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Abstract: Suburban open-pit mining concentration areas are both the frontline of urban expansion and
the main battlefield in mineral resource development. These dual forces have resulted in significant
land use/cover changes (LUCC), which play a crucial role in determining the ecological environment
quality (EEQ). However, research examining how LUCC affects EEQ under the coupled impact of
these two development events is currently lacking. In this study, the response of EEQ to LUCC was
evaluated using Landsat images from 2000, 2010, and 2020 for the southern suburban open-pit mining
concentration area in Jinan City. A relative contribution index was used to address the ecological and
environmental effects of non-dominant land use/cover types, and the impact of LUCC on EEQ and
its spatial spillover effects were revealed by also carrying out a buffer zone analysis. The findings of
this study indicate that: (1) the dominant land use/cover types that influence the EEQ spatial pattern
are farmland, grassland, and construction land. Among them, the area of farmland was the largest,
with more than 1800 km2. Changes in non-dominant land use/cover types to mining land and mine
rehabilitation made the most significant relative contribution to the changes in EEQ, i.e., 0.0735 and
0.0184, respectively. (2) The transformation of farmland into construction land and mining land
and woodland into mining land was shown to exacerbate the deterioration of the EEQ in the study
area, with a deterioration area of 1367.54 km2 and spatial spillovers of up to 1000 m. (3) Returning
farmland to woodland and grassland, as well as returning mine rehabilitation, were found to be the
main factors contributing to the improvement of EEQ in the study area, with an improvement area of
1335.67 km2 and spatial spillover extending from 500 to 800 m. (4) Nevertheless, uneven changes
in land use/cover continue to aggravate the agglomerative effect of EEQ deterioration. Further
refinement and enhancement of the methods and standards of ecological governance are urgently
needed to counterbalance the uneven spatial spillover effects between ecological degradation and
improvement. This study provides a scientific reference for the promotion of ecological protection
and sustainable development in mining cities.

Keywords: urban expansion; mining and rehabilitation; LUCC; ecological environment quality
assessment; RSEI; GeoDetector

1. Introduction

Urban expansion and mineral resource exploitation have facilitated socio-economic
development, while also resulting in significant land use/cover changes (LUCC). As a
consequence, they have given rise to numerous ecological and environmental issues [1],
such as urban heat islands [2], water pollution [3], floods [4], soil erosion [5], biodiversity
loss [6], and a decline in ecological environment quality (EEQ) [7]. These problems pose
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serious threats to ecological security and sustainable development. The processes of urban
expansion and mineral resource development need to consider the long-term sustainability
of ecosystems, including the preservation of biodiversity and the restoration of ecosys-
tems [8]. This implies the need to implement measures to mitigate ecological damage. Thus,
it is crucial to study how LUCC affects the EEQ in urban expansion and resource develop-
ment settings. Such research endeavors will provide a solid theoretical foundation for the
formulation of effective ecological environment protection and management policies [9]
and will contribute to the development of sustainable development strategies [10].

The term “suburban open-pit mine concentration area” refers to a complex area where
agriculture serves as the primary industry, but where mineral resources are also developed,
processed, and utilized within the context of industrialization, urbanization, and urban–
rural integration [11]. Despite the relatively small sizes of suburban open-pit mining
concentrations, their locations and fragile ecosystems result in strong interactions between
human activities and the natural environment, which, in turn, lead to serious ecological
and environmental problems. This phenomenon is prevalent globally, in many regions
and under different landform types. For instance, regions such as Yakutia [12] in Russia,
Jodhpur [13] in India, and Shuozhou [14], Panzhihua [15], and Datong [16] in China have
experienced severe ecological degradation due to mineral resource exploitation, resulting
in the escalation of ecological and environmental challenges. Therefore, it is imperative
to adopt practical and effective measures to attain a harmonious balance among urban
development, resource exploitation, and ecological preservation. Nevertheless, compared
to other areas, the LUCC in such complex areas is quite complex. The main reason for this is
that such areas are unique, consisting of multiple ecological subsystems which face various
concurrent development and conservation issues. Key challenges include (1) the prominent
conflict between agricultural production and mining development; (2) the concentration of
mine pits and associated facilities leading to the occupation and degradation of extensive
tracts of ecological lands, such as woodlands and grasslands; and (3) the severe threat to
the ecological environment due to rapid urbanization [11,17–19]. In this context, effectively
managing the relationship between service functions and the adverse effects of resource
extraction is pivotal for the planning and management of concentrated suburban open-pit
mining areas [11]. Therefore, for the concentrated mining areas of suburban open-pit
mines, it is highly relevant to study the patterns of LUCC and its ecological environmental
response mechanism under the coupling effect of urban expansion and mineral resource
development for the coordinated development of society, the economy, and ecology in the
future [20].

EEQ is a metric for the comprehensive measurement of the elements, structures, and
functions of an ecosystem in time and space. It reflects ecological condition under external
stress, the viability of human survival, and the potential for sustainable social and economic
growth [21]. Currently, two types of quantitative methods are employed for evaluating
EEQ [21]. The first type is single factor-based analysis [22], which utilizes parameters such
as NPP [23], NDVI [24], LST [21], and TDVI [25]. However, relying on a single parameter
or index often fails to capture the overall state of and changes in regional comprehensive
EEQ [26]. This is due to the complexity, dynamism, and multifaceted influences of ecolog-
ical, environmental, and human factors on ecosystems [27]. The second type comprises
integrated methods based on multiple factors, such as the ecological environment index
(EI) and remote sensing ecological index (RSEI). The EI integrates indicators such as biolog-
ical richness, vegetation cover, water network density, soil stress, and pollution load [28].
However, this method still faces great challenges due to its dependence on the acquisition
of extensive statistical data [29]. In response to the above challenges, Xu [30] proposed the
RSEI. This approach enables rapid monitoring and assessments of regional EEQ over a long
time period. RSEI is an index based entirely on remotely sensed data, integrating multiple
ecological factors. Its advantages lie in the integration of the rationality of EI weights, the
setting of normalization coefficients, the accessibility of indicators, and the visualization
of ecological environment status [30,31]. Furthermore, RSEI utilizes four ecological and
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environmental components to reflect the EEQ of a given area and assigns weights to each
index using PCA, resulting in highly objective, stable, and visible results [32].

