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Abstract: Stone pavements are the historical, architectural, and cultural heritage of lots of cities in
Italy and the world. Road managers should be able to make decisions on the global conditions to
define the most suitable strategies and maintenance interventions for every type of pavement. There
are no standard monitoring methods or criteria for evaluating stone pavement performance. These
pavements have more uneven surfaces than traditional pavements, but this characteristic could be
accepted if type of vehicles and relative travel conditions are considered. Therefore, it is useful to
define criteria for assessing roughness considering the comfort experienced by users in different
vehicles. In this research, both traditional and innovative methodologies for assessing irregularities
have been investigated using true stone surface profiles. In this regard, traditional performance
indicators such as the International Roughness Index (IRI) defined by the ASTM E1926, the ISO
8608 classification, and the frequency-weighted vertical acceleration (awz) provided by ISO 2631-1 for
comfort assessment have been considered. In the case of comfort assessment, three dynamic vehicle
models (bike, automobile, and bus) have been adopted. Finally, this two-part paper also proposes an
innovative straightedge analysis for stone pavements (SASP) to evaluate the effect on traffic of both
pavement profile roughness and localized irregularities. In this way, the authors aim to provide an
effective tool to monitor stone pavements.

Keywords: stone pavements; pavement irregularities assessment; whole body vibration; ISO8608;
ISO2631; urban road safety; vulnerable road users; user riding comfort

1. Introduction

Historic stone pavements are of undisputed aesthetic value and are the architectural
and cultural heritage of several cities around the world, but often they lead to management
issues in urban road networks [1]. These pavements were not designed to accommodate
modern traffic categories. They consist of juxtaposed modular elements of non-flat shapes
with interposed joints, and their final configuration is an irregular surface in all wavelengths
of the worldwide accepted definition [2], even when the pavement has just been built. In
particular, the irregularity of a new stone pavement depends on the pavers’ size, the
construction technique (flat, concave, bush-hammered surface, etc.), the joints’ width and
type (open, sealed with mortar, etc.) [3,4], and the bedding layer [5]. Factors negatively
affecting the functional performances of these pavements are climate change [6] and motor
vehicle traffic. It has to be noted that stone pavements often have more irregularities than
traditional asphalt concrete (AC) or cement concrete (CC) ones, and that they may not
guarantee acceptable conditions of safety and comfort for vehicles and users [7]. Concerning
the safety of vehicles moving on uneven surfaces, it is generally observed that the risk of
rollover and skidding increases on uneven pavements [8]. Natural stone pavers can cause
unsafe conditions for motorcyclists by reducing the amount of friction (skid resistance) or
creating an uneven rolling surface [9]. Indeed, pavement roughness negatively affects the
contact between the wheel and the surface [10,11], as confirmed by [12,13].
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The functional issues of stone pavements spark debates amongst both expert critics
and common public opinion. It is not always possible to find a compromise, and the most
frequent interventions are as follows:

• The removal of stone pavements from roads with high traffic volumes and reuse of
the stones in low- and light-traffic areas [14];

• The implementation of speed reduction to allow circulation in urban roads of all traffic
categories and ensure riding comfort [15].

Whatever the admitted road users, the network manager should guarantee a minimum
level of pavement regularity to ensure riding comfort and minimize the impact on the
surrounding environment in terms of rolling noise and vibrations compared to traditional
pavements [16,17]. Experimental data allow assessing the pavement state of health by
adopting one or more indices about structural and/or functional conditions [18]. The
comparison between the measured values and consolidated threshold values enables us
to assess the current pavement condition and schedule the maintenance program. This
decision-making process is part of the Pavement Management System (PMS), which allows
for identifying priorities and planning interventions based on collected data and future
projections, feasibility analysis, and budget optimization [19].

The identification of the monitoring and evaluation criteria for modular stone pave-
ments in the scientific literature [20] has been marginally addressed. Garilli et al. [21]
proposed a method to evaluate the functional and safety characteristics of stone pavements
used by pedestrians with wheeled trolleys.

