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Abstract: In this paper, the groundwater environment in the farmland area around a traditional
industrial park in Shifang City, southwest China, was taken as the research object. Geostatistical
methods with GIS technology were adopted to analyze the spatial distribution of conventional
pollutants and heavy metals in groundwater and to evaluate potential ecological risks. Chemical
oxygen demand (CODMn) and ammonia nitrogen (NH3-N) distributions showed poor continuity
and apparent spatial differentiation, which were primarily attributed to intensive anthropogenic
activities (e.g., industrial discharges). The total relative hardness of (TH), SO4

2−, and Cl− were
uniformly affected by external factors, with little spatial differentiation. Concentrations of total
phosphorus (TP), TH, SO4

2−, and Cl− followed an approximately normal distribution; the peak
values of detected concentrations appeared in the frequency distribution range, while CODMn and
NH3-N did not. Groundwater showed enrichment for various heavy metals, mainly Zn and Cu, with
apparent spatial differentiation in Cr and Cu, consistent with external interference. The correlation
coefficients of Cr–Cu and Cu–Pb were 0.693 and 0.629 (p < 0.01), respectively, indicating similar pollu-
tion sources. The single-factor pollution index for groundwater was Ni > Pb > Mn > Zn > Cu > Cr.
Cu had a moderate potential ecological risk. The six heavy metals’ average integrated potential
ecological risk index (RI) revealed that mild pollution accounted for 96.2% of the investigation area.
Overall, the traditional industrial park poses a mild ecological risk to the shallow groundwater in the
surrounding farmland.

Keywords: traditional industrial parks; groundwater; pollutants spatial distribution; risk assessment
of heavy metals; geostatistical method

1. Introduction

Groundwater is a vital water resource essential in supporting economic and social
development in China. Groundwater resources account for nearly 20% of the total water
supply in China, and 60% of the country’s population uses groundwater as a source
of drinking water, making it an essential strategic resource for supporting sustainable
development [1]. Groundwater pollution due to inappropriate development and utilization
can harm human health and activities and seriously impact the ecological environment
and industrial and agricultural production [2–4]. There are various types of enterprises in
traditional industrial parks; however, industrial correlation is not high. It is challenging
to recycle resources among enterprises, and the problem of “high input, low output, and
high pollution” is prominent. In traditional industrial parks, wastewater leakage can lead
to the deterioration of groundwater quality. The complexity, stealthiness, and latency
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of groundwater-bearing zones make it difficult to determine the extent of groundwater
contamination it spreads to the area surrounding the industrial park [5–7].

Extensive research has focused on the characterization, measurement, and remediation
techniques of heavy metal pollution in groundwater. Moreover, the evaluation model of
groundwater pollution was also developed to address the problem [8–10]. Sadeghi et al. [11]
studied a groundwater site around the Morgan Energy Company in Ardabil, Iran, and de-
termined the metal content using inductively coupled plasma mass spectrometry (ICP-MS).
Long et al. [12] evaluated the shallow groundwater of Dongting Lake Plain using ICP-MS
to detect arsenic and 12 other heavy metals (such as aluminum, nickel, manganese, cobalt,
barium, iron, zinc, and copper). Hepburn et al. [13] developed a groundwater heavy metal
source separation method based on the statistical classification of data and XRF sediment
analysis, which identifies the primary sources of heavy metals in groundwater and assists
in the local assessment and management of groundwater contamination. Kaur et al. [14]
studied heavy metals in groundwater from the Solan and Shimla districts of Himachal
Pradesh, India, using atomic absorption spectrophotometry and compared the results
with the guideline values recommended by the World Health Organization. These studies
indicate that high-precision heavy metal concentration measurement technology has been
widely adopted as the basis for heavy metal assessment.

