic acid indicates a lower energy consumption. Conversely, synthesis in the
relatively low 200–250 ◦C range with caffeine is more energy-efficient compared to those
using higher temperatures. Finally, synthesis at 140 ◦C with Tris and an oxidant/fuel ratio of
Ψ = 0.8 shows a clear advantage in terms of energy savings. A lower temperature reduces
the energy consumption, and an optimal fuel–oxidant ratio contributes to the process
efficiency. This choice may be more sustainable and economically viable for industrial
applications that seek to minimize energy consumption.

To confirm the formation of the cobalt ferrite phase, Figure 2 shows the X-ray diffrac-
togram (Figure 2a) and Raman spectra (Figure 2b). In Figure 2a, only the reflections related
to CoFe2O4 (ICSD 1533163, special group Fd3m) are shown. The network parameter
calculated using the Rietveld refinement was 8.3850 Å (Table 2).
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Figure 2. XRD (a) and Raman (b) patterns of the CoFe2O4 sample synthesized by the combus-
tion method.

Table 2. Lattice parameter, crystallite size, and surface area of the synthesized CoFe2O4.

Structural and Morphological Properties

Lattice parameter (Å) 8.3850
Crystallite size (nm) 35
Surface area (m2/g) 59

Magnetic properties

Remnant magnetization (Mr) (emu/g) 30.4
Coercivity (Hc) (Oe) 1243

Quadrature (S–Mr/Ms) 0.46
Saturation magnetization (Ms) (emu/g) 65.7

These results demonstrate that the ferrite synthesis was successful and similar to
the results obtained in a previous study [29]. The crystallite sizes were determined from
the pronounced broadening of the diffractogram reflections, which revealed crystallites
in the nanometric range (Table 1). The crystallite size was 35 nm. Figure 2b confirms
that the sample synthesized using the combustion method had all the vibrational modes
characteristic of CoFe2O4 and no secondary-phase modes.

The Raman spectra revealed the five active Raman modes, such as T2g (3), Eg (1) and
A1g (1), at 151, 311, 470, 547, and 685 cm−1, respectively [45,46]. In the reverse spinel,
the tetrahedral sites of the ferrite were occupied by half of the Fe3+ cations, whereas the
other Fe3+ and Co2+ cations were distributed in the octahedral sites. The bands obtained
at 685 cm−1 were attributed to A1g symmetry, which has symmetrical stretching with the
oxygen atom bound to metal ions (MO) located in tetrahedral sites [47]. The two modes
obtained in the band at 470 and 547 cm−1 were related to antisymmetric stretching and
bending of the metal–oxygen bond. The Eg mode located at 310 cm−1 corresponded to sym-
metrical bending of the metal–oxygen bond. The band located at 150 cm−1 corresponded
to the translational movement of metal ions in the tetrahedral site. The vibrational modes
observed at low frequencies (~150 cm−1 to 550 cm−1) were attributed to the symmetry
of oxygen contact with metal ions located in octahedral sites, and this can be called BO6.
These modes represent the symmetric and antisymmetric bending of the oxygen atom with
metal ions (MO) in the octahedral sites [45].

Figure 3 shows the SEM (Figure 3a) and TEM (Figure 3b) images of the cobalt ferrite
(CoFe2O4) synthesized by the combustion method.
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Figure 3. SEM (a) and TEM (b) images of the CoFe2O4 powders synthesized by the combus-
tion method.

A sample prepared using Φ = 0.8 was analyzed by SEM. Figure 3a shows the mi-
crostructure composed of large agglomerates, which was similar to previous studies [29,44].
Because of the synthesis method used, the CoFe2O4 particles were highly reactive, and it is
considered that these agglomerates were composed of nanoparticles. Thus, TEM could be
used to visualize their morphology at the nanoscale level. The images obtained are shown
in Figure 3b. The images revealed crystallite sizes of approximately 20 and 40 nm for the
cobalt ferrite nanoparticles. The spherical shape and high degree of aggregation obtained
was as expected for a magnetic material.