A proper method to assess roughness conditions cannot overlook the operating condi-
tions (e.g., speed) and the users (e.g., pedestrians, two-wheeled vehicles, vehicles, buses).
Road pavement roughness is a pivotal functional requirement adopted by road managers as
a key performance indicator (KPI) to plan maintenance [22]. The International Roughness
Index (IRI) is nowadays accepted for both AC and CC carriageways [23]. Accurate IRI de-
cay curves allow road managers to plan network maintenance that optimizes the available
resources [24]. Several studies have been proposed to define appropriate IRI thresholds
concerning different operational and functional requirements such as the length of the road
section [23,25,26], the effects on dynamic loads [27], comfort [28], or the contribution of
the joints [4]. Other researchers have investigated the relationship between IRI and the
comfort experienced on-board different types of vehicles [29–31] whilst also considering
the operating speeds of the road [32]. All these studies have demonstrated the versatility
of this index in evaluating the condition of paved surfaces. However, there is a limitation
concerning the operating speed and the types of assessed distress. In regard to speed,
different thresholds have been proposed as a function of the operating speed [33–35]. These
studies have shown that while the threshold values provided by road agencies refer to
travel speeds above 80 km/h, higher IRI values can be generally accepted on roads travelled
at lower speeds. Moreover, while the evaluation through the IRI is ideal for widespread
defects, it performs poorly in interpreting isolated and localized defects [36]. In this regard,
an alternative approach has been proposed to evaluate the longitudinal roughness through
users’ perception [37].

Another interesting approach to evaluating pavement roughness is the Power Spectral
Density (PSD) of the profiles according to ISO 8608 [38]. Several studies have adopted
this procedure, which simulates the response of the vehicle suspension system to generate
artificial profiles and simulates the behavior of vehicles on uneven pavements [39]. In the
field of vehicle design, surface profile classification according to [9] has been adopted to
generate artificial road profiles that simulate different conditions to optimize the mechanical
components or to verify the suspension parameters of vehicles [40–42]. Other scholars have
realized artificial road profiles with given IRI values [43–45].

Smartphone apps or low-cost Inertial Measurement Unit (IMU) systems are modern
alternative systems for evaluating pavement conditions in urban areas where driving speed
is generally low, localized distresses are widespread, and different types of vehicles move at
different speeds. Several applications for smartphones [46] and validated IMU systems [47]
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allow the measuring of accelerations on-board a vehicle moving at a fixed speed using as a
reference the comfort evaluation parameters provided by the international standard ISO
2631-1 [48]. According to the reference standard, the time history of vertical accelerations
calculated with a mechanical model of a vehicle moving on a pavement profile allows the
calculation of the frequency-weighted vertical acceleration (awz).

Finally, the authors proposed a Straightedge Analysis for Stone Pavements (SASP).
This derives from the Procedures for Measuring Airfield Pavement Roughness defined by
the Federal Aviation Administration (FAA) [49] to obtain the Boeing Bump Index (BBI).

Whatever the adopted method, it is necessary to give straightforward and widely
accepted definitions of both surface defects and threshold values. Based on true stone
surface profiles, this paper takes into account existing methodologies and proposes a new
methodology to evaluate the irregularity conditions of stone pavements. Firstly, the IRI [50]
and ISO 8608 standards [38] have been adopted to characterize the pavement roughness.
Then, the whole vertical body vibration using three mechanical models (i.e., a bicycle,
an automobile, and a bus) at different running speeds has been considered. Therefore,
according to [50], it was possible to classify the surveyed pavements in terms of performance
classes. Finally, SASP classified the irregularities of the stone pavements and overcame the
limitations of the traditional methods.

2. Materials and Methods
2.1. International Roughness Index

IRI derives from studies in the 1980s [51] involving controlled measurements of road
surface roughness for 320 m-long road sections under a variety of conditions and by a
variety of instruments and methods [52]. It is based on a mathematical model called
quarter-car and was developed to assess not only the ride quality on road pavements but
also other detrimental effects (e.g., dynamic load increment on both vehicle and pavement)
due to the presence of irregularities on the road surfaces. Equation (1) allows IRI calculation
according to [50]:

IRI =
1
l

∫ l/v

0

∣∣ .
zs −

.
zu
∣∣dt (1)

where l is the length of the profile in km, v is the simulated speed equal to 80 km/h,
.
zs is

the time derivative of vertical displacement of the sprung mass in m, and
.
zu is the time

derivative of vertical displacement of the unsprung mass in m. IRI is expressed in slope
units (e.g., m/km or mm/m).