The RSEI has been extensively employed in recent years to assess EEQ in various
ecosystems, including urban clusters [33], watersheds [34], mining areas [35], lakes [36], is-
lands [37], and oases [38]. Among these ecosystems, the ecological environments of mining
areas exhibit more sensitive and complex biophysical features compared to other areas [39].
In assessments of EEQ in mining areas, many scholars have explored the relationship
between RSEI and influencing factors such as urban expansion [40], land use/cover [41],
vegetation cover [42], soil quality [43], and temperature change [44]. Moreover, the explo-
ration of relevant drivers has revealed the dominant role of LUCC in shaping EEQ and
its impact on the stability of ecosystem structures and functions [45]. However, in the
context of suburban open-pit mining concentrations, changes in EEQ are influenced by
both urban expansion and activities related to mining and rehabilitation. Currently, there
are relatively few studies on how LUCC, under the coupled effects of urban expansion and
mining activities, specifically affect changes in EEQ. Therefore, there is an urgent need to
explore the mechanisms through which LUCC in suburban open-pit mining concentrations
affect changes in EEQ. Such investigations will provide valuable insights into ecological en-
vironment protection, as well as land planning and management, within suburban open-pit
mining areas.

Given the aforementioned issues, our study focuses on the open-pit mine concentration
areas located in the southern mountainous region of Jinan City, Shandong Province, China.
The objective of this study is to reveal the mechanisms by which LUCC influenced EEQ
under the coupling effect of urban expansion and mine development from 2000 to 2020.
The specific targets are: to (1) analyze the characteristics of spatial and temporal changes
in land use/cover in the study area during the 2000–2020 period; (2) elucidate the spatial
and temporal response patterns of EEQ to LUCC; (3) reveal the extent of the absolute
and relative influence of LUCC on EEQ changes, as well as interactions among and the
range of their spatial spillovers; and (4) thoroughly examine the relationship between land
demand, policy implementation, and LUCC and changes in EEQ. The findings of this
study are expected to provide theoretical guidance and decision-making support for the
development and rehabilitation of concentrated mining areas in suburban open-pit mines,
as well as to promote the sustainable development of the regional ecological environment
in the study area.

2. Materials and Methods
2.1. Study Area

The Yellow River Basin holds a crucial and strategic role in China’s ecological security,
as well as its economic and social development. The Yellow River Basin, serving as China’s
“energy basin”, experienced varying degrees of resource depletion, environmental pollution,
and ecological damage due to urban expansion and resource development. Shandong
Province, the most economically developed and densely populated region in the Yellow
River Basin, has witnessed rapid urban expansion and intense land development Jinan
City, which serves as both the center city of the Yellow River Basin and the capital of
Shandong Province. These developments have substantially intensified changes in land use
and had a significant impact on the local ecology. Jinan City is geographically positioned
between 36◦01′ and 36◦50′ north latitude and between 116◦16′ and 117◦45′ east longitude
(Figure 1a,b), covering an approximate total area of 3270 km2. The region has a moderate
monsoon climate with four distinct seasons and a more pronounced monsoon influence. It
has an annual average temperature of 12.8 ◦C and receives an average annual precipitation
of 680 mm.

The southern mountainous area of Jinan City encompasses several administrative
regions, including Pingyin County, Changqing District, most of Shizhong District, the
central area of Licheng District, and the southern area of Zhangqiu District (Figure 1c). It
holds significant importance as a part of Jinan City, at the forefront of urban expansion
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and intense mining activities, and serves as a crucial ecological protection area due to
its abundant water and forest resources. The area is also known for its contribution as
a spring-supporting region for Jinan City. To protect the ecological environment of the
area, the Jinan government has implemented a series of measures, including strengthening
water resources protection, afforestation, and mining remediation. These actions have
significantly contributed to the protection of the ecological environment in the southern
mountainous area. As a result, it has become a prime example of ecological protection
within Jinan City.
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Figure 1. Study area. (a) The location of Shandong Province in China, (b) the location of Jinan City in
Shandong Province, (c) the location of the study area in Jinan City and its administrative division,
and (d) the topography of the study area.

The study area’s terrain gradually descent from south to north, comprising low moun-
tains, hills, plains, and abundant mineral resources (Figure 1d). According to the overall
planning of mineral resources in Jinan, open-pit mining primarily focuses on non-metallic
construction materials such as limestone, granite, and clay used for bricks and tiles. Quar-
rying in this region often disrupts the local topography and geomorphology, resulting in
changes to the natural landscape and the occupation and depletion of extensive land re-
sources. This process seriously undermines environmental stability and sustainability and
has significant and far-reaching negative impacts on local ecosystems and land resources.
To promote the sustainable development of the area, it is essential to enhance ecological
environment protection measures in the southern mountainous area.
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2.2. Data Source

This study primarily utilized Landsat satellite image data from the years 2000, 2010,
and 2020, which were obtained from the USGS (https://glovis.usgs.gov/ (accessed on 1
October 2022)). For the Landsat7 satellite data loss problem, we use the ENVI5.6 repair
plugin landsat_gapfill.sav to repair lost strips. When assessing EEQ, the contribution of
forest and other vegetation is of utmost importance. Therefore, image data from July
to September, the period of peak vegetation growth, should be used whenever possible.
However, it is challenging to obtain high-quality data during this period because it is often
accompanied by higher precipitation and cloud-shadow shading. Therefore, we extended
the data acquisition time frame from June to October (Table 1) to maximize the available
data. The data were pre-processed with radiometric calibration, atmospheric correction,
and image stitching after the acquisition, and finally, the study area images were obtained
by cropping using the study area boundary vector data.