Groundwater pollution risk evaluation combining GIS and specialized models is sig-
nificant and widely used in environmental protection, resource protection, and disaster
prediction [15,16]. Due to groundwater’s wide distribution, many scholars have adopted
geostatistical methods for related research [17,18]. Based on a variable correlation analysis
and R-cluster analysis, Cao et al. [19] applied multivariate and geostatistical analyses to
compare the spatial distribution of heavy metals, such as As, Cd, Cr, Cu, and Pb. They
determined the sources of contamination in the groundwater of Wuzhong City. Taban-
deh et al. [20] evaluated the spatial distribution of total dissolved solids in the shallow
aquifers in Lenjanat and Babol-Amol with different hydrogeological characteristics using
the geostatistical interpolation method, lognormal ordinary kriging method, inverse dis-
tance weighting method, ordinary kriging method, pan-kriging method, and the disjunctive
kriging method. Wang et al. [21] analyzed the spatial distribution of groundwater quality in
Longkou City, Shandong Province, using a semivariable function and kriging interpolation.
They concluded that agricultural and residential land use substantially affects the spatial
heterogeneity of local groundwater quality. Since traditional statistical methods neglect
samples’ spatial location and direction, it is difficult to distinguish between different spa-
tial patterns. Pashahkha et al. [22] used GS+ software and ArcGIS to statistically analyze
agricultural groundwater quality in the Miandoab Plain. Pollutant ion concentration and
pH were measured, and based on the analysis of indicators such as effective salinity, poten-
tial salinity, sodium adsorption rate, and conductivity, a salinity hazard zoning map was
obtained. Wu et al. [23] used a combination of correlation analysis, principal component
analysis (PCA), hierarchical cluster analysis (HCA), and multivariate linear regression
(MLR) to explore the sources and influencing factors of shallow groundwater pollution in
Yan’an City. They pointed out that mineral dissolution/precipitation and human input
are the primary sources of groundwater physicochemical indicators and trace elements.
It can be seen that the combination of GIS with geostatistical analysis and other pollution
assessment methods has been widely applied in various regions. However, how to adopt
different combination methods according to local conditions still requires targeted research
based on the unique characteristics of different regions.

Evaluation indices are often combined with the latest GIS technology to draw evalua-
tion zoning maps and obtain more intuitive results. Arslan et al. [24] studied the ground-
water of the northern Develi Closed Basin for the determination of lead, zinc, chromium,
copper, cadmium, arsenic, and boron by using the heavy metal pollution index (HPI), and
results showed that the groundwater interacted with highly altered volcanic rocks, leading
in a more severe level of pollution. Faisal et al. [25] applied permeable reactive barriers to
remediate contaminated groundwater and theoretically modeled the PRBs technology to
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characterize the migration of pollutants through the barriers in time and space. In addi-
tion, spatial interpolation in GIS technology has been successfully used in groundwater
pollution assessment and prediction analysis. Aryafar et al. [26] used sequential Gaussian
simulations to assess the qualitative characteristics of groundwater in the Birjand Plain,
fit the optimal theoretical model to experimental variograms, and plotted geostatistical
estimates for each groundwater variable. Ma et al. [27] utilized a GIS-based methodology
coupled with raster reclassification, spatial interpolation, spatial joint superposition, and
other procedures to successfully differentiate the shallow groundwater hydrochemical
facies of the shallow aquifer near Fuyang City, Anhui Province. Chaturvedi et al. [28]
obtained a good correlation between the HI (US EPA Hazard Index) and m-HPI using
universal multivariate non-linear regression modeling, which has been successfully used
to predict the HI for water samples. In general, the appropriate selection of difference
values and the visual display of distribution maps are crucial for presenting the results of
groundwater pollution assessment.

In the context of ecological environment protection as a prerequisite for economic
development, how to renovate the existing old industrial parks is an urgent problem which
needs to be solved. Assessing the groundwater environment of the existing traditional
industrial park and its surrounding areas within the scope of administrative divisions can
provide a decision-making basis for government departments’ next planning work. A
specific industrial park in Shifang City, located in southwestern China, has been established
for a long time without reasonable environmental planning. It belongs to an unplanned tra-
ditional industrial park. This article takes the groundwater environment in the surrounding
farmland of the park as the research object. Through on-site exploration and water quality
sampling analysis, geological statistical analysis is combined with potential ecological risk
assessment to visually present the results of groundwater pollution and heavy metal spatial
distribution in the area. On the basis of reviewing and analyzing existing relevant research,
this study combines statistical analysis to comprehensively evaluate potential ecological
risks and presents the results through GIS technology and intuitive evaluation maps. This
not only provides a decision-making basis for the renovation of traditional industrial parks
in this region, but it also provides reference methods for the planning and design of other
similar traditional industrial park renovations. Therefore, this study has strong technical
theoretical support and practical significance.