Over the world, different threshold values for roughness are prescribed in terms of
IRI values for pavement quality control, monitoring, maintenance, and repair planning.
According to [23], there is a high heterogeneity of adopted IRI thresholds that depend on
road surface type (i.e., asphalt or cement concrete pavements), road functional category,
average annual daily traffic (AADT), legal speed limit, segment length considered for its
calculation, as well as other variables. Among these, the most important are the maximum
driving velocity allowed on the road and the type of vehicle adopted to assess riding
comfort. In recent years, some authors have proposed that speed-related IRI thresholds
be used for the evaluation of ride quality. In particular, Cantisani and Loprencipe [33]
considered an assorted sample of 320 m-long 124 profiles of AC pavements (average
IRI = 2.11 m/km; maximum IRI = 5.98 m/km, minimum IRI = 0.55 m/km, and standard
deviation of IRI = 1.18 m/km) and defined four ride quality levels (Table 1). For each
level, the IRI thresholds depended on the awz calculated for measured speed values ranging
between 30 and 90 km/h.
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Table 1. IRI thresholds at different speeds [33].

Ride Quality Level
IRI Thresholds at Different Measured Speeds (m/km)

30 km/h 40 km/h 50 km/h 60 km/h 70 km/h 80 km/h 90 km/h

Very Good <4.17 <3.41 <2.98 <1.87 <1.60 <1.42 <1.15
Good/Fair 4.17–8.34 3.41–6.83 2.98–5.95 1.87–3.73 1.60–3.20 1.42–2.84 1.15–2.31
Mediocre 8.34–11.92 6.83–9.75 5.95–8.51 3.73–5.33 3.20–4.58 2.84–4.06 2.31–3.30

Poor >11.92 >9.75 >8.51 >5.33 >4.58 >4.06 >3.30

The proposed thresholds are valid for the investigated IRI values and AC pavements.
An in-depth study is necessary to apply them to stone pavements, whose IRI values and
distribution differ from those investigated by [33]. Indeed, higher IRI values and greater IRI
variability are to be expected due to the used dynamic model. Figure 1 shows the response
of the IRI quarter car filter to different wavelengths varying the speed vehicle. The red curve
represents the transfer function between road excitation and the suspension relative velocity,
HVrel, for the reference quarter-car model with parameters defined for IRI estimation
(velocity = 80 km/h). In the same graph, the transfer function HVrel for velocity = 40 km/h
is represented [46] to compare the effect of speed on pavement roughness evaluation. Both
curves in Figure 1 have the same diagram shape, but the wavelengths influencing the IRI
shorten, decreasing the simulation speed.
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Figure 1. Response of the IRI quarter car filter to different wavelengths.

It cannot be overlooked that the profile length to assess IRI is 320 m. In the urban
environment, it is very difficult to collect such a profile length, and shorter sections
must be considered. The IRI thresholds on different pavements should refer to the same
profile lengths.

For stone pavements, it is difficult to define irregularities threshold values as these pave-
ments have higher values than traditional pavements and an unambiguous definition of sur-
face defects. An attempt to define some threshold values was developed by Zoccali et al. [20]
for the so-called Sampietrini, a particular type of stone paving used throughout central Italy
and made of stone elements of average dimensions 10 × 10 × 17 cm laid on a 5–10 cm-thick
sand bed. For such pavements, Zoccali et al. [20] demonstrated that IRI values were compara-
ble to those obtained for rough unpaved roads (Figure 2). Therefore, IRI values can describe
the perceived riding comfort for different speed values, and IRI values more than 8 m/km
(dotted red line in Figure 2) imply less than 70 km/h riding speed.
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2.2. Road Surface Profile Classification According to ISO 8608 Standard

Road surface profile classification according to ISO 8608 standard is based on the
PSD of the profile. To determine the PSD, it is necessary to measure the surface profile
concerning a reference plane [53]. In particular, the Power Spectral Density is calculated
using the Fast Fourier Transform (FFT), windowing each profile signal with the Hanning
window [54] and representing the smoothed power spectral density. Finally, Equation (2)
allows the calculation of the fitted PSD:

Gd(n) = Gd(n0)

(
n
n0

)−w
(2)

where Gd(n) is the fitted PSD [m3], n is the spatial frequency in cycles/m, n0 = 0.1 cycles/m is
the reference spatial frequency, and w is the exponent of the fitted PSD, also known as waviness.