Table 1. Landsat image data source information.

Year Sensors Path Row Date Cloudage

2000 Landsat7 ETM+
122 34 14 September 2000 0.49%
122 35 14 September 2000 0.15%

2010 Landsat7 ETM+
122 34 28 October 2010 0.00%
122 35 28 October 2010 0.01%

2020 Landsat8 OLI
122 34 28 August 2010 2.78%
122 35 28 August 2010 3.90%

After preprocessing, eCognition Developer 9.0 software was employed for land
use/cover interpretation. Some of the samples were labeled through visual interpretation
using Landsat images and Google Earth, whereas the remaining samples were obtained
from field survey data. Subsequently, the study area was classified into eight categories:
farmland (FL), woodland (WL), grassland (GL), water area (WA), unused land (UL), con-
struction land (CL), mining land (ML), and mining rehabilitation (MR). The classification
was performed using the random forest model-based object-oriented classification method,
coupled with visual interpretation. It is worth noting that mine rehabilitation, which is a
combination of various types such as woodland, grassland, and farmland formed by the
original mining land after rehabilitation, was introduced as a new land use/cover category.
After the classification, we conducted visual corrections on the classification results, achiev-
ing an overall classification accuracy of 87%, in line with this study’s requirements. The
land use/cover decoding results will serve as the driving factors for the ensuing changes
in EEQ.

2.3. Methods
2.3.1. LUCC Dynamic Analysis

• LUCC transfer matrix

Compared to reflecting static LUCC area data, the LUCC transfer matrix provides a
more accurate depiction of the overall trends and structural changes in LUCC over time [46].

aij =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann

 (1)

In Equation (1), a represents the area; n is the number of land use/cover types before
and after the transfer, i, j ( i, j = 1, 2, . . . , n) represents the land use/cover types before and
after the transfer, respectively; aij represents the area of type i converted to type j before
the transfer.

• Single land use/cover dynamic degree

https://glovis.usgs.gov/
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The degree of movement is quantified by measuring the change in the area of a certain
land use/cover type within a defined time frame and can be used to study the scale of
LUCC occurring within a specific timeframe [47]:

Ri =
Ubi −Uai

Uai
× 1

T
× 100 (2)

In Equation (2), Ri represents the land dynamic degree of land use/cover type i in the
study area; Uai represents that it is the area of land use/cover type i at the beginning of this
study, and Ubi represents that it is the area of land use/cover type i at the end of this study;
T is the length of study time, in years, and this study takes 10 years as the span.

2.3.2. Assessment of EEQ

The assessment of EEQ was conducted using RSEI. RSEI integrates four indicators,
namely NDVI, WET, NDBSI, and LST, which represent the factors of vegetation greenness,
land moisture, land dryness, and surface temperature, respectively. After normalizing these
indicators, PCA was used to synthesize the indicators. The PC1, which contributes more
than 80%, has been chosen as the representative measure of the EEQ status within the study
area. Because RSEI is primarily used in land-dominated areas, it is not suitable for large
water areas. Therefore, we calculated the Normalized Difference Water Index (NDWI) to
mask the water bodies in the study area. It is important to emphasize that if the indicators
of greenness and humidity, which have a positive impact on EEQ, yield negative values,
the calculation results should be adjusted using Equation (3). Additionally, the RSEI values
should be normalized (Equation (4)) to facilitate analysis and enable easier comparisons.
A higher RSEI value indicates better EEQ in the area, while a lower value indicates lower
EEQ. The formulas for calculating the four indicators are shown in Appendix A.

RSEIu =

{
PC1[ f (G, W, T, D)], LVG, LVW > 0

1− PC1[ f (G, W, T, D)], LVG, LVW < 0
(3)

RSEIv =
RSEIu − RSEIumin

RSEIumax − RSEIumin
(4)

In Equations (3) and (4), G represents greenness, W represents moisture, T represents
heat, D represents dryness, and LVG, LVW are greenness and humidity load values. RSEIu
represents the initial ecological index, that is, the image after data fusion is PCA transformed
and PC1 is calculated, and further transformation is done to ensure that PC1 is proportional
to the EEQ. RSEIv represents the normalized RSEIu.

2.3.3. Analysis of the Effects of LUCC on the EEQ

• Quantification of the impact factors’ contribution

The quantification of influence factor contributions was performed using GeoDetec-
tor’s factor detection module, and the results represented by the q value (Equation (5)).
This module is designed to identify the key factors influencing geographic phenomena and
to evaluate their absolute contributions. In this study, this module was utilized to assess
the absolute impact of the different factors X on the spatial variability of the dependent
variable Y. Furthermore, for suburban open-pit mining concentrations, although mining
land does not constitute the largest land area, mining activities are highly active in these
regions. Therefore, to reveal the impact of changes in non-dominant land types on EEQ,
we proposed a relative contribution index. This index is founded on the q value acquired
through the factor detection, specifically the q value per unit area (Equation (6)).

q = 1− 1
Nσ2 ∑L

i=1 Niσ
2
i (5)
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qr =

(
1− 1

Nσ2

L

∑
i=1

Niσ
2
i

)
/S (6)

In Equations (5) and (6), q is the explanatory power of factor X on the dependent
variable Y. The range of values is [0, 1]. A larger value represents the stronger explanatory
power of factor X. N represents the number of all samples, and Ni represents the number of
samples within the partition; σ2

i is the variance of samples within the partition; i represents
the partition, and L indicates the number of partitions; i = 1, 2, ..., L; qr represents the
relative contribution, and S indicates the area of the influencing factor.