2. Materials and Methods
2.1. Study Area

The study area (Figure 1) is located in Shuangsheng Town, 6 km north of Shifang
City, and lies at 104◦09′ east longitude and 31◦10′ north latitude. The area’s elevation is
545.598 m, with a northwest-to-southeast trend, an average elevation of 507 m, and an
area of 28 km2. The study area is classified as a plain with green coverage in agricultural
or forest areas accounting for most of the area. As a typical agroecological environment,
the ecological environment is dominated by agricultural farming, mainly wheat, rice, and
legume crops. The Shuangsheng Town Industrial Park is located in the center of the research
area, with 31 chemical enterprises. Due to its early establishment and lack of scientific
planning and guidance, its development is relatively extensive. In addition, there have
been many environmental issues, such as unreasonable industrial structure, low resource
utilization rate, and a fragile regional ecological environment.
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2.2. Groundwater Sample Collection and Analysis

The sampling points in this study area were distributed in a band (Figure 1). The
industrial park is located in the north-central part of the study area, adjacent to the Shit-
ing River in the north, with farmland in the southern part of the industrial park. Three
groundwater samples were obtained from the northwestern part of the study area, which
is an agricultural area and does not contain production enterprise sites. The Economic
and Technological Development Zone between the northern farmland and industrial
parks, covering a large area, is composed of high-tech enterprises. There are no pro-
duction enterprise sites. Three groundwater samples were collected at the edge of the
development zone. The adjacent Shiting River includes many longstanding chemical enter-
prises. A total of 15 groundwater samples were taken along the periphery of the industrial
park. In addition, five groundwater samples were taken from the farmland area to in-
vestigate groundwater contamination in farmland around the industrial park and in the
downstream river.

The groundwater samples used in this study were taken from the lower micro-pressurized
aquifer, with well depths ranging from about 20 to 40 m. A total of 26 groundwater samples
were collected, and the distribution of sampling sites is shown in Figure 1. GPS deter-
mined the location of each sampling site. The shallow groundwater was mainly taken from
agricultural irrigation wells and industrial wells in the area, and the water samples were
filtered on a 0.45 µm mixed-fiber filter membrane within 24 h and stored in a refrigerator
at 4 ◦C until testing. Cl− and SO4

2− were determined using ion chromatography (HJ
84-2016) [29], and ammonia nitrogen (NH3-N) was determined using Nessler’s reagent
spectrophotometry (HJ 535-2009) [30]. In addition, the chemical oxygen demand (CODMn)
was determined using the dichromate method (GB/T 11914-1989) [31], while the total phos-
phorus (TP) and total hardness (TH) were determined by alkaline potassium persulfate
digestion ultraviolet spectrophotometry (GB/T 11894-1989) [32]. The traditional industrial
park contains chemical enterprises, and electroplating wastewater contains a large amount
of heavy metal ions such as Zn, Ni, Cr, Cu, Mn, Pb, etc. Therefore, these heavy metal ions
were determined by ICP-MS (Varian) with a test precision better than 0.5%.
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2.3. Methods of Risk Assessment

Single-factor index evaluation, also known as single index evaluation, compares the
representative value of the concentration of each pollution factor with the standards, item
by item. The index with the worst single evaluation result was used to define the category
of water quality. The evaluation results can intuitively reflect the water quality for the class
or categories of factors exceeding the standard. It can determine the main pollution factors
and areas [33–35]. The formula is as follows:

Pi =
Ci
C0i

(1)

where Pi is the water quality index of the single factor i. Ci is the measured pollutant
concentration in water (mg/L). Coi is the evaluation criterion for pollutant i. Pi ≤ 1 indicates
that this water quality factor meets the water quality standards; 1 < Pi ≤ 2 indicates that
the water is mildly polluted; 2 < Pi ≤ 3 indicates moderate water pollution; and Pi > 3
indicates severe water contamination. Although this index is easy to calculate, it evaluates
individual pollution factors independently, and the evaluation results may not reflect the
overall quality of the water environment, which may lead to large deviations. To fully
reflect the quality of a water body, it is also necessary to calculate an integrated evaluation
index.