As specified by Múčka and Granlund [55], the two parameters defining Gd(n) (i.e., Gd(n0)
and w) are independent; in particular, the second one provides information about wave-
length distribution in the investigated spatial frequency range. Values of waviness greater
than two mean that long wavelengths are prevalent, while if w is lower than two, the short
ones are predominant.

Based on the Gd(n0) values, a pavement profile is catalogued according to the classes
(from A to H; i.e., from best to worst) defined by [38] (Table 2). Usually, road profiles of AC
pavements do not belong to classes worse than D because road agencies set intervention
thresholds to restore optimal conditions.

Table 2. ISO 8608 thresholds limits for the road profiles classes.

ISO 8608 Class Gd(n0) (10−6 m3)

A <32
B 32–128
C 128–512
D 512–2048
E 2048–8192
F 8192–32,768
G 32,768–131,072
H >131,072

Destroyed roads belong to classes above D. However, artificial class profiles higher than
D have been generated in the literature [56]. They imply severe distress conditions expected for
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unpaved roads. Therefore, the classification proposed by [38] provides a synthetic description
of the geometric features of a road pavement surface. However, it overlooks the vehicle
type and the driving velocity, and does not properly consider the different vibration levels
affecting road users. At any rate, it seems appropriate to use this evaluation method for stone
pavements that are characterized by a high level of irregularities.

2.3. Whole-Body Vibration Using Vehicle Mechanical Model Simulation

The international standard ISO 2631-1 allows comfort assessment in public trans-
port [48]. It is based on the analysis of the time-histories of vertical accelerations obtained
from direct measurements inside the riding vehicle or simulated by a vehicle mechanical
calibrated model. The seat-acceleration time-histories (as(t)) are processed to determine
the vertical Root Mean Square accelerations (aRMS

iz ) for the ith one-third-octave bands that
represent the frequency range of interest for human response to vibrations (i.e., 0.5–80 Hz)
according to [48]. Given aRMS

iz , Equation (3) allows calculation of the vertical weighted Root
Mean Square acceleration (awz):

awz =

√√√√ 23

∑
i=1

(
Wk,i · aRMS

iz
)2 (3)

where Wk,i are the frequency weightings in one-third-octave bands for seated positions
provided by [48]; i = 1, . . . , 23.

The awz values can be compared to the threshold values proposed by [48] (Table 3) to
identify the comfort level perceived by road users. The current standard provides several
comfort levels and introduces overlapping zones between two adjacent levels because
several factors (e.g., user age, acoustic noise, temperature, etc.) contribute to the level of
perceived discomfort.

Table 3. awz threshold values for public transport [47].

awz Values (m/s2) Comfort Level

<0.315 Not uncomfortable
0.315–0.63 Little uncomfortable

0.5–1.0 Fairly uncomfortable
0.8–1.6 Uncomfortable
1.25–2.5 Very uncomfortable

>2.0 Extremely uncomfortable

Innovative Vehicle Mechanical Model Simulation

In this paper, three different dynamic vehicle models have been considered to quantify
users’ comfort level according to [48]:

• A 5-degree-of-freedom (5-dof) bike model developed in this research and calibrated
using parameters proposed by [57–63] to represent the vibration perception of a
common biker;

• An 8-dof full-car model developed and calibrated by Cantisani and Loprencipe [33] to
represent the vibration perception of a common passenger car (automobile);

• An 8-dof full-car model developed by the authors and calibrated using parameters
proposed by [28,64,65] to represent the vibration perception of a common passenger bus;

For each model, the main assumptions are as follows:

• Vehicle body parts are rigidly connected;
• The vehicles move in a straight line, and the longitudinal and transversal variations

are assigned by the measured profiles;
• Passenger mass and unsprung mass are considered constant in magnitude during

the simulation;
• The input road profiles are responsible for vibration transfer in the vehicle models.
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By using Newton’s law, Equation (4) is valid for the three vehicle mathematical models:

[M]{
..
Z}+ [Γ]{

.
Z}+ [K]{Z} = [F] (4)

where [M], [Γ], [K], and [F] are mass, damping coefficient, spring stiffness, and force
matrices, respectively. For example, for the 5-dof bike model in Figure 3, [M], [Γ], [K],
and [F] are Equations (5)–(8), respectively. Table 4 lists the meaning and the values of the
constants and variables.