• Interaction analysis of influence factors

The interactive detection module within GeoDetector was utilized to analyze the
interactions among the influencing factors. In this study, this module was used to explore
potential synergistic or antagonistic relationships between the independent and dependent
variables (Table 2).

Table 2. Interaction detection types.

Interaction Types Judgment Basis

Nonlinear weaken q(X1 ∩ X2) < min[q(X1), q(X2)]
Bivariable enhanced q(X1 ∩ X2) > max[q(X1), q(X2)]
Univariable weaken min[q(X1), q(X2)]< q(X 1 ∩ X2) < max[q(X1), q(X2)]
Nonlinear enhanced q(X1 ∩ X2) > q(X1) + q(X2)

Independent q(X1 ∩ X2) = q(X1) + q(X2)

• Settings of influence factors and establishment of spatial relationships with dependent
variables

The main aim of this study is to analyze the spatial pattern of EEQ and the underlying
factors influencing its changes in the open-pit mining concentration area. Specifically,
this study explores the impact of LUCC caused by urban expansion, mine development,
and rehabilitation and treatment. Initially, eight land use/cover types, namely farmland,
woodland, grassland, water area, unused land, construction land, mining land, and mining
rehabilitation were used as influencing factor X. The RSEI value for a single year was used
as the dependent variable Y for the identification of control factors governing the spatial
pattern. Subsequently, the reciprocal transfer among land use/cover types were studied
as the influencing factor X, with the change in EEQ over time serving as the dependent
variable Y to explore the driving impact of LUCC on EEQ changes.

To establish the spatial correspondence between the impact factor and the dependent
variable, we conducted a preprocessing step on both the impact factor and the dependent
variable using type decomposition based on the abundance index and quantifying spatial
dissimilarity [41]. The first step involved discretizing the study area using a grid-based
approach. Subsequently, we calculated the areas covered by the impact factor X and the
mean value of the dependent variable Y, all based on the grid cells. As the input for the
GeoDetector model necessitates the impact factor X to be categorized, we divided the
impact factor into five levels using the Jenks method.

• Analysis of the extent of spatial spillovers from changes in EEQ

LUCC will inevitably have an impact on the EEQ within the surrounding area [48]. We
used ArcGIS 10.7 to explore the spatial spillover impact of LUCC on EEQ. This was done
by assessing changes in ecological environment quality within buffer zones of different
radii, ranging from 50 to 1000 m. These buffer zones were established based on the LUCC
vector plane, both inside and outside polygon features. The buffer zones had radii set at
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50 m intervals, and we utilized GIS to analyze the change in ecological quality within these
buffer zones.

Ra =
si
sb

(7)

In Equation (7), Si represents the area of EEQ change under the buffer area generated
by a certain type of LUCC, Sb represents the buffer area, and Ra represents the proportion
of the area of EEQ change in the buffer area. When the buffer zone reaches a certain extent,
Ra will show a steady trend. This indicates that EEQ no longer has a spatial autocorrelation
with LUCC, and the extent of the buffer zone at this point is its spatial spillover range.

3. Results
3.1. Temporal and Spatial Changes in Land Use/Cover

Figure 2 illustrates the results of the land use/cover classification conducted in this
study. The northern and northwestern regions are characterized by flat terrains and are
predominantly classified as suburban areas, mainly consisting of farmland. In contrast, the
southern and eastern regions, which are remnants of Taishan Mountain, exhibit a more
mountainous and higher terrain, and are predominantly covered by woodland and grass-
land. The mining land is mainly concentrated in the transition zone between the suburbs
and the mountains, displaying a spatially distribution in a strip-like discrete manner.
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The overall land use/cover structure in the study area has exhibited relative stability
over the past 20 years. Farmland continues to dominate as the prevailing land type,
accounting for more than 1800 km2 of the area. Woodland, grassland, water areas, and
other land types with important ecological regulation functions, as well as mining land
and mine rehabilitation areas, account for relatively smaller proportions.

The land use/cover types in the study area experienced intricate and uneven changes
in their structure and spatial distribution during 2000–2020. According to the findings
presented in Figure 3, the first 10 years, witnessed a notable increase of 96.36 km2 in
the construction land area, primarily attributed to urban expansion and human activi-
ties. However, the implementation of the ecological protection policy, specifically the
“Returning Farmland to Forest and Grassland” initiative, resulted in the transformation of
a substantial amount of farmland into woodland and grassland. Additionally, extensive
ore mining during this period led to a significant expansion in the mining area. During
the subsequent decade, the urban expansion of Jinan City persisted in encroaching on
farmland and grassland, leading to further expansion of the construction land area. This
phenomenon was predominantly observed in the transformation of a significant portion of
farmland in the city’s suburbs into construction land. It is noteworthy that in 2018, with the
implementation of the mine geological environmental protection and treatment planning
program in Shandong Province, a significant number of mining areas were closed, and
abandoned mines underwent rehabilitation. Consequently, the mining land area decreased,
while the corresponding area of mine rehabilitation experienced a significant increase. The
implementation of environmental protection policies has played a pivotal role in driving
the dynamic character of mine rehabilitation. Therefore, mine rehabilitation has become a
highly dynamic type.
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Figure 3. Spatial distribution and spatio-temporal changes in RSEI in the study area. (a–c) The spatial
distribution of RSEI from 2000 to 2020, and (d,e) the spatial and temporal changes in RSEI from 2000
to 2020.