Table 1 shows the specific surface area of this sample, which was 59 m2/g. The small
crystallite size (35 nm) and the large specific surface area obtained by BET are extremely
interesting for applications involving photo-Fenton processes. One of the advantages of
using ferrite nanoparticles in water treatment processes is their magnetic properties, which
facilitate the separation of the fluid phase from the particulate phase. Table 1 also shows the
magnetic properties (saturation magnetization, Ms, remnant magnetization, Mr, coercivity,
Hc, and quadrature (S)) based on Figure 2a, which shows the magnetic behavior observed
using the vibrating sample magnetometer (VSM).

Figure 4 shows the hysteresis loop (a) and the Mössbauer spectrum (b) measured at
room temperature for the CoFe2O4 synthesized using the combustion method. The satura-
tion magnetization (Ms) and remanence (Mr) were 65.7 emu/g and 30.4 emu/g, respectively,
and the coercivity (Hc) was 1243 Oe. These results were consistent with those reported in
the literature, where Mr and Ms were 36 emu/g and 60.5 emu/g, respectively, and Hc was
1305 Oe [48]. The magnetic properties of spinel nanoparticles are highly influenced by the
distribution of cations in tetrahedral (site A) and octahedral (site B) locations. Due to the
AB superexchange interaction (the interaction between the Fe3+ cations of site A and the
Fe3+ of site B from a nonmagnetic oxygen anion), the AA and BB exchange interactions
dominate. Thus, the cation distribution plays a significant role in determining the magnetic
properties of this type of material. Finally, the wide characteristic hysteresis loops of the
CoFe2O4 indicate a hard magnetic character [49].

Mössbauer spectroscopy provides profound insights into the precise atomic environ-
ment encompassing the iron cations within the framework of a spinel lattice. The Mössbauer
spectra depicted in Figure 4b illustrate the distinctive sextet patterns that characterized the
CoFe2O4 sample; within the Mössbauer spectrum, a hexaline hyperfine pattern emerged,
unequivocally signifying the existence of two sextets attributed to the arrangement of
Fe3+ ions at the tetrahedral (A) and octahedral (B) positions. Significantly, isomer shift
values within the A-sites were consistently more modest than those within the B-sites, a
contrast attributed to the relatively larger Fe3+-O2

− bond distances present in the B-sites,
resulting in a subdued covalency effect. This diminished isomer shift value correlated
with an augmented concentration of s-electrons within the Fe atoms at the A-sites, which
originated from ligand-to-metal charge transfer (σL-M) interactions. This phenomenon is
similar to the observations made in analogous contexts [17,50,51].
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Figure 4. (a) M-H curves of CoFe2O4 powder at room temperature and (b) Mössbauer spectrum of
the sample synthesized by the combustion method.

To confirm the potential application of the synthesized CoFe2O4 ferrite in the Fenton
process, its optical properties were analyzed using the diffuse reflectance spectra obtained
by UV-Vis spectrophotometry. The bandgap energies (Eg) of the samples (Figure 5) were
calculated using the traditional semiconductor method [33], corresponding to the transition
of electrons from the valence band to the conduction band. The calculated optical transitions
were considered indirect, considering the coupling mechanism with the phonons of the
crystal structure at room temperature and disregarding other effects owing to the nature
of the transition. Thus, the results obtained using the Kubelka–Munk method indicated a
bandgap value of 1.16 eV.
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Figure 5. Bandgap of the CoFe2O4 powders synthesized by the combustion method.

The results obtained in this study were remarkably close to those previously reported
in the literature. For example, Badizi et al. [52] obtained energy values in the range of 1.10 eV.
The optical gap in the pure cobalt ferrite nanoparticles was caused by the transformation of
the metallic charge. In fact, a charge-transfer transition occurred between the Fe3+ and Fe2+

in the crystal lattice. The presence of Fe3+ and Co2+ could create a conduction band level,
and the electron could be promoted from the valence band to this level. That is, variations
in the degree of ferrite inversion could completely change the optical gap. This result
also shows that the gap obtained was relatively small when compared to UV-Vis-activated
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catalysts such as TiO2 (3.2 eV) or magnetite (<3 eV), indicating excellent potential for
applications where low bandgaps are required, such as in the degradation of organic
compounds by photo-Fenton or photocatalytic processes [53].