[M] =


ms 0 0 0 0
0 m 0 0 0
0 0 Jθ 0 0
0 0 0 m1 0
0 0 0 0 m2

 (5)

[Γ] =


cs −cs r · cs 0 0
−cs cs + c1 + c2 a2 · c2 − a1 · c1 − r · cs −c1 −c2
r · cs a2 · c2 − a1 · c1 − r · cs c1 · a2

1 + c2 · a2
2 + cs · r2 a1 · c1 −a2 · c2

0 −c1 a1 · c1 c1 0
0 −c2 −a2 · c2 0 c2

 (6)

[K] =


ks −ks r · ks 0 0
−ks ks + k1 + k2 a2 · k2 − a1 · k1 − r · ks −k1 −k2
r · ks a2 · k2 − a1 · k1 − r · ks k1 · a2

1 + k2 · a2
2 + ks · r2 a1 · k1 −a2 · k2

0 −k1 a1 · k1 k1 + kt1 0
0 −k2 −a2 · k2 0 k2 + kt2

. (7)

[F] =


0 0
0 0
0 0

kt1 0
0 kt2

 (8)
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V

CG

Figure 3. 5-dof mechanical bike model.
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Table 4. Constants and variables adopted in the bike 5-dof mathematical model.

Symbol Value Unit Description

ms 80 kg Driver body mass
M 20 kg Bike frame mass without wheels
m1 2 kg Mass of a front unsprung mass (wheel)
m2 2 kg Mass of a rear unsprung mass (wheel)
Jθ 13 kg m2 Body (bike) sprung mass pitch moment of inertia
R 0.0 m Distance of CG from the seat driver
a1 0.6 m Distance of CG from the front axle
a2 0.4 m Distance of CG from the rear axle
k1 30,000 N/m Spring constant suspension front
k2 25,000 N/m Spring constant suspension rear
kt1 25,000 N/m Spring constant tire front
kt2 25,000 N/m Spring constant tire rear
ks 50,000 N/m Spring constant seat driver
c1 9000 N s/m Damping constant suspension front
c2 9000 N s/m Damping constant suspension rear
cs 1000 N s/m Damping constant suspension seat driver
Z var m Body vertical motion coordinate (1-dof)
z1 var m Front-wheel vertical motion coordinate (2-dof)
z2 var m Rear wheel vertical motion coordinate (3-dof)
zs var m Driver vertical motion coordinate (4-dof)
θ var rad Body pitch motion coordinate (5-dof)

zv,1 var m Road profile elevation–front
zv,2 var m Road profile elevation–rear

The differential equations have been implemented in MATLAB® using the State Space
representation that describes the set of all possible states of the system [66]. Each coordinate
is a state variable whose values completely describe the state of the system [67].

In continuous-time, a state-space model has the following form Equations (9) and (10):
.
z = Az + Bu
f = Cz + Du

(9)

where

[A] =

[
[Z5x5] [I5x5][
−M

K

] [
−M

C

]] [B] =
[
[Z5x2]
[M/F]

]
[C] = [[I10x10]] [D] = [[Z10x2]] (10)

The matrix [Z(t)] Equation (11) contains the discrete time-history of all the parameters
to calculate the system dynamic of model:

[Z(t)] =



zs(t)
z(t)
θ(t)
z1(t)
z2(t).
zs(t).
z(t)
.
θ(t)
.

z1(t).
z2(t)


(11)

where zs(t) is the seat vertical motion coordinate in m, z(t) is the body vertical motion
coordinate in m, θ(t) is the body pitch motion coordinate in rad, z1(t) is the front wheel
vertical motion coordinate in m, z2(t) is the rear wheel vertical motion coordinate in m,
.

zs(t) is the derivate seat vertical motion in m/s,
.
z(t) is the derivate body vertical motion
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in m/s,
.
θ(t) is the derivate body pitch motion in rad/s,