3.2. Response of EEQ to LUCC

Tables 3–5 reveal that PC1 and PC2 collectively contribute more than 90% to the RSEI
from 2000 to 2020. Specifically, PC1’s contribution rates in 2000, 2010, and 2020 are 82.02%,
83.4%, and 80.15%, all exceeding 80%. This suggests that PC1 primarily encompasses the
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characteristics of the four indicators. In contrast, PC2 to PC4 exhibit irregular eigenvalues
and mixed positive and negative indicator loadings. However, PC1 stands out as NDVI
and WET exhibit positive values, while NDBSI and LST indicate negative values, aligning
with the known fact that greenness and moisture positively impact the ecosystem, while
dryness and heat have adverse effects. Consequently, the use of PC1 for constructing the
RSEI is justified. To facilitate the assessment, the normalized PC1 values were classified
into five grades according to the existing grading criteria [49,50] at 0.2 numerical intervals.
The values were taken in the range of [0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0],
corresponding to ecological quality levels in the order of poor, fair, moderate, good, and
excellent. The area and proportion of each ecological class for each year were also calculated.

Table 3. Principal component analysis of RSEI in 2000.

Index PC1 PC2 PC3 PC4

NDVI 0.749 −0.185 0.362 0.523
WET 0.362 0.326 −0.852 0.180

NDBSI −0.543 0.056 −0.034 0.832
LST −0.060 −0.924 −0.371 0.013

Eigenvalue 0.256 0.027 0.025 0.003
Contribution rate /% 82.02 9.12 8.18 0.68

Cumulative contribution rate /% 82.02 91.14 99.32 100

Table 4. Principal component analysis of RSEI in 2010.

Index PC1 PC2 PC3 PC4

NDVI 0.697 0.168 −0.435 −0.537
WET 0.006 −0.143 −0.786 0.602

NDBSI −0.715 0.214 −0.434 −0.508
LST −0.032 −0.950 −0.053 −0.304

Eigenvalue 0.266 0.043 0.009 0.003
Contribution rate /% 84.42 11.85 3.03 0.70

Cumulative contribution rate /% 84.42 96.27 99.30 100

Table 5. Principal component analysis of RSEI in 2020.

Index PC1 PC2 PC3 PC4

NDVI 0.755 −0.180 0.336 0.528
WET 0.302 0.915 −0.251 0.037

NDBSI −0.553 0.308 0.537 0.554
LST −0.161 −0.173 −0.732 0.646

Eigenvalue 0.248 0.049 0.011 0.002
Contribution rate /% 80.15 15.54 3.23 1.08

Cumulative contribution rate /% 80.15 95.69 98.92 100

Based on the statistical results of the RSEI of the study area (Figure 3), it can be
concluded that the total sum of the area occupied by excellent, good and moderate EEQ
in the study area reached 75.41% in 2000. This indicates a favorable overall EEQ for
that period. However, by 2010, the area of poor and fair amounted to 769.56 km2 and
664.73 km2, indicating that the ecological quality of the study area had been degraded
during these 10 years, dominated by slight deterioration and comprising 39.54% of the
total area. Continuing to 2020, the area proportions of each level of EEQ showed no
significant changes in comparison to 2010. Nevertheless, the areas of the study area with
slightly better and significantly better EEQ in these 10 years have increased compared with
the previous 10 years, with an increase of 248.96 km2 and 216.57 km2, respectively. This
indicates a significant improvement in the ecological environment quality within the study
area. However, the spatial differentiation of the ecological environment quality change
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pattern in the study area is more obvious. By 2020, the EEQ in the study area appears to be
developing in a polarized manner.

3.3. Impact of Land Use/Cover Distribution on the Spatial Pattern of EEQ

When conducting GeoDetector analysis, it is essential to consider the scale effect of
the data. In this study, we conducted scale effect experiments at 500 m intervals, ranging
from 500 m to 5000 m. The results (see Figure 4) demonstrate that the q value of the factors
exhibit relatively stable patterns within the range of [3,4] km, while they demonstrate
greater volatility outside this interval. Furthermore, the p value results indicate that the p
value of some factors began to increase after 3 km, leading to insignificant results, whereas
all factors had significant p value at 3 km. Therefore, a 3 km scale was chosen as the optimal
scale for analysis.
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Figure 5a illustrates the results of factor detection. Construction land, grassland, and
farmland demonstrate stronger explanatory power, highlighting that the spatial distribution
of EEQ in the study area is predominantly influenced by these land categories. In contrast,
the impact of mining land is less pronounced, mainly because of its relatively limited extent.

Figure 5b–d illustrates the detection results of factor interactions. Construction land ∩
woodland exhibits the strongest explanatory power on the spatial pattern of EEQ in the
study area, although the interaction types holding the top five positions in explanatory
power have exhibited fluctuating changes over the last 20 years, with interactions among
woodland, grassland, water, and mining land exerting a considerably stronger influence on
the spatial pattern of EEQ. Particularly in 2020, the influence of the interactions between
different land use type on the EEQ has been enhanced.
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Figure 5. Results of the detection of RSEI spatial pattern influence factors. (a) The factor detection
result for 2000, 2010 and 2020, (b) the factor interaction detection result in 2000, (c) the factor
interaction detection result in 2010, and (d) the factor interaction detection result in 2020. The stronger
the interaction between the two influencing factors, the redder the hue in the figure, while a weaker
interaction is indicated by a bluer hue.

3.4. Driving Effect of LUCC on EEQ Change

We conducted factor detection and interaction detection using 3 km-scale grids to
explore the influence mechanisms of LUCC on EEQ improvement and deterioration for the
periods of 2000–2010 and 2010–2020, respectively.