The potential ecological risk index (RI) method, defined by Hakanson [36], is a method
for evaluating the properties and environmental behavior of heavy metal contaminants
from a sedimentological perspective and is calculated using the following formula:

RI =
n

∑
i=1

Ei
r (2)

Ei
r = Ti·Ci

f (3)

Ci
f =

Ci
s

Ci
n

(4)

where RI is the integrated potential ecological risk index for multiple heavy metals. Ei
r is

the potential ecological pollution index of individual heavy metals. Ti is the toxic response
factor for a single heavy metal (i), which is an indispensable parameter for RI value
calculation. This index was first proposed by Hakanson, and after years of development,
the number of toxic response factors available for calculation has gradually increased. The
values of toxic response factors in this study were calculated by Xu et al. [37], including
Zn = Mn = 1, Cu = Pb = Ni = 5, and Cr = 2. Ci

f is the pollution index of heavy metals,

where Ci
s and Ci

n are the detection concentration and the evaluation standard concentration
(mg/L) of the heavy metal (i), respectively. The potential risk classification criteria for
heavy metals in groundwater are listed in Table 1.

Table 1. Classification standard of potential ecological risk of heavy metals in groundwater (mg/L).

Potential Ecological Risks Low Moderate High Very High Extremely High

Ei
r <40 40–79 80–159 160–320 >320

RI <150 150–299 300–599 600–1200 >1200

2.4. Statistics and Analyses

Descriptive statistical analyses, such as the mean, coefficient of variation, and tests for
a normal distribution of heavy metals in groundwater, were performed using SPSS 25.0.
Groundwater heavy metal element contents were interpolated using ArcGIS 10.5 to obtain
the spatial distributions.
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3. Results and Discussion
3.1. Descriptive Statistics of Contaminants

Contaminant indicator contents in the 26 groundwater samples collected from the
study area are shown in Table 2. The average contents of six conventional pollutants,
CODMn, NH3-N, TP, TH, SO4

2−, and Cl−, in the groundwater samples were 5.225, 0.785,
0.065, 487.405, 92.969, and 43.523 mg/L, respectively. By comparisons against standards of
class 3 groundwater quality, the average contents of CODMn, NH3-N, and TH exceeded
the standard requirements for all 26 sampling sites. The coefficient of variation can reflect
the average degree of difference between sampling points [38,39]. As shown in Table 2,
the mean coefficient of variation for the six conventional pollutants, in descending order,
was NH3-N, CODMn, TP, Cl−, SO4

2−, and TH. The coefficients of variation for CODMn
and NH3-N were 0.413 and 0.459, respectively, indicating moderate variation with large
fluctuations, poor continuity, and large spatial variation. This variation is mainly due
to intensive anthropogenic activities, such as industrial discharges. The coefficients of
variation for TH, SO4

2−, and Cl− were 0.18, 0.219, and 0.278, respectively. These results
indicated that these three pollutants are consistently affected by external influences, with
little spatial differentiation and shared sources in the study area [40]. As determined by the
Kolmogorov–Smirnov (K-S) test, which compares the cumulative frequency distribution
of the sample data with a theoretical distribution, TP, TH, SO4

2−, and Cl− were normally
distributed (p = 0.200, 0.065, 0.200, and 0.200, respectively) [41]. The p-values for the
K-S tests for NH3-N and CODMn were both 0.019, indicating deviations from normality,
showing spikes and skewness.

The average contents of the six heavy metals Zn, Ni, Cr, Cu, Mn, and Pb in the
groundwater samples were 0.620, 0.047, 0.024, 0.511, 0.067, and 0.007 mg/L, respectively.
By comparisons with the groundwater quality class 3 standards, only the Ni content
in samples from 26 sampling points exceeded the standard with an exceedance rate of
46.2%. As shown in Table 2, the average degree of variation in the six heavy metals, in
descending order, was Ni, Cr, Cu, Zn, Pb, and Mn. The coefficients of variation of Ni,
Cr, and Cu were all greater than 0.4, and the coefficient of variation of Ni reached 1.124,
indicating substantial variation. The fluctuation in the Ni content was significant, and
continuity was low. This differed from the continuous distributions of heavy metals in
shallow groundwater under natural soil, indicating significant external interference. The
natural sources of heavy metals in groundwater include rock weathering, soil leaching,
and atmospheric precipitation [42]. The Mn content is highest in the upper crust, with
higher Cu, Mn, and Zn contents in gabbro and basalt, while Cr and Ni are usually higher
in peridotite and serpentinite [43]. The coefficients of variation for Cr and Cu were 0.461
and 0.445, respectively, which is consistent with moderate variation with large fluctuations,
poor continuity, and significant spatial variation. Intensive anthropogenic activities, such
as industrial discharges, primarily induced changes. The coefficients of variation of Zn,
Pb, and Mn in shallow groundwater were small at 0.265, 0.212, and 0.250, respectively.
These three elements were more consistently affected by external influences with relatively
little spatial differentiation, indicating that they may come from the same source in the
study area. Groundwater in the study area generally showed enrichment for various heavy
metals, mainly Zn and Cu. Pesticides, fertilizers, etc., may all be essential input sources
of heavy metals in farmland, among which organic fertilizers contribute significantly to
soil Zn and Cu, which is also a potential reason for the consistent distribution of Cu and
Zn content in the sample sites [44,45]. In addition, the electroplating wastewater from
industrial parks contains many heavy metal ions such as Cr, Zn, Cu, Ni, etc., which are
directly or indirectly connected to the groundwater environment with the discharge of
the three electroplating wastes [46]. The K-S test showed that Zn, Cr, Cu, and Mn were
normally distributed, while Ni and Pb did not conform to normality and showed spikes
and skewness.
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Table 2. Descriptive statistics of conventional contaminants and heavy metals.