The dispersion of nanoparticles in liquid media is strongly affected by the pH at which
the nanoparticles are found, as the pH directly influences the surface charge of the particles.
The zeta potential is related to the surface charge present on the nanoparticles; a large/small
value of the zeta potential indicates a greater/minor electrostatic repulsion between the
nanoparticles. For magnetic nanoparticles, this electrostatic repulsion opposes the magnetic
attraction between the nanoparticles. Figure 6 shows the zeta potential curves as a function
of the solution pH for the CoFe2O4 powders obtained by combustion synthesis. Initially,
the point of zero charge (PZC) occurred at pH 4.8. At this pH, there was little electrostatic
repulsion to prevent the particles from coming together, i.e., at this point, the magnetic
attraction exceeded the electrostatic repulsion, which led to a greater agglomeration of the
nanoparticles. Moreover, the nanoparticles tended towards colloidal stability at pHs above
10, where the zeta potential was approximately −20 mV, or at pHs below 1, where the zeta
potential was approximately 20 mV.
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3.2. Remazol RR Dye Degradation

The influence of the CoFe2O4 dosage and H2O2 concentration on the degradation
capacity of the RR dye by the Fenton process is shown in Figure 7.

The precise determination of the catalyst dosage is necessary to evaluate the economics
and performance of the material application at the pilot scale. The concentration range
from 0 to 4 g/L was selected based on previous studies to determine the ideal catalyst
concentration for the present study. The results shown in Figure 7a indicate a significant
increase in the efficiency of the catalytic degradation of the RR dye as the catalyst dose was
increased up to a certain threshold. The presence of the catalyst was fundamental in the dye
degradation process, because the degradation efficiency without the presence of CoFe2O4
was only 9.9%, whereas that with 0.2 g/L of CoFe2O4 reached 65.7%. By increasing the
amount of CoFe2O4 from 0.2 g/L to 1.0 g/L, an increase in the dye degradation efficiency
from 65.7% to 80.6% was observed. This increase can be attributed to an increase in the
number of active sites on the surface of the solid catalyst, which, as expected, accelerated
the decomposition of the NPs into oxidizing radicals. In addition, an increase in the catalyst
dosage resulted in a greater availability of iron, which can also potentiate the generation of
hydroxyl radicals in the Fenton-like reaction [15,54,55].
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However, when the amount of catalyst was increased to 2.0 g/L, the degradation rate
remained constant at 80.9%. When the amount was doubled, the maximum degradation
rate reached a value of 85.5%, indicating that catalyst doses above 1.0 g/L were not
advantageous in terms of process efficiency. Additional amounts of CoFe2O4 above the
optimal concentration can lead to the agglomeration of particles in the solution, which
reduces the surface area available for radical generation and increases the length of the
diffusion path [37]. In addition, increasing the dosage of NPs increased the concentration
of available iron in the reaction medium, which may result in undesirable ROS elimination
reactions owing to excess iron ions [15,18,55]. Therefore, the optimal CoFe2O4 dosage of
1 g/L was used for further catalytic experiments.

These tests also highlight the remarkable adsorption potential of CoFe2O4. Without
the addition of H2O2 (Figure 7b), the removal reached 41.1% with an adsorption capacity
of q = 30.2 mg/g. In addition, the presence of H2O2 enhanced the dye removal, suggesting
a synergistic effect between Fenton degradation and dye adsorption. Regarding the H2O2
concentration, the RR dye degradation efficiency increased with increasing the H2O2
concentration, reaching a peak of 96.5% at a concentration of 200 mM. H2O2 acts in the
system as a reactive oxygen species (•OH and •OOH), as shown in Equations (1)–(3), which
describe the dye degradation [56]:

Fe2+ + H2O2 → Fe3+ + •OH+OH− (1)

Fe3+ + H2O2 → Fe2+ + •OOH+H+ (2)

Fe2+ + H2O2 + •OOH → Fe3+ + •OH+OH− (3)

However, a higher-than-ideal dosage of H2O2 can act as a scavenger of the produced
hydroxyl radicals (Equations (4)–(6)), resulting in a terminal effect on the dye degradation [57,58].

H2O2 → •OH+OH− (4)
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•OH+OH− → H2O+
1
2

O2 (5)

OH− + H+ → H2O (6)

Because 200 mM of H2O2 reached values very close to the maximum degradation ca-
pacity, higher values were not tested. Moreover, 100 mM of H2O2 also showed a significant
result, and the difference between 200 mM and 100 mM was less than 10%.

The Fe/H2O2 ratio is very important for the Fenton reaction [10,59]. In the case of
homogeneous Fenton reactions, the typical ranges given in the literature indicate that one
part of Fe is required for five to twenty-five parts of H2O2 (by weight); however, the Fe2+

or Fe3+ form is irrelevant if there is sufficient H2O2 and organic material. However, if
reduced H2O2 amounts are used (between 10 and 25 mg/L of H2O2 or 0.3 and 0.7 mM
H2O2), there may be a preference for the Fe2+ ion [60]. For heterogeneous reactions, there
is no consensus in the literature on the optimal level, because it depends on the nature of
the substance to be degraded and the catalyst.

Considering that 1 g/L of CoFe2O4 was used as the catalyst, the Fe:H2O2 weight ratios
applied in this study were 1:1.4, 1:3.6, 1:7, and 1:14, i.e., the best results were obtained with
respect to the optimal range of conditions presented in the literature, indicating that the
Fe available in the catalyst was easily accessible to H2O2 molecules for radical generation.
Based on these results, 200 mM was used for subsequent tests.

Figure 8 shows the kinetic degradation profile of the RR dye and the curves obtained
by UV-Vis spectroscopy at different reaction times.

CoFe2O4 showed adsorptive potential for the RR dye (Figure 8a). Without the addition
of H2O2, the dye concentration was reduced by 35.3%, corresponding to a material adsorp-
tion capacity of 16.02 mg/g. The high surface area and pore volume of ferrite available
for the adsorption of the RR dye in solution, as well as the surface charge of the material,
enhanced the adsorption. This property is desirable in heterogeneous Fenton process
catalysts because it helps to concentrate the reagents involved in the Fenton reaction on the
material surface, allowing for a more efficient and controlled reaction that is essential for
the effective degradation of persistent organic pollutants [61–63].

During the first 10 min after the H2O2 addition, no decrease in the dye concentration
in the solution was observed. Other studies have reported that the addition of H2O2 to
the system induces rapid dye desorption because of competitive adsorption at the binding
sites of the catalyst [64–66]. In this study, this increase in the dye concentration was not
observed, but the stability of its concentration was observed. It is possible that this behavior
was the result of the synchronized effect of dye desorption and catalytic decomposition,
in addition to the fact that H2O2 was not in excess in the system [60]. Between 40 and
120 min, a gradual decrease in the RR dye concentration was observed, followed by a
period of less-pronounced degradation up to 270 min, when 75.3% of the dye degradation
was reached. This behavior was also observed in the absorbance curves shown in Figure 8b;
the characteristic peak at 525 nm and a decrease in the absorbance intensity were identified.

The kinetic data were fitted using the kinetic model proposed by Behnajady et al. [67],
as shown in Equation (7) and its corresponding linear form in Equation (8):

C
C0

= 1− t
m + bt

(7)

t
1− C

C0

= m + bt (8)

In this model, C is the RR dye concentration at time t (min), C0 is the initial RR dye
concentration, m is a dimensionless constant associated with the initial removal rate, and b
is a dimensionless constant associated with the maximum oxidation capacity.
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Figure 8. (a) Degradation kinetics of RR dye by Fenton-like reaction: [CoFe2O4] = 1.0 g/L,
[H2O2] = 200 mM, [RR dye] = 40 mg/L, pHinitial = 7.2, and T = 22 ± 1 ◦C; (b) UV–Vis spectroscopy of
RR dye degradation for different times; (c) absorbance curve as a function of wavenumber. NOTE:
the dotted line indicates the moment of addition of H2O2.

The results of the kinetic fit to the experimental data, shown in Table 3 and Figure 9,
indicate a linear relationship with an excellent model fit to the experimental data (R2 = 0.998).
From this curve, the constants m and b of the model could be calculated. The value of
1/m was 0.036, indicating a slower initial decay rate of the RR dye, whereas the maximum
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oxidation capacity obtained (1/b) was 0.806. The model also indicated that 1/b and 1/m
were inversely proportional to the Fe/H2O2 ratio.

Table 3. Parameters of RR dye degradation using the Behnajady kinetic model [67].

Parameters Values

m 28 ± 3
b 1.24 ± 0.02

S2R 190.93
R2 0.998
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Figure 9. Linear fit of RR dye degradation using the Behnajady kinetic model [67].

3.3. Catalyst Reusability

The stability and reusability of CoFe2O4 as a catalyst for the Fenton process were
evaluated over three cycles (Figure 10). In the first cycle, the RR dye concentration decreased
by 91.14%; in the second and third cycles, the concentration decreased by 87.58% and
62.73%, respectively. The decrease in catalyst activity may have occurred because of
possible poisoning of the active sites of the catalyst by the adsorption of organic species,
as well as small losses during the separation steps [68]. After the third cycle, the mass
loss of the catalyst was 5.5 ± 0.9%, indicating a minimal loss of material between cycles.
Importantly, owing to the properties of ferrimagnetic catalysts, it is difficult to release metal
ions into an aqueous solution, which confirms the sustainability of the catalyst. Other
studies showing similar degradation behaviors indicate that although a partial loss of
degradation efficiency was observed after the third cycle, this efficiency can be increased
by extending the reaction time [69,70].

Although the parameters need to be optimized to make the reuse cycles more effective
in degrading the RR dye after the third cycle, the results show that the cobalt ferrites used
in this study are stable heterogeneous Fenton catalysts capable of magnetic separation and
have the potential for long-term application in wastewater treatment.

Typically, nanoparticles have been shown to have toxic potential in aquatic organisms,
such as zebrafish and mini-crustaceans [71]. However, CoFe2O4 nanoparticles, which
are magnetic and recoverable, have a lower rate of release into the environment, thus
minimizing the environmental impact. The mass of the nanoparticles remained almost
constant (with a loss of approximately 5%) after several reuse cycles. Although the catalytic
efficiency decreased, the ferrimagnetism was not significantly affected, and the particles
continued to be separated by the magnet. The observed loss of efficiency was probably due
to the deactivation of the photocatalytic sites. Furthermore, recoverability is an important
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advantage of our material because of its magnetic nature, unlike other photocatalysts such
as TiO2, which have demonstrated toxicity [72] and are not recoverable in nanometric form.
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Figure 10. Degradation of RR dye by cycle: [CoFe2O4] = 1.0 g/L, [H2O2] = 200 mM, t = 270 min;
[RR dye] = 40 mg/L, pHinitial = 7.2, and T = 22 ± 1 ◦C.

3.4. RR Dye Degradation Pathway

Assessing the reaction intermediates of RR dyes is valuable for evaluating the effec-
tiveness of catalytic systems and offers insights into the degradation process. The analyses
were performed using mass spectrometry (ESI−), and the time-dependent degradation was
determined by identifying the peaks formed in the spectra of the solutions incubated for
1–240 min, along with their respective controls, as shown in Figure 11.

Each degradation product had different kinetics, with the compounds with the high-
est molar mass appearing first, followed by the compounds with the lowest molar mass
throughout the degradation kinetics. The maximum product-formation time was 45–60 min.
Twelve compounds derived from Remazol dye were identified, and a possible route for the
degradation process was proposed.

Initially, the cleavage of the azo bond was observed, leading to the formation of two aro-
matic compounds, 2-(benzenesulfonyl)ethyl sulfate (m/z 265) and 3-{2-[(hydroxysulfanyl)oxy]
ethanesulfonyl}aniline (m/z 248). Waghmode et al. [73] reported 2[(3-aminophenyl) sul-
fonyl] ethane sulfonic acid in the range of m/z of 265. The final compound underwent
deamination and dehydroxylation to form 2-(benzenesulfonyl)ethane- 1-OS-thioperoxol
(m/z 218) or desulfurization to generate 2-(3-aminobenzene-1-sulfonyl)ethane-1-ol (m/z 201)
or (3-aminobenzene-1-sulfonyl)acetaldehyde (m/z 199). There was a time-dependent forma-
tion of naphthalene-1-sulfinate (m/z 191), 2-aminonaphthalene-1-ol (m/z 158), naphthalene-1-
ol (m/z 143), 1,2-dihydronaphthalene-1-ol (m/z 145), tetrahydronaphthalene-1-ol (m/z 147),
3-methylidenepent-4-en-2-ol (m/z 97), and butane-2-thiol (m/z 89). This final degradation
behavior, in which the structures of phenolic compounds prevailed, shows that the results
were in accordance with previous studies. Different authors have reported that in smaller
structures, asymmetric cleavage occurs, forming 2-amino naphthalene (m/z 141), N-phenyl-
1, 3, 5 triazine (m/z 170), and aniline (m/z 93) [73–77]. The presence of these simple organic
compounds shows that the Fenton process was not interrupted after the decomposition of
the organic dye but proceeded towards the complete mineralization of organic matter to
form CO2 and H2O.
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These results demonstrate the outstanding capability of CoFe2O4 for dye degradation
in a simple water-based solution. This groundbreaking study presents the first report on RR
dye degradation using CoFe2O4 as a catalyst in the Fenton process. Additionally, no studies
have used CoFe2O4 to degrade dyes in real wastewater treatment scenarios. As highlighted
above, basic degradation products can be produced via different degradation pathways.
This is also expected when using real wastewater containing other substances in the solution
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that reduce the degradation efficiency of the compound. Other studies have identified
this effect using several catalysts [9]. The presence of inorganic ions, suspended solids,
and organic matter can affect the selectivity of CoFe2O4 towards the dye. In addition, the
effectiveness of the material as a catalyst can be affected by various operating conditions
such as temperature, pH, and oxygen concentration. Thus, ferrite has been proposed as a
Fenton catalyst for effluent polishing (tertiary treatment). To meet legally mandated effluent
emission requirements for bodies of water or for potential reuse in industrial processes,
it should be used after conventional treatment. Therefore, it is recommended to use this
degradation process as an effluent-polishing process (tertiary treatment) after conventional
treatment to achieve the conditions required by law for the discharge of the effluent into a
body of water or even its reuse in industrial processes.

4. Conclusions

The results presented in this study demonstrate the promising application of CoFe2O4
nanoparticles synthesized using the combustion method as effective catalysts in the Fenton
process for the degradation of persistent textile dyes in contaminated water.

The synthesized CoFe2O4 nanoparticles exhibited well-defined crystalline structures,
high surface areas, and ferrimagnetic properties, which are essential for their catalytic
performance in the Fenton process. The CoFe2O4 showed a remarkable adsorption capacity
for the RR dye, and the addition of H2O2 resulted in significant dye degradation rates within
240 min. The Behnajady kinetic model was successfully used to describe the degradation
behavior of the dye over time. The material was reusable over multiple reaction cycles,
although its degradation efficiency decreased after the third cycle. However, the results
suggest that, with parameter optimization, it is possible to improve the efficiency in
subsequent cycles.

The degradation products of the RR dye were analyzed by chromatographic methods,
showing that the degradation of the organic compound by the Fenton process proceeded
towards complete mineralization. In summary, the efficacy of CoFe2O4, its potential
for reuse, and its favorable physicochemical properties pave the way for its practical
application in wastewater treatment, contributing to a reduction in the environmental
impacts caused by the textile industry and other sources of organic pollution. In addition,
the optical properties of the catalyst may open the door for its future applications in
advanced photocatalytic processes.
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