3.4.1. Absolute Influencing Factors of EEQ Change

Figures 6 and 7 reveal that farmland → construction land, farmland → grassland,
grassland→ farmland, and mining land→mining rehabilitation significantly contribute to
the EEQ change from 2000 to 2020. In addition, Figure 8 demonstrates that the interactions
farmland→ grassland ∩mining land→mining rehabilitation, farmland→ grassland ∩
farmland→ woodland, and farmland→ woodland ∩mining land→mining rehabilita-
tion play a crucial role in improving the EEQ during this period. This indicates that the
transformation of farmland to woodland and grassland, as well as the transformation of
mining land to mine rehabilitation, have had a positive influence on the greenness and a
reduction in heat in the area, thereby contributing to the improvement of the EEQ. Con-
versely, the interactions farmland→ construction land ∩ grassland→ farmland, grassland
→ construction land ∩ grassland→ farmland, and farmland→mining land ∩ grassland
→mining land, which exhibit stronger explanatory power for EEQ degradation, indicate
that the transformation of farmland to construction land, the transformation of grassland
to farmland, and mining activities have led to increased regional dryness and heat. These
interactions have exacerbated the degradation of EEQ during this period.
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Figure 8. The interaction of driving factors of RSEI changes. (a) The interaction of the driving factors
for improving the EEQ from 2000 to 2010, (b) the interaction of the driving factors for improving the
EEQ from 2010 to 2020, (c) the interaction of the driving factors for degrading the EEQ from 2000
to 2010, and (d) the interaction of the driving factors for degrading the EEQ from 2010 to 2020. The
stronger the interaction between the two influencing elements, the redder the hue in the figure, and
the opposite is shown for weaker interactions.

3.4.2. Relative Influencing Factors of EEQ Change

We further measured the relative contribution of factors with a significant absolute
impact. The results show that from 2000 to 2020 (Figure 9), the mining land→mining reha-
bilitation has better explanatory power in improving the EEQ, with qr value of 0.0735 and
0.0291, respectively. This indicates that the remediation of mining land plays an important
role in improving the EEQ. Furthermore, the grassland→mining land and farmland→
mining land are predominantly land use/cover types contribute to the deterioration of
EEQ, with qr value of 0.0090, 0.0032, and 0.0184, respectively. This indicates that some ore
mining activities have a relatively stronger influence on the deterioration of EEQ.
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Figure 9. The results of relative contribution. (a) The relative contribution of the drivers of EEQ
improvement from 2000 to 2010, (b) the relative contribution of the drivers of EEQ improvement
from 2010 to 2020, (c) the relative contribution of the drivers of EEQ degradation from 2000 to 2010,
and (d) the relative contribution of the drivers of EEQ degradation from 2010 to 2020.

3.4.3. Analysis of Spatial Spillover Effects of Changes in EEQ

On the basis of the previous analysis, we analyzed the spatial spillover effect of
factors with important influence roles. We established buffer zones with radii ranging
from 50 m to 1000 m and conducted spatial spillover effect experiments at 50 m intervals.
As can be seen in Figure 10, the proportion of both improvement and deterioration of
EEQ gradually decreases and stabilizes as the buffer zone range increases. Nevertheless,
variations exist in the spatial spillover range of the influences of different factors on EEQ
changes. Regarding the factors contributing to EEQ enhancement, the spatial spillover
ranges of farmland→ woodland, mining land→mining rehabilitation and farmland→
grassland are 300 m–550 m, 500 m–550 m, and 700 m, respectively. This indicates that the
implementation of ecological protection policies has promoted the expansion of ecological
land use areas, enhanced their service functions, and consequently improved the EEQ
within the surrounding region. Regarding the factors contributing to EEQ deterioration, the
spatial spillover range of grassland→mining land is 100 m, farmland→mining land spans
250 m–400 m, woodland → farmland extends to 400 m, grassland→ farmland reaches
800 m, and farmland→ construction land encompasses 950 m–1000 m. It can be seen by
comparison that the impacts of ecological land destruction may have a greater extent of
impact on the deterioration of the surrounding ecological environment quality.
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Figure 10. Spatial spillover results of LUCC on RSEI changes under different buffer radii from 2000 to
2020. (a) The spatial spillover effect of EEQ improvement in 2000–2010, (b) the spatial spillover effect
of EEQ improvement in 2010–2020, (c) the spatial spillover effect of EEQ degradation in 2000–2010,
and (d) the spatial spillover effect of EEQ degradation in 2010–2020.

4. Discussion
4.1. Coupled Effects of Urban Expansion and Mining Activities on LUCC

The land use/cover structure within the study area has exhibited a relatively stable
pattern over the past two decades. Farmland and construction land remain the dominant
land use/cover types, while land types with ecological importance, such as woodland,
grassland, mining land, and mine rehabilitation land, are relatively limited. These findings
align with the research conducted by Wang et al. [41]. However, a more complex situation
emerges regarding the changing dynamics among different land types, as illustrated in
Figure 3. This changing pattern is mainly influenced by urban expansion activities in
different urban development stages [51], the land demand driven by mining activities [52],
and relevant ecological protection policies [41].

Specifically, between 2000 and 2010, Jinan City formulated a master land use plan
(2001–2020) that set the development direction for Jinan City and promoted the progress of
the urbanization construction phase. As a result, numerous townships underwent expan-
sion, leading to a significant reduction in farmland and rapid expansion of construction
land. Simultaneously, the area was abundant in mineral resources, which supplied a signif-
icant quantity of resources for Jinan’s urbanization, leading to a considerable expansion
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of mining land. However, the encroachment of urbanization development on other land
uses [53] surpassed the scale of mining development, thereby becoming the primary driver
of land use/cover changes. Subsequently, between 2010 and 2020, Jinan City implemented
successive urban planning policies to promote urban renewal and industrial transfer [54],
aiming to enhance spatial use efficiency. This further led to the occupancy of a significant
portion of farmland, resulting in a rapid trend of farmland reduction [55].

Over the past two decades of urbanization, the expansion of urban land has encroached
upon ecological and productive land that the large and rapid growth of urbanized land
occurred at the expense of a substantial proportion of farmland and green space [56].
However, during this period, Jinan also implemented several ecological protection policies,
such as the “Return of Farmland to Forest and Grassland” and the “Mine Environment
Management and Protection Plan”. These policies led to the transformation of a sizable
portion of farmland and mining land to grassland and woodland. In addition, Jinan
City follows the “simultaneous mining and rehabilitation” principle, which safeguards
production requirements while simultaneously advancing environmental protection and
treatment. The implementation of these policies has, to some extent, alleviated the adverse
impacts of urbanization and mining development on EEQ and land use/cover. This serves
as a positive exploration and example of sustainable development.

4.2. Impact of LUCC on Changes in EEQ

After over 20 years of LUCC, the overall EEQ has exhibited a sustained decrease, with
the proportion of places with poor EEQ reached 21.52%. Notably, the spatial distribution of
EEQ gradually transitioned from fragmentation to agglomeration, particularly evident in
2020, indicating obvious spatial heterogeneity and agglomeration effects in the distribution
of good and poor EEQ (Figure 3). These phenomena can be attributed to multiple factors.

Firstly, the spatial expansion of urbanization development has exacerbated the heat
island effect [57], while mining development has inflicted serious damage to regional land
surfaces [44], both contributing to the gradual deterioration of EEQ. Unsustainable land
use and over-exploitation during the urbanization process have exerted pressure on the
ecosystem and significant spatial spillover effects in the surrounding area, serving as the
underlying causes of ecological damage and quality deterioration. Secondly, the imple-
mentation of environmental protection policies in the southern mountainous areas [58]
and mining concentrations has contributed to the improvement of EEQ in the local area,
and activities such as mine rehabilitation have exerted further influence on the EEQ of
their surrounding areas. These policies have partially mitigated the declining trend of
EEQ in the study area by limiting mining activities and strengthening ecological protection
measures. However, this has not completely mitigated the agglomeration effect of EEQ
degradation, primarily due to the spatial unevenness of urbanization development, mining
development, and ecological protection implementation.

Furthermore, our findings indicate that changes in predominant land types, such as
farmland and construction land, which cover larger areas, have a significant influence
on the changes in EEQ. However, changes in non-dominant land types, such as mining
activities and mine rehabilitation, played a relatively more significant role in influencing the
EEQ [59]. Among them, mining land→mining rehabilitation has a lower q value compared
to farmland→ grassland and farmland→ woodland, but its qr value is significantly higher
than that of farmland→ grassland and farmland→ woodland. Similarly, grassland→
mining land and farmland→mining land have a lower q value compared to farmland→
construction land and woodland→ farmland, but their qr value are significantly higher
than those of farmland→ construction land and woodland→ farmland. This indicates that
mining activities have caused damage to the ecological environment, while also validating
the effectiveness of ecological environmental protection policies and measures, such as
mine rehabilitation, in improving the ecological environment. However, we observe that
the spatial spillover effects of these ecological improvements on EEQ do not completely
offset the spatial spillover effects of ecological damage. Therefore, it is crucial to strengthen
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the control of mining activities in suburban open-pit mining concentrations and improve
the methods and quality of mine rehabilitation. These tasks are essential and significant
components of ecological environmental protection and rehabilitation efforts.

4.3. Countermeasures for the Development and Ecological Protection of Suburban Land and
Mineral Resources

To cope with the coupled impact of urbanization and mining development on the
ecological environment, targeted management measures need to be proposed. Firstly, it is
essential to implement a rational urban land planning strategy that promotes economical
and intensive approaches, with a meticulous demarcation of urban land expansion limits.
Proactive changes are necessary to modify the ecological spatial arrangement in order to
narrow the divide between urban and rural ecological development. This approach can
help reduce the occupation of land with valuable ecological services by urban construction,
thereby mitigating the spatial aggregation effect of EEQ degradation. Secondly, there is a
need to strengthen mine rehabilitation efforts, including the ecological restoration of histor-
ical and production mines. Diversified mine rehabilitation methods should be adopted,
ecological restoration strategies tailored to local conditions should be implemented. Ad-
ditionally, a long-term evaluation mechanism for ecological restoration and management
should be established to enhance the quality and effectiveness of mine ecological restoration
and management. Thirdly, as one of the central cities in the Yellow River Basin focusing
on ecological protection and high-quality development, Jinan should strictly adhere to the
ecological red line and safeguard the bottom lines. This involves establishing protected
areas for the conservation of natural resource in suburban regions and designating prohib-
ited development zones, which must be integrated into regional territorial spatial planning.
These measures aim to prevent the infringement of natural resources and the ecological
environment in suburban areas resulting from urban expansion and mineral development.
At the same time, it is crucial to strengthen a robust ecological compensation system to
prevent ecological beneficiaries from avoiding their ecological responsibilities. This system
will help maintain and guarantee the rehabilitation and sustainable development of the
suburban ecological environment in Jinan.

4.4. Limitations and Prospects

In comparison to previous studies on the impact of LUCC on RSEI [41], this study
provides an advantage by introducing a relative contribution index to quantify the contri-
bution of non-dominant land types. By utilizing the qr value, the issue of area-influenced
factor detection in GeoDetector was addressed. The introduction of this index reveals the
important influence of changes in non-dominant land use/cover types, such as mining
land and mine rehabilitation, on changes in EEQ. The index serves as a supplement to
assess how suburban LUCC affects EEQ. Building upon this foundation, our study used
the buffer zone analysis method to measure the spatial spillover effects of several important
LUCC affecting EEQ, which will provide a reference for the study of the spatial spillover
effects of LUCC.

However, the LUC classification system used in this study still has certain shortcom-
ings, particularly in the vicinity of mining areas. Ore processing facilities and stockpiles
may yield different impacts on EEQ compared to individual mining pits. Therefore, fu-
ture studies should analyze the impacts of LUCC on EEQ in suburban open-pit mining
concentrations using a more detailed and accurate classification system. Additionally, the
study area involves the Yellow River, the Daqing River, as well as numerous lakes and
reservoirs. Water areas often exhibit distinct reflectance and absorption characteristics
in remote sensing data, which can lead to anomalous values of RSEI [60]. Therefore, for
an accurate assessment terrestrial EEQ, future study should explore the EEQ assessment
method specifically designed for water areas. Furthermore, although ecological rehabil-
itation treatments have partially alleviated ecosystem fragmentation, some fragmented
ecological nodes persist. These ecological nodes play are crucial role in connecting and
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preserving regional ecosystem functions [61]. Consequently, it is crucial to further explore
the relationship between changes in ecological nodes and EEQ to provide guidance for
ecological protection and coordinated development in suburban areas.

5. Conclusions

Urbanization and mining activities are the main drivers of LUCC in suburban open-
pit mining development areas, leading to changes in EEQ. Understanding the coupled
mechanisms of these changes is crucial for promoting sustainable development in these
areas and formulating effective ecological protection policies. In this study, a typical
open-pit mining concentration area on the outskirts of Jinan City was selected as the
study area, and the impact of coupled urbanization and mining development on LUCC
on EEQ was investigated. To measure the impact of non-dominant land use/cover type
changes, a relative contribution value index was designed, and the spatial impacts of
LUCC on changes in EEQ were explained in conjunction with buffer zone analysis. The
results show that the spatial distribution of EEQ is mainly influenced by the dominant
land types, including construction land, grassland, and farmland. However, the changes
in non-dominant land use/cover types, including mining land and mine rehabilitation,
play a relatively stronger role in driving EEQ changes. The transformation of farmland
to construction land and grassland and woodland to farmland during the past 20 years
has been the main factors leading to ecological degradation in the study area. Meanwhile,
the relative impact of the conversion of woodland to mining land, caused by mining, on
ecological degradation cannot be ignored. Conversely, the transformation of farmland
to woodland and grassland stands as the primary driver of EEQ improvement. Notably,
mining rehabilitation has played a significant role in improving the EEQ of the local area.
However, the uneven distribution of LUCC continues to negatively affect overall EEQ
and exacerbates the spatial aggregation effects. Additionally, the spatial spillover effects
of ecological improvement measures have not been able to compensate for the spatial
spillover effects of ecological damage.

Therefore, we suggest controlling urban expansion and optimizing mine rehabilitation
measures to adjust the ecological spatial structure, along with establishing robust ecological
compensation mechanisms to effectively preserve and protect the ecological environment
in suburban open-pit mining concentration areas.

However, further research is essential to enhance the land use/cover classification
system, develop EEQ assessment methods for water areas, and explore the mechanisms
linking changes in ecological nodes to EEQ. These efforts will advance ecological protection
and promote the coordinated development of suburban areas.
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Appendix A

• The wetness index

RSEI employs the wetness components obtained through the Kauth–Thomas transfor-
mation to assess the wetness of soil and vegetation. For ETM+ sensors and OLI sensors,
there are differences in the calculated parameters of image wetness. Their equations are
as follows:

WETE = 0.2626ρe1 + 0.2141ρe2 + 0.0926ρe3 + 0.0656ρe4 − 0.7629ρe5 − 0.5388ρe7 (A1)

WETO = 0.1511ρo2 + 0.1972ρo3 + 0.3283ρo4 + 0.3407ρo5 − 0.7117ρo6 − 0.4559ρo7 (A2)

In Equations (A1) and (A2), ρe1 and ρo2 represents the blue band, ρe2 and ρo3 represents
the green band, ρe3 and ρo4 represents the red band, ρe4 and ρo5 represents the NIR band,
ρe5 and ρo6 represents the SWIR band 1, and ρe7 and ρo7 represents the SWIR band 2.

• The greenness index

RSEI uses the Normalized Difference Vegetation Index (NDVI) as a metric to charac-
terize the vegetation coverage within the study area. The calculation formula for NDVI is
as follows:

NDVI =
ρnir − ρred
ρnir + ρred

(A3)

In Equation (A3), ρnir represents the NIR band and ρred represents the red band.

• The heat index

The heat index in RSEI is defined by the surface temperature. To calculate the surface
temperature, the Landsat User’s Manual model is employed, taking into account the
necessary correction parameters. The formula to express the surface temperature is as
follows:

Lst =
Tb[

1+ελTb
ρ

] − 273.15 (A4)

Tb =
K2

ln
(

K1
Lt

+ 1
) (A5)

Lt = gain× DN + bias (A6)

In Equations (A4)–(A6), λ represents the thermal infrared band’s central wavelength;
ρ = 1.438× 10−2 m; ε represents the emissivity, which is obtained by NDVI thresholding [62];
K1 and K2 are calibration parameters after radiation calibration; Tb represents brightness
temperature; DN is the pixel’s gray value; gain and bias are obtained from the image
header file; Lt represents the Landsat thermal infrared wavelength band radiation value.
Lst represents the surface temperature.

• The dryness index

The dryness index is composed of the building index (IBI) and the bare soil index (SI),
abbreviated as NDBSI (Equation (A7)–(A9)). Its equation is:

NDBSI =
SI + IBI

2
(A7)

SI =
[(ρswir1 + ρred)− (ρnir + ρblue)]

[(ρswir1 + ρred) + (ρnir + ρblue)]
(A8)

IBI =

2ρswir1
ρswir1+ρnir

−
[

ρnir
ρnir+ρred

+
ρgreen

ρswir1+ρgreen

]
2ρswir1

ρswir1+ρnir
+
[

ρnir
ρnir+ρred

+
ρgreen

ρswir1+ρgreen

] (A9)
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In Equations (A7)–(A9), ρblue represents the blue band, ρgreen represents the green
band, ρred represents the red band, ρnir represents the NIR band, and ρswir1 represents the
SWIR band1.
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