CODMn NH3-N TP TH SO42− Cl− Zn Ni Cr Cu Mn Pb

Minimum (mg/L) 2.378 0.360 0.033 320.95 59.8 25.80 0.371 0.004 0.007 0.143 0.042 0.004
Maximum (mg/L) 8.890 1.550 0.120 617.68 137.0 67.60 0.959 0.182 0.048 0.988 0.091 0.01

Mean (mg/L) 5.225 0.785 0.065 487.405 92.969 43.523 0.62 0.047 0.024 0.511 0.067 0.007
Standard deviation 2.158 0.360 0.023 87.671 20.331 12.109 0.164 0.053 0.011 0.227 0.014 0.002

Coefficient of
variation 0.413 0.459 0.360 0.18 0.219 0.278 0.265 1.124 0.461 0.445 0.212 0.25

Skewness 0.372 0.799 0.551 −0.153 0.323 0.423 0.371 1.376 0.635 0.251 0.26 −0.366
Kurtosis −1.341 −0.496 −0.447 −1.238 −0.411 −0.836 −0.867 0.733 −0.22 −0.799 −0.919 −1.246
K-S test 0.019 0.019 0.200 0.065 0.200 0.200 0.2 0 0.2 0.2 0.2 0.045

Background values
(mg/L) 3.0 0.02 0.156 263.0 45.0 25.0 0.05 0.02 0.004 0.05 0.01 0.01

Groundwater
quality standards

[47] (mg/L)
3.0 0.50 0.200 450.0 250.0 250.0 1 0.02 0.05 1 0.1 0.01

3.2. Frequency Distribution of Contaminants

The frequency distributions of the contents of CODMn, NH3-N, TP, TH, SO4
2−, and

Cl− in the groundwater samples are shown in Figure 2. The frequency distributions of
TP, TH, SO4

2−, and Cl− showed approximately normal distributions, while CODMn and
NH3-N did not conform to a normal distribution. This result was consistent with the
K-S test results presented in Table 2. The frequency distribution of the TH concentration
did not follow a clear normal distribution, and its K-S test value was 0.065, indicating
a marginally normal distribution. The mass concentrations of TP, TH, SO4

2−, and Cl−

were mainly 0.04–0.09 mg/L, 400–600 mg/L, 70–110 mg/L, and 30–55 mg/L, respectively,
and accounted for 77.5%, 79.0%, 83.5%, and 82.5% of the total sampling sites, respectively.
The mass concentrations of CODMn were mainly concentrated within 2.5–3.5 mg/L and
6.5–8.5 mg/L, accounting for 85% of the sample sites. The mass concentrations of NH3-N
ranged from 0.45 to 1.0 mg/L, with a proportion of 61.5% among the total sampling sites.
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Figure 2. Frequencies of conventional contaminants.

The frequency distributions of the contents of heavy metals Zn, Ni, Cr, Cu, Mn, and
Pb in the groundwater samples are shown in Figure 3. Zn, Cr, Cu, and Mn followed normal
distributions, while Ni and Pb did not conform to a normal distribution, consistent with
the results of the K-S test presented in Table 2. The mass concentrations of Zn, Cr, Cu, and
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Mn were concentrated in the intervals of 0.4–0.9 mg/L, 0.01–0.04 mg/L, 0.2–0.8 mg/L,
and 0.05–0.09 mg/L, respectively, and the proportions in the total number of sampling
sites were 88.5%, 76.9%, 88.5%, and 88.5%, respectively. The mass concentration of Ni was
mainly concentrated in the range of 0.005–0.02 mg/L, with a proportion of 60%, and the
mass concentration of Pb was 0.004–0.009 mg/L, with a relatively uniform distribution.
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3.3. Correlation Analysis of Pollutants in Groundwater

A correlation analysis of the 12 pollutants is shown in Table 3. Among the conventional
pollutants, the correlations between NH3-N and TP, NH3-N and SO4

2−, and SO4
2− and

Cl− were significant, with correlation coefficients of 0.553, 0.627, and 0.557, respectively.
These results show that the distributions of these pollutants in groundwater are similar,
often due to the diffusion of similar pollutants. For example, NH3-N and TP pollution are
likely to be caused by the leakage of organics from chemical enterprises or the cumulative
migration of agricultural fertilizers, whereas SO4

2− and Cl− are likely to be induced by
the leakage or accumulation of sulfate and chloride [48,49]. Among the heavy metal
pollutants, the correlations were significant among Zn, Ni, Cu, and Pb; between Pb, Zn,
Ni, Cr, Cu, Mn, and Mn; and between Ni and Cu. The correlation coefficients for four
groups of elements, Zn-Cu, Cr-Cu, Zn-Pb, and Cu-Pb, reached 0.587, 0.640, 0.592, and 0.631
(p < 0.01), respectively. These results show that the sources of these heavy metals may be the
same, with accumulation in shallow groundwater through co-precipitation or adsorption,
resulting in relatively similar chemical characteristics [50]. The correlations among heavy
metals are related to the nature of the element, adsorption characteristics, and deposition
environment [51]. In addition, the correlations between Zn and Cr, Zn and Mn, Ni and
Cr, Ni and Cu, and Cr and Mn were not significant (correlation coefficients less than 0.4),
suggesting that there is less co-precipitation or adsorption of these metal elements by the
oxides or hydroxides of Cr, consistent with external sources of pollution. The correlation
coefficients between other heavy metals, including Zn–Ni, Ni–Mn, Ni–Pb, Cr–Pb, Cu–Mn,
and Mn–Pb, were not high but were significant at the 0.05 level, indicating that they have
partially similar origins.
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Table 3. Correlation analysis of pollutants in groundwater.

CODMn NH3-N TP TH SO42− Cl− Zn Ni Cr Cu Mn Pb

CODMn 1 0.168 0.254 0.242 −0.049 −0.033 −0.054 0.117 −0.128 0.077 0.436 * 0.184
NH3-N 1 0.553 ** 0.134 0.627 ** 0.276 0.193 0.507 ** 0.356 0.295 0.282 0.618 **

TP 1 0.043 0.170 0.031 0.053 0.347 0.108 0.097 0.191 0.355
TH 1 0.105 −0.168 0.126 0.158 −0.024 −0.075 0.218 0.276

SO4
2− 1 0.557 ** 0.350 0.430 * 0.577 ** 0.472 * 0.331 0.629 **

Cl− 1 0.488 * 0.464 * 0.661 ** 0.679 ** 0.356 0.546 **
Zn 1 0.473 * 0.378 0.587 ** 0.243 0.592 **
Ni 1 0.290 0.264 0.424 * 0.495 *
Cr 1 0.640 ** 0.240 0.489 *
Cu 1 0.476 * 0.631 **
Mn 1 0.443 *
Pb 1

* p < 0.05, two-tailed. ** p < 0.01, two-tailed.

3.4. Spatial Distribution Characteristics of Groundwater Contaminants
3.4.1. Spatial Distribution of Pollutant Concentrations

The concentration distributions of 6 conventional pollutants, including CODMn, NH3-
N, TP, TH, SO4

2−, and Cl−, in 26 groundwater samples are shown in Figure 4. The
concentration of CODMn was high in the western areas of the industrial park, while the
concentration of NH3-N was high in the southern areas of the industrial park and the
farmland, which might be explained by applying fertilizers [52,53]. The concentration
distributions of TP, TH, and SO4

2− were relatively similar, with higher concentrations near
the industrial park and in farmland areas along the lower reaches of the river and lower
concentrations in the river’s upper reaches.
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The concentration distributions of Zn, Ni, Cr, Cu, Mn, and Pb in the 26 groundwater
samples are shown in Figure 5. Higher concentrations of these heavy metals were detected
at sampling sites close to the industrial park, with gradual decreases along the Shiting
River toward the downstream area. Heavy metal concentrations were deficient in upstream
farmland areas farther from the industrial park. The concentration distribution map shows
that pollutant discharges from the industrial park significantly impacted the distribution
of heavy metals in the vicinity, which needs to be further analyzed through groundwater
quality assessment.
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3.4.2. Kriging Interpolation Distribution of Contaminants

The pan-kriging interpolation method provides a better estimation and fitting of
strong variability and anomalous conditions of groundwater contaminants by using fitted
semi-variance functions (exponential and linear models) as computational models [54,55].
In this study, the spatial distribution of groundwater contaminants in the study area was
mapped by optimal interpolation using the pan-kriging method (Figure 6). For conventional
pollutants, the interpolation distributions differed substantially. NH3-N, SO4

2−, and Cl−

were concentrated in the industrial park area and the southern farmland area, consistent
with the distribution of sampling sites. However, CODMn, TP, and TH distributions were
more variable. High concentrations of TP and TH were detected in the farmland area far
from the industrial park, inconsistent with the concentration distribution of the actual
sampling sites, indicating poor accuracy. The spatial distribution of areas with higher
concentrations of the six heavy metals was similar. All were detected around the industrial
park, and the distributions of Zn and Cr were relatively similar, with high concentrations
mainly concentrated around the industrial park and lower concentrations in other areas.
Concentrations of Ni were more evenly distributed throughout the study area. Areas with
high concentrations of Cu, Mn, and Pb were mainly located in the southern farmland of the
industrial park. Due to groundwater recharge from the Shiting River in the north, heavy
metals in the industrial park area migrate to the southern part after infiltration, resulting in
low concentrations in other areas [56,57].

3.5. Evaluation of Comprehensive Potential Ecological Risks of Heavy Metals

Based on the measured concentrations of heavy metals in groundwater, the ground-
water quality evaluation standards, and the single-factor index formula (Equation (1)), a
statistical table of single-factor pollution indices of groundwater pollutants in 26 sampling
sites was generated (Table 4). Among conventional pollutants, CODMn, NH3-N, and TH
pollutions were low, and TP, SO4

2−, and Cl− concentrations were at a non-pollution level.
Among the six heavy metals, only Ni had a single-factor index higher than 1, with a mean
value of 2.334, indicating moderate pollution. The other five heavy metals had a single-
factor index of less than 1, indicating a lack of pollution. According to the single-factor
pollution index, the degree of pollution for each heavy metal in the groundwater was
Ni > Pb > Mn > Zn > Cu > Cr. The single-factor index method is simple; however, since
it evaluates individual pollution factors independently, the evaluation results may not
comprehensively reflect the overall quality of the water environment, which may lead to a
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significant bias. To fully reflect the quality of a water body, it is also necessary to calculate
an integrated evaluation index.
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The potential ecological risk indices of the six individual heavy metals and the inte-
grated potential ecological risk indices (RI) of multiple heavy metals in the groundwater at
the 26 sample points were calculated using Equations (2) to (4), and the results are shown
in a statistical framework in Table 5. By comparing the average values of the potential
ecological risk coefficients of the six heavy metals, only Cu had a moderate risk (40–80)
with an index of 51.058. The other five heavy metals had a low potential ecological risk in
the order of Cu > Zn > Cr > Ni > Mn > Pb. Statistical analyses of the single-factor index of
Cu for potential ecological pollution showed that moderate ecological risk accounted for
49.8% of the total sampling sites, and a high risk accounted for 15.4% of the total sampling
sites. In addition, Ni posed a moderate ecological risk to 3.8% of the total sites. This is
mainly due to the larger ecological risk of Cu and Ni [58,59].
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Table 4. Single-factor pollution index of heavy metals in groundwater.

Evaluation Index Minimum Maximum Mean Standard
Deviation

Coefficient of
Variation

Average Level of
Contamination

CODMn 0.793 2.963 1.742 0.719 0.413 Low
NH3-N 0.720 3.100 1.570 0.720 0.459 Low

TP 0.165 0.600 0.323 0.116 0.360 Un-pollution
TH 0.710 1.370 1.083 0.195 0.180 Low

SO4
2− 0.239 0.548 0.372 0.081 0.219 Un-pollution

Cl− 0.103 0.270 0.174 0.048 0.278 Un-pollution

Zn 0.371 0.959 0.620 0.164 0.265 Un-pollution
Ni 0.200 9.100 2.344 2.634 1.124 Moderate
Cr 0.140 0.960 0.475 0.219 0.461 Un-pollution
Cu 0.143 0.988 0.511 0.227 0.445 Un-pollution
Mn 0.417 0.913 0.666 0.141 0.212 Un-pollution
Pb 0.389 0.960 0.709 0.177 0.249 Un-pollution

Table 5. Descriptive statistics of potential risk coefficients and integrated potential ecological risk.

Single-Factor Potential Ecological Pollution Index of Heavy Metals
RI

Zn Ni Cr Cu Mn Pb

Minimum 7.42 1.00 3.50 14.30 4.17 1.95 39.44
Maximum 19.17 45.50 24.00 98.80 9.13 4.80 151.20

Mean 12.40 11.72 11.89 51.06 6.66 3.55 97.27
Standard deviation 3.28 13.17 5.48 22.71 1.41 0.89 36.50

Coefficient of variation 0.27 1.12 0.46 0.45 0.21 0.25 0.38
Potential

ecological risk grades Low Low Low Moderate Low Low Low

As shown in Table 5, the integrated potential ecological RI of the six heavy metals is
39.4–151.20, with a mean value of 97.27. Areas with a moderate integrated RI accounted
for only 3.8% of the total surveyed area, while those with a low integrated RI accounted
for 96.2%. A risk coefficient of less than 100 covered the largest area, 50.0% of the total
surveyed area. The integrated potential ecological risk evaluation map of the six heavy
metals (Figure 7) shows a high correlation with the spatial distribution of the heavy metal
contents in shallow groundwater, especially the distributions of Cu and Pb. The above
analysis indicates that the traditional industrial park poses a slight ecological risk to shallow
groundwater in agricultural fields.
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3.6. Discussion on Applicability

This study takes traditional industrial parks as the core area and administrative
divisions as the boundary to conduct a regional groundwater environment assessment. It
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can provide support for the government on how to rebuild traditional industrial parks.
In addition, specific pollution factors are selected for potential ecological risk assessment
based on different assessment objects and can be intuitively expressed. This is crucial for
decision makers to refer to in actual planning. The purpose of this study was to conduct
a comprehensive evaluation of potential ecological risks through combined statistical
analysis, and to present the results through GIS technology and intuitive evaluation charts.
However, the limitations and referential value of this study are also very obvious. The goal
of this study is to provide decision-making support for the renovation and upgrading of
traditional industrial parks. Therefore, the selected pollutant factors are unique to industrial
parks, and the background and standard values of pollutants also have specificity. It only
has reference value for groundwater assessment in other industrial parks with similar
situations.

4. Conclusions

In this paper, the groundwater environment in the farmland area around a traditional
industrial park in Shifang City, southwest China, was taken as the research object. Geo-
statistical methods combined with GIS technology were adopted to analyze the spatial
distribution of conventional pollutants and heavy metals in groundwater in the area and to
evaluate the integrated potential ecological risk of heavy metals. The following conclusions
were drawn:

1. The distributions of CODMn and NH3-N in the study area showed poor continuity
of variation and high spatial differentiation, mainly due to intensive anthropogenic
activities, such as industrial discharges. TH, SO4

2−, and Cl− were more or less uni-
formly affected by external factors, had relatively insignificant spatial differentiation,
and may have similar sources within the study area. Co-precipitation or adsorption
of these metal elements by oxides or hydroxides of Cr is less frequent and may be
explained by external sources of pollution.

2. A spatial distribution variation map of six heavy metals in groundwater obtained by
ordinary kriging interpolation showed that the high concentrations of Cu, Mn, and
Pb are mainly concentrated in the farmland area south of the industrial park. Due to
the groundwater recharge from the Shiting River in the north, the heavy metals in the
industrial park area migrate to the southern part after infiltration, explaining the low
concentrations in other areas.

3. Based on the potential ecological pollution index, the degree of heavy metal pollution
decreased in the following order: Cu > Zn > Cr > Ni > Mn > Pb. Only Cu had a
moderate potential ecological risk, mainly due to its larger ecological risk coefficient.
The average value of the integrated potential ecological RI of the six heavy metals
was 97.27. Overall, the traditional industrial park poses a slight ecological risk to the
shallow groundwater of agricultural areas.
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