.
z1(t) is the derivate front wheel

vertical motion in m/s, and
.

z2(t) is the derivate rear wheel vertical motion in m/s.
Finally, Equation (12) gives the acceleration time-history of the bike driver:

as(t) =
ks·[z(t)− zs(t)] + cs·

[ .
z(t)− .

zs(t)
]
+ ks·r·θ(t) + cs·r·

.
θ(t)

ms
(12)

Similarly, the MATLAB® State Space formulation was used to simulate the dynamics of
the automobile and the bus using the adopted full-car models. Appendix A lists the matrices
and all the geometric and mechanical parameters of the adopted models to assess awz.

The flow chart in Figure 4 shows the MATLAB® code that carried out the simulations.
For each pavement profile, six awz values were obtained (two driving speed values for each
of the three modelled vehicles). Data relating to driving speed and the parameters of the
model can be modified, but only those adopted in this study are herein reported.
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In the case of the comfort assessment, the modelled vehicle and the driving speed
played a pivotal role in calculating the vertical accelerations perceived by users because they
affected the transfer function of the pavement irregularities. In this respect, the contribution
of the punctual defects of the pavement cannot be overlooked in a proper evaluation of the
examined road section.

2.4. Straightedge Analysis for Stone Pavements

All the methods described in the previous sections allow for a global evaluation of
pavement branches for which one or more profiles are known, but when they are used to
evaluate the stone paving they have some limits that should be known. In the discussed
methods, the results can be influenced by the length of the pavement profile, and it is
not possible to identify the contribution of localized geometric defects unless sections
of pavement of limited length are cut (however, it is not advisable to go below 20 m).
Furthermore, IRI values depend on the position where the localized irregularity occurs
(i.e., potholes or bumps, if at the beginning or the end of the profile).

In the case of the comfort assessment, the vehicle used to calculate the vertical acceler-
ation bearing by the user plays a fundamental role for its physical-geometric characteristics
and the driving speed as these parameters determine the transfer function of the pavement
irregularities. This method also gives a global evaluation of the examined section, and, with
difficulty, it is possible to identify the contribution of the punctual defects of the pavement.
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For stone pavements, it is necessary to overcome the discussed issues with a method
capable of evaluating the effects of localized irregularities. Therefore, this study proposes
an innovative approach derived from [49] to identify the position of the most severe
irregularities that must be restored. The proposed method is based on the geometric
analysis of the true profile of the road collected by profilometric instruments in contact or
by 3D surface surveys [64] that allow the extraction of profiles with adequate resolution.
The global evaluation of stone pavements consists of the measurement of Bump Heights
(BHs) using different theoretical lengths of straightedge (SLi) that connect two generic
points of the L-long profile. The measurement of the BH is carried out for all the possible
straightedges, whose lengths range between the minimum value SLmin (SLmin = 2·∆x) and
the maximum one (SLmax), with step ∆x. Equation (13) gives the total number of SLi (NSL):

NSL =
SLmax − SLmin

∆x
+ 1 (13)

For example, if ∆x = 0.25 m and SLmax = 3 m a total of 11 NSL should be considered.
Therefore, a true profile can be reduced to L

∆x + 1 points (Xj, Yj) where j = 1, 2, . . . , L
∆x + 1.

For each profile point the straightedge should be positioned to link two points (e.g., Xs, Ys
and Xt, Yt such that t > s).Therefore, for each Xj with s ≤ j ≤ t, the Bump Height is the
difference between Yj and the corresponding straightedge elevation in Xj. Each BH value
can be associated to a Bump Length (BL) that is the distance between the Xj point where the
BH occurs and the closest of the straightedge extremes. It has to be noted that BL ranges
between the minimum value (BLmin) equal to ∆x and the maximum value (BLmax) equal
to SLmax/2. This analysis should be implemented for all the defined SLi. For example,
Figure 5 represents a true road profile (black line) investigated with ∆x = 0.25 m, and
different straightedges (dotted red lines) whose lengths are d = 1.5 m; m = 2 m; n = 0.75 m,
o =1 m; p = 0.5 m; q = 0.5 m; r = 0.5 m.
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Figure 5. Example of BL, BH and SL in a true pavement profile.

For each point (Xj, Yj), pairs of BL and BH values are identified; values equal to 0
refer to non-measurable points (Figure 6). For each BLk (with k = 1, . . . , NSL + 1/2), the
maximum and average BH values are calculated as BHmax and BHavg, respectively.
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Figure 6. BL and BH, BLavg, BHavg, BLmax, and BHmax.

Finally, the pairs BLk, BHmax,k as well as BLk, BHavg,k are represented in a scatterplot
to identify the irregularities of the profile. For example, the Figure 7 shows the curves
based on SLmax equal to 12 m and referring to a true measured profile.
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Figure 7. Example of BH curves calculated with SLmax = 12 m.

In order to evaluate the effect of irregularities on wavelengths comparable to the
dimensions of the vehicle, the proper choice of SLmax is in accordance with the expected
traffic. In the event of roads travelled by vehicles with very different pitches, it is better to
draw BH curves considering SLmax according to the vehicle pitches.

Therefore, in this paper, the authors provide a reference length SLmax for three typical
vehicles in the urban environment (Figure 8):

• Bike SLmax = 1 m (BLmax = 0.5 m);
• Automobile SLmax = 3 m (BLmax = 1.5 m);
• Bus SLmax = 6 m (BLmax = 3 m).
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Figure 8. The effect of irregularities on wavelengths comparable to the dimensions of the vehicles.

In regards to less than 0.5 m BL values, it was appropriate to refer to the value of
BH determined with SLmax = 1 m because they were representative of the real travel
conditions for the bike category. On the other hand, BL values between 0.5 and 1.5 m
were properly obtained considering SLmax = 3 m in order to identify the wavelengths
that affected the riding conditions of automobiles. For buses, BL values between 1.5 and
3.0 m were considered. The envelope of all the BH curves enabled us to synthesize the
geometric analysis of the examined pavement profile. The final BH curves were composed
of branches from the BH curves obtained for each modelled vehicle (Emax and Eavg from
BHmax and BHavg curves, respectively), having regard to the discussed BL ranges. Figure 9
represents Eavg (green solid curve) derived from bike BHavg (dotted blue curve), automobile
BHavg (dotted black curve) and bus BHavg (dotted red curve), and Emax (yellow solid curve)
derived from bike BHmax (dashed blue curve), automobile BHmax (dashed black curve) and
bus BHmax (dashed red curve).
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Figure 9. Example of BH envelope curves.

According to Figure 9, the envelope curves are not continuous for BL values equal to
0.5 m and 1.5 m corresponding to the vehicle category change that occurs (bike/automobile
and automobile/bus).

3. Conclusions

In recent years, the interest in stone pavements has grown because of their historic
heritage and physical properties, as well as environmental issues. Due to their resistance,
stone pavers generally require limited and timely interventions to restore defects that
cause unsafe or uncomfortable journeys. However, no standard monitoring methods or
criteria for evaluating stone pavements are available in the scientific literature to assess
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their functional performance and implement a pavement management system. The current
lack of an effective assessing method for this type of pavement has consequences in terms
of road safety and cost management.

Several methods allow for measuring and assessing irregularities of asphalt and concrete
pavements; these methods provide different approaches based on the geometric profiles de-
tected. In particular, in this paper, four methods have been investigated to describe pavement
unevenness: the International Roughness Index, the surface profile classification according
to ISO 8608, the vehicle mechanical model to evaluate the comfort index according to ISO
2631-1 (awz), and SASP, which is able to evaluate the effect of localized irregularities. This
paper provides a critical analysis of both traditional and innovative methods of monitoring
stone pavements by measuring and assessing their irregularities in order to then implement
a pavement management system. IRI is defined for continuous pavements and does not
provide thresholds valid for modular pavements; the classification according to ISO 8608
allow comparison between pavements but it does not support the maintenance decisions of
road managers; the analysis according to ISO 2631-1 uses vehicle mechanical models (in this
study, bikes, automobiles, and buses) to investigate riding conditions, but it does not allow
identification of single defects to be restored.

This study focuses on the definition of SASP to overcome these aforementioned
limitations. SASP allows for the identification of the most severe irregularities (for example
with respect to the running conditions of the vