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Abstract: Red mud is a byproduct of the aluminum oxide refining process that is an industrial waste
residue. The storage of red mud can seriously contaminate the soil, water system, and atmosphere
while also taking up a lot of valuable land resources. However, the use of stabilized/amended red
mud technology in road engineering is relatively limited. Consequently, this research investigates
how additives (cement, lime, and phosphogypsum) affect the strength of amended red mud as
road base material. Additionally, it examines the effects of dry–wet and freeze–thaw cycles on the
UCS, pH, dry density, and evolution of micropore structure in amended red mud with different
phosphogypsum content. The findings reveal that, after five dry–wet and freeze–thaw cycles, the
samples with 2% phosphogypsum content have a strong assurance rate of more than 85%. The
percentage of micropores (0.01–0.1 µm) is reduced, although the percentage of small pores (0.1–1 µm)
and medium pores (1–10 µm) is increased by dry–wet and freeze–thaw cycles. The cumulative
mercury intake rises as the percentage increases, and the dry–wet cycle has a greater impact on the
strength of amended red mud than the freeze–thaw cycle.

Keywords: red mud; phosphogypsum amendment; road base materials; microstructural testing

1. Introduction

Red mud is a solid waste material with strong alkalinity that is produced during the
manufacturing of aluminum oxide [1]. For each ton of alumina produced in industry, the
red mud produced is about 0.8–1.5 tons [2]. Furthermore, red mud is mostly treated by
stacking and covering soil, which not only occupies a large number of land resources but
also has the risk of polluting soil, groundwater, and air with flying dust [3,4].

Based on its distinctive physical and chemical properties, as well as mineralized
physical features, research on the comprehensive utilization of red mud has focused on the
following three areas: first, extraction and recovery of valuable metals [5–7]; the second is
to prepare building materials, such as bricks and red mud portland cement [8,9]; third, red
mud adsorbent is employed to clean wastewater [10–12]. However, just a small portion of
red mud could be consumed by the aforementioned studies. Red mud had many of the
same physical characteristics and chemical makeup as soil. Additionally, red mud could
be utilized as filler or foundation material for roads by adding additives, which creates a
practical method for the comprehensive utilization of red mud.

Mukiza and Deelwal [13,14] investigated the viability of using red mud as road base
and subbase materials. Moreover, red mud used as road base material had high UCS, frost
resistance, and durability [15,16]. However, utilizing pure red mud as road base material
alone carries some dangers. Therefore, red mud-amended additives should be utilized to
increase strength and durability instead [17]. Liu et al. [18] investigated the use of pure
lime-stabilized red mud in road construction. The findings demonstrated that, when lime
content increased, the unconfined compressive strength (UCS) and California bearing ratio
(CBR) also rose. Rao et al. [19] also investigated the properties of red mud consolidated with
granulated blast furnace slag (GGBS) and its suitability as road base material. The findings
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demonstrated that the UCS and CBR of solidified red mud increased with the addition
of GGBS when the content of GGBS was less than 25%. Furthermore, the effect of lime
stabilizing the red mud was best after it had been solidified with lime, calcined lime powder,
granulated blast furnace slag, and fly ash [20,21]. The strength of red mud was improved
by using fly ash and desulfurized gypsum. The results exhibited that the UCS of red mud
at 7 days of curing time reached the maximum and satisfied the strength requirements
of the expressway [19]. According to the research on amended red mud, the addition of
phosphogypsum, silica fume, and dealkali agents reduced the alkalinity of red mud and
successfully addressed the issue of red mud contaminating the environment [22,23]. In
order to strengthen the red mud, curing agents such as cement, lime, phosphogypsum,
and high-polymer materials were used, which considerably improved the strength and
was preferable to the addition of cement, lime, or phosphogypsum alone. The pH of red
mud lowered after alteration, with no adverse effects on the ecosystem [24–26]. As the
principal curing agents, cement, lime, and phosphogypsum were utilized to enhance red
mud. The dosage of the modifier and the level of compaction were two crucial indicators
for managing the enhanced red mud, and the blended stabilizer was a superior curing
agent to the cement alone, according to laboratory and field experiments [27,28].

To strengthen red mud, many scholars have researched a variety of curing agents,
primarily taking into account the UCS, CBR, liquid plastic limit, and other indicators. This
demonstrated the viability of using amended red mud as road base material. However,
there are few studies on the durability of the dry–wet and freeze–thaw cycles of red mud
under different stabilizer proportions. Moreover, there is little discussion on the mechanism
of strengthening red mud with curing agents at the microscale.

In conclusion, this work chooses cement and lime as alkali exciters, with phospho-
gypsum serving as a sulfur exciter to reduce alkalinity. To manufacture amended red mud
samples, the three proportions were first tested, and three groups of proportions fulfilling
the requirements of UCS were chosen. Furthermore, the study of bearing performance
and durability during dry–wet and freeze–thaw cycles was performed. The evolution
and development law of amended red mud pores in the microcosm was then revealed
by testing the samples for mercury intrusion. Finally, the effect of pore sizes on UCS was
examined. This research is anticipated to offer technical support and useful advice for the
widespread use of red mud.

2. Materials and Methods
2.1. Materials

The testing materials used in this research were obtained from the Weiqiao Bayer red
mud storage yard in Binzhou City, Shandong Province. The results of the red mud’s basic
physical tests revealed that the material’s liquid limit is 42.89%, its plastic limit is 24.56%,
and its water content is 37.4%. The basic physical characteristics of the red mud are shown
in Table 1. Additionally, P.O. 42.5 silicate cement was used in this research. The lime was
acquired from Jiuqi Building Material Company in Weifang City, Shandong Province, and
the phosphogypsum used in the tests was obtained from Guizhou Lufa Industrial Co.,
Ltd. in Guiyang City, Guizhou Province. The chemical composition of the raw materials is
shown in Table 2.

Table 1. The Basic Physical Characteristics of Red Mud.

Water content
(%)

Liquid limit
wL (%)

Plastic limit
wp (%)

Plasticity index
Ip

Particle size distribution (%)

Clay content Powder content Sand content
<5 µm 5~75 µm >75 µm

37.4 42.89 24.56 18.33 4.65 70.95 24.4
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Table 2. The Chemical Composition of Raw Materials (wt. %).

Raw Materials SO3 CaO SiO2 P2O5 Fe2O3 Al2O3 MgO K2O Others

Red Mud 1.6 1.4 7.777 / 53.365 22.879 1.123 / 2.64
Cement 4.031 53.02 23.803 / 3.881 8.871 3.744 1.126 1.524

Lime 1.759 93.209 0.996 / 1.065 0.401 2.337 0.233 1.065
Phosphogypsum 52.122 42.363 2.127 0.744 0.664 0.607 0.507 / 0.866

The particle gradation of the red mud was determined by the water-flushing classifi-
cation method. The curve of the particle size distribution is shown in Figure 1. As can be
seen in Figure 1, the majority of the red mud was composed of particles with a size of less
than 0.075 mm comprising up to 75.17%; particles between 0.075 and 1.18 mm made up
24.78%; the smallest portion was composed of particles larger than 1.18 mm.
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2.2. Methods
2.2.1. Sample Preparation

According to the maximum dry density and optimal water content of the samples,
a cylindrical sample of Φ50 mm × 50 mm was prepared by the static pressure method,
with a compaction degree of 96%. Samples were put in a plastic bag after demoulding and
weighing, then moved into the standard curing room (temperature of 20 ± 2 ◦C, relative
humidity ≥ 95%). After the samples were cured for the desired age, samples were taken out
and immersed in water for 24 h before being tested. The samples can be seen in Figure 2.

2.2.2. The Tests of UCS, Dry Density, and pH

In this research, the unconfined compressive strength (UCS) and dry density were
tested according to Test Methods of Soils for Highway Engineering (JTG3430-2020) [29].
The pH value of the samples was tested according to the ASTM D4972 [30]. After the UCS
tests, the samples were collected in multiple grams and dried in an oven at 105 ◦C. For
pH tests, 10 g of dry red mud was combined with 10 g of distilled water and the mixture
remained for an hour.
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2.2.3. The Dry–Wet and Freeze–Thaw Cycle Tests

In the dry–wet cycle tests, the test steps were as follows: 1© After the samples were
cured for 28 days, they were moved into an oven at 40 ◦C for 16 h, cooled to room
temperature for 30 min, and then soaked in water for 8 h to complete a dry–wet cycle.
2© After the dry–wet cycle, samples were taken out to test the quality and UCS. 3© Steps 1©

and 2© were repeated until all 5 dry–wet cycles had been completed.
In the freeze–thaw cycle tests, the test steps were as follows: 1© After the samples were

cured for 28 days, they were moved into a refrigerator at −23 ◦C for 16 h, and then samples
were taken out and moved into a water tank at 20 ◦C for 8 h to complete a freeze–thaw
cycle. 2© After the freeze–thaw cycle, samples were taken out to test the quality and UCS.
3© Steps 1© and 2© were repeated until all 5 freeze–thaw cycles had been completed.

2.2.4. Microstructure Analysis

In this research, the material composition and morphology of the samples were
analyzed by scanning electron microscope (SEM) (Guangzhou Jiarui Scientific Instrument
Co., Ltd., Guangzhou, China). Before observation, the samples were sprayed with gold. The
experiment’s settings were determined as follows: the resolution was set to High-Vaccum
mode 1.0 nm @ 20 kV WD = 2 mm, and the magnification was set to 20×~900,000×.

An automatic mercury porosimeter (Micromeritics Instrument Corporation, Norcross,
GA, USA) was used to study the pore structural alterations of the samples. The freeze-dried
samples were put into the mercury porosimeter and the low-pressure test and high-pressure
test were performed sequentially. The low-pressure test was used to fill the mercury and
measure the coarse pore size. Furthermore, the high-pressure test was used to pressurize the
mercury into the sample pores in accordance with the predetermined maximum pressure.
In this research, the mercury surface tension was 0.48 N/m, the contact angle was 140◦,
and the maximum pressure was 345 MPa.

3. Results and Discussion
3.1. Selection of Mixture Ratio
3.1.1. Influence of Cement Content

This set of experiments aimed to establish the appropriate cement content of road base
materials that satisfy the strength requirements. In the tests, the cement contents were set
at 0%, 3%, 5%, 7%, and 10%, respectively, and compaction tests were used to determine
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the maximum dry density and optimum water content under different cement contents.
The mix proportion and sample preparation requirements for each set of tests are listed in
Table 3.

Table 3. The ingredient proportion of cement-stabilized red mud.

Number Cement Content
(%)

Maximum Dry Density
(g/cm3)

Optimum Water Content
(%) Degree of Compaction

1 0 1.82 23.4

96%
2 3% 1.83 23.8
3 5% 1.85 22.9
4 7% 1.86 22.4
5 10% 1.88 22.6

The strength of the stabilized red mud after 7, 14, and 28 days of curing is shown
in Figure 3. The figure shows that, as cement content was increased, the UCS of cement-
stabilized red mud increased, and at 7 days of curing, the strength of pure red mud was
approximately 0.6 MPa. Moreover, when the cement content was higher than 7%, the
increase in UCS after 7 days of curing tended to be slower, and the cement content must be
around 10% in order to achieve the UCS of 3–5 MPa for minimum strength standards of
road base materials [31]. Therefore, this research is based on the cement content of 10%.
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Figure 3. The effect of cement contents on the strength of stabilized red mud.

3.1.2. Influence of Cement–Lime Content

This set of experiments aimed to establish the appropriate cement and lime contents of
road base materials that satisfy the strength requirements. Lime was added to adequately
reduce the cement content. In the tests, the lime contents were set at 0.5%, 1%, 1.5%, 2%,
2.5%, and 3%, respectively, and the overall cement and lime contents were kept constant
at 10%. The mix proportion and sample preparation requirements for each set of tests are
listed in Table 4.
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Table 4. The ingredient proportion of cement–lime-stabilized red mud.

Number Lime Content
(%)

Cement Content
(%)

Maximum Dry Density
(g/cm3)

Optimum Water Content
(%)

Degree of
Compaction

1 0.5% 9.5% 1.88 22.6

96%

2 1% 9% 1.84 22.4
3 1.5% 8.5% 1.85 22.8
4 2% 8% 1.82 23.3
5 2.5% 7.5% 1.83 23.0
6 3% 7% 1.8 24

The strength of the stabilized red mud after 7, 14, and 28 days of curing is shown in
Figure 4. As seen in Figure 4, with the lime content increased, the UCS increased at first and
then decreased at 7 days of curing. Additionally, the strength began to decline as the lime
content exceeded 2%. During 7 days of curing time, the strength of cement–lime-stabilized
red mud was less than that of red mud without lime. When lime replaced cement, the
cement hydration reaction reduced with a decrease in cement content, and the strength
dropped substantially.
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Figure 4. The effect of cement and lime contents on the strength of stabilized red mud.

Moreover, when the content of lime exceeded 2%, the strength of the sample with a
curing age of 28 days decreased. The reason for this is that lime has a high water-retention
capacity. It will absorb water during the early hydration reaction, lowering the water–
cement ratio and accelerating the hydration reaction. However, after 28 days of curing,
excessive lime will lead to further expansion, weakening the strength of the samples.
Therefore, in this research, the cement–lime content was chosen at 8:2.

3.1.3. Influence of Phosphogypsum Content

On the basis of the above results, the ratio of cement to lime was selected at 8:2.
Additionally, analysis was conducted on the effect of various phosphogypsum contents on
the mechanical properties of amended red mud as road base material, and designed four
groups of different phosphogypsum contents of 2%, 5%, 8%, and 10%. In the research, the
amount of phosphogypsum content was changed, while maintaining the total amount of
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other admixtures constant (cement and lime content was 10%). The corresponding mixture
ratios for each group of tests are shown in Table 5.

Table 5. The ingredient proportion of phosphogypsum-amended red mud.

Number Phosphogypsum
Content (%)

Cement
Content (%)

Lime Content
(%)

Maximum Dry
Density (g/cm3)

Optimum Water
Content (%)

Degree of
Compaction

1 0% 8% 2% 1.82 23.3

96%
2 2% 8% 2% 1.84 22.7
3 5% 8% 2% 1.82 23.4
4 8% 8% 2% 1.81 24.6
5 10% 8% 2% 1.80 25.2

The effect of phosphogypsum content on the strength of amended red mud is shown
in Figure 5.
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As can be seen in the figure, the UCS of the samples during 7 days of curing time was
over 3 MPa, which satisfied the requirements for road base materials in terms of strength.
Additionally, the strength was highest when the content of phosphogypsum was 5%. The
reason was that the reaction was sped up and a lot of expanding ettringite crystals were
created as a result of the Ca2+, SO4

2− in phosphogypsum. As ettringite crystals filled the
sample pores and bound the particles through the interconnection of needle-like crystals,
the structure became more compact and the strength was subsequently increased.

However, when the content of phosphogypsum was 8% and 10%, the strength de-
creased. The main reason for this phenomenon is that, when the content of phosphogypsum
is too high, the sample will have excessive volume expansion, which will lead to expansion
stress, damage the structure of samples, and reduce the strength.

3.2. Scanning Electron Microscope (SEM)

Figure 6 shows the SEM of stabilized/amended red mud samples at 28 days of curing
time. As shown in Figure 6a, there were a lot of fine particles connected by honeycomb
structures, and there were numerous tiny pores between the honeycomb structures. Ad-
ditionally, it was discovered that the samples included a minor quantity of hydrated
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calcium aluminosulfate (AFm) with monosulfide-type scattered. As shown in Figure 6b,
the honeycomb structures of samples became smaller, and the stacked AFm crystals grew,
gathered, and consolidated into plates. Additionally, the irregular petal-like AFm grew
in the pores and filled the holes. Moreover, when lime was added, the sample’s round
particles increased and pores rose, which decreased the sample’s strength. In Figure 6c, the
samples show numerous blocky hydrated calcium aluminosilicate (AFt) structures, which
under the connection of AFt eventually coalesced into a dense ensemble. As compared
with Figure 6a,b, the samples have a much lower number of pores in Figure 6c. Since the
hydrated calcium aluminate was created when the components of phosphogypsum reacted
with cement, the structure of amended red mud became denser.
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Figure 6. Scanning electron micrograph of amended/stabilized red mud: (a) cement-stabilized red
mud; (b) cement–lime-stabilized red mud; (c) Phosphogypsum-amended red mud.

3.3. The Effect of Dry–Wet and Freeze–Thaw Cycles on Phosphogypsum-Amended Red Mud
3.3.1. The Variation in UCS

As can be seen in Figure 7, the UCS of samples decreased with an increasing numbers of
dry–wet and freeze–thaw cycles. Under the effect of a one-time dry–wet cycle, the strength
of all samples achieved the minimum strength requirements for road base materials, but
the strength of samples mixed with 8% phosphogypsum reduced dramatically. However,
only the strength of the samples with 2% phosphogypsum met the requirements of road
base materials after five dry–wet cycles.

For the freeze–thaw cycle, only the strength of the samples mixed with 8% phosph-
ogypsum failed to meet the requirements for road base materials after five freeze–thaw
cycles. Additionally, the strength of amended red mud mixed with 5% phosphogypsum
still met the standards after five freeze–thaw cycles, but minor fractures appeared on the
samples’ surfaces. Therefore, in the content of cement and lime at 10%, the phosphogypsum
content should not exceed 5%.
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3.3.2. The Variation in pH and Dry density

The pH of amended red mud has some relationship with the degree of hydration.
During the hydration process, Ca2+, Na+, and OH− in the samples were continuously
consumed by the reaction, causing the samples to exhibit a fall in pH as the curing time was
extended. As can be seen in Figure 8, the dry–wet cycles had little impact on the hydration
of amended red mud, and the pH of amended red mud tended to decline as the number of
dry–wet cycles rose. When the number of dry–wet cycles increased from 1 to 5, the pH of
amended red mud with 2% phosphogypsum decreased from 11.48 to 10.8, and the pH of
the samples with 5% and 8% phosphogypsum decreased from 10.83 and 10.67 to 10.25 and
9.91, respectively. For the freeze–thaw cycle, the pH of amended red mud decreased with
an increased number of freeze–thaw cycles.
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In conclusion, the pH decreased during the dry–wet cycle, freeze–thaw cycle, and
conventional curing. Moreover, the pH marginally decreased under the influence of the
dry–wet cycle, and the reaction process of samples was relatively slow. Additionally, the
pH also dropped as the phosphogypsum content rose.

As can be seen from Figure 9, the dry density of samples with 2% phosphogypsum
increased at first and then decreased as the number of dry–wet cycles or the curing time
increased, and there was little variation in the dry density. In contrast, as the number of dry–
wet cycles increased, the dry density of amended red mud with 5% and 8% phosphogypsum
constantly fell. Additionally, it can be seen from Figure 9 that after one and three freeze–
thaw cycles, amended red mud’s dry density changed slightly, whereas after five cycles,
the dry density dramatically reduced. Furthermore, the porosity of the samples increased
as the dry density fell.
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3.3.3. The Variation in Pore Distribution under Dry–Wet Cycles

As shown in Figure 10, the distribution of pore size of amended red mud with 2%
phosphogypsum under dry–wet cycles and standard curing nearly overlapped, both
displaying the typical double-peaked pattern. The pore size of the samples mainly ranged
between 0.01 and 0.1 µm, and 0.1 to 1 µm, respectively. The first peak of the aperture
density ranged from 0.3 to 0.35 µm, and the second peak ranged from 0.1 to 0.15 µm. It
was evident that the pores in amended red mud with 2% phosphogypsum were primarily
tiny pores (0.01–0.1 µm).

The pore size distribution of samples with 5% phosphogypsum under standard curing
showed a three-peak distribution. The first peak occurred between 0.01 and 0.1 µm and
the value was between 0.25 and 0.3; in contrast, the other two peaks after 0.1 µm were
relatively flat. For the dry–wet cycle, the aperture between 0.1 and 1 µm exhibited a wider
peak, and the value was around 0.1. Moreover, the aperture between 1 and 10 µm had a
smaller edge, and the value was around 0.05, which is negligible.

The pore size distribution of samples with 8% phosphogypsum exhibited a bimodal
distribution under both standard curing and dry–wet cycles. The second peak of the
aperture density ranged from 1 to 10 µm. This indicates that the dry–wet cycle resulted
in an increase in pore size in the range of 1–10 µm. Additionally, when the content of
phosphogypsum was too high, the aperture of amended red mud rose.
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Figure 10. The distribution density of amended red mud under dry–wet cycles: (a) 2% phosphogyp-
sum content; (b) 5% phosphogypsum content; (c) 8% phosphogypsum content.

As shown in Figure 11, the cumulative mercury quantity input to the samples during
the dry–wet cycle was higher than that under standard curing. After the dry–wet cycle, the
unit mercury quantity of amended red mud with 2%, 5%, and 8% phosphogypsum was
0.257, 0.267, and 0.277 mL/g, respectively, which was 12.72%, 20.81%, and 19.4% higher than
that of the standard curing (33 days). It was evident that the cumulative mercury quantity
increased with phosphogypsum content. Ettringite content increased with phosphogypsum
content, and the volume expansion resulted in an increase in microscopic pores with an
aperture of 1–10 µm.
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Figure 11. The mercury quantity curve of amended red mud under dry–wet cycles: (a) 2% phospho-
gypsum content; (b) 5% phosphogypsum content; (c) 8% phosphogypsum content.

According to Figure 12, the percentage of micro-pores (0.01–0.1 µm) decreased from
67.15%, 62.85%, and 58.31% to 57.06%, 55.94%, and 48.11%, respectively, with 2%, 5%, and
8% phosphogypsum contents, while the percentage of small pores (0.1–1 µm) decreased
from 25.74%, 19.70%, and 18.25% to 28.05%, 28.11%, and 21.79%, respectively. In the range
of 1 to 10 µm, the aperture primarily grew.

Due to the difference in water content between the inside and outside of the samples,
the action of the dry–wet cycle caused tensile stress to form on the surface. However, the
cementation between the particles was insufficient to resist the tensile stress, which resulted
in cracks. Moreover, the expansion of ettringite lessened the samples’ resistance during the
dry–wet cycle, which was one reason why the samples were destroyed by external forces.
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3.3.4. The Variation in Pore Distribution under Freeze–Thaw Cycles

As shown in Figure 13, the pore distribution curve of the samples with 2% and
8% phosphogypsum exhibited two obvious peaks both in the freeze–thaw cycle and the
standard curing, while the samples with 5% phosphogypsum had three peaks. The two
peaks of amended red mud with 2% phosphogypsum were, respectively, in the pore size
range of 0.01–0.1 µm and 0.1–1 µm. Compared with the standard curing, the peak of the
pore distribution curve of the freeze–thaw cycle was displaced to the right, which indicated
that even if the range of the pore size was the same, the pore size of the freeze–thaw cycle
was larger.
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Figure 13. The distribution density of amended red mud under freeze–thaw cycles: (a) 2% phospho-
gypsum; (b) 5% phosphogypsum; (c) 8% phosphogypsum.

The peak of amended red mud with 5% phosphogypsum was mostly in the range of
0.01–0.1 µm, and the other two peaks were not obvious, and were in the ranges of 0.1–1 µm
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and 1–10 µm. The peak of the freeze–thaw cycle, in the range of 0.1–10 µm, was less than
that in the standard curing, and the peak shape was not obvious.

The two peaks of the samples with 8% phosphogypsum under standard curing were,
respectively, in the range of 0.01–0.1 µm and 0.1–1 µm, but under freeze–thaw cycles the
two peaks were, respectively, in the range of 0.01–0.1 µm and 1–10 µm. This indicates that
the pores of the sample were enlarged by the freeze–thaw cycle.

As shown in Figure 14, the unit mercury quantity was 0.238, 0.232, and 0.242 mL/g,
respectively, under the freeze–thaw cycle of amended red mud with 2%, 5%, and 8%
phosphogypsum, which was 4.04%, 4.39%, and 4.57% greater than that during the standard
curing (33 days). Additionally, the unit mercury quantity did not significantly rise as
compared to the dry–wet cycle. However, for the sample with 8% phosphogypsum, the
unit mercury quantity was reduced to the aperture range of 0.1–10 µm.
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Figure 14. The mercury quantity curve of amended red mud under freeze–thaw cycles: (a) 2%
phosphogypsum; (b) 5% phosphogypsum; (c) 8% phosphogypsum.

As shown in Figure 15, the percentage of micropores (0.01–0.1 µm) of amended red
mud decreased and the percentage of small pores (0.1–1 µm) increased following the
freeze–thaw cycle. The aforementioned results demonstrated that the freeze–thaw cycle
had a more detrimental impact on the microstructure of amended red mud. The fraction of
micropores declined while the proportion of tiny pores rose, resulting in a looser structure
for the samples. It is suggested that the force of the water freezing between the soil particles
is what causes the pore alteration in samples during the freeze–thaw cycle.

Furthermore, the percentage of middle pores (1–10 µm) rose from 2.24%, 9.26%,
and 15.16% to 3.43%, 13.21%, and 15.30%, respectively, in the samples during the freeze–
thaw cycle. Thus, the red mud amended by phosphogypsum possessed the expansion of
ettringite in addition to the squeezing force of freezing, which will decrease the resistance
of the freeze–thaw cycle.

Additionally, the durability index (SDI) was used to evaluate the durability of amended
red mud. The SDI can be calculated by Equation (1).

SDI =
Rn

R0
× 100 (1)

where R0 is the UCS during standard curing (MPa), and Rn is the UCS after n dry–wet or
freeze–thaw cycles (MPa).
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As shown in Figure 16, the dry–wet cycle had a greater impact on the strength of
amended red mud than the freeze–thaw cycle. After five dry–wet cycles, the SDI of samples
with 5% and 8% phosphogypsum was lower than 60. Furthermore, the SDI of samples
with 5% phosphogypsum was higher than 60 after five freeze–thaw cycles. Moreover, the
samples that included 2% phosphogypsum met the requirements for medium durability,
and the SDI was greater than 85. It is evident that amended red mud exhibits poor resistance
to the dry–wet cycle, and the strength was greatly reduced.
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As shown in Figure 17, the association between the pore volume and UCS was pos-
itive. Under the conditions of the dry–wet or freeze–thaw cycle, the UCS of amended
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red mud dropped as the percentage of pore volume (<0.1 µm) decreased. The sample’s
percentage of micropores was considerably decreased over the dry–wet and freeze–thaw
cycles, particularly during the dry–wet cycle, as can be shown from the mercury intrusion
tests. As a result, the dry–wet cycle caused a significant loss in the UCS of amended red
mud.
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4. Conclusions

In this study, a relatively suitable cement–lime ratio was established by the compres-
sive strength test with different cement and lime contents, and phosphogypsum content
was further altered to investigate the effect of phosphogypsum content on amended red
mud. Furthermore, the influence of phosphogypsum content on the durability of amended
red mud was studied mainly through UCS, pH, dry density, and pore size under dry–wet
and freeze–thaw cycles, and the following conclusions were obtained:

(1) Through the UCS of cement–lime-stabilized red mud, the optimal ratio was deter-
mined to be 8% cement and 2% lime. Additionally, the UCS of amended red mud
was significantly increased by the addition of phosphogypsum, and after 7 days of
curing time, the sample’s UCS reached the required strength for road base material
(3–5 MPa). However, the UCS of the sample increased first and then declined with an
increase in phosphogypsum content. The test findings indicated that phosphogypsum
content should not be too high.

(2) The UCS, dry density, and pH value of amended red mud were decreased by the
dry–wet and freeze–thaw cycles. After five dry–wet cycles, only the samples with 2%
phosphogypsum content met the requirements for road base material. Furthermore,
after five freeze–thaw cycles, the strength of amended red mud with 8% phosphogyp-
sum content did not meet the standard. Additionally, the impact of the dry–wet cycle
was greater than the freeze–thaw cycle on UCS, pH, and dry density of amended
red mud.

(3) The percentage of micropores (0.01–0.1 µm) was reduced by dry–wet and freeze–
thaw cycles, although the percentage of small pores (0.1–1 µm) and medium pores
(1–10 µm) was increased. Additionally, the compactness and compressive strength
also fell. The strength of amended red mud with 2% phosphogypsum content was less
affected by the dry–wet and freeze–thaw cycles. After five dry–wet and freeze–thaw
cycles, the strength assurance rate of the samples was greater than 85%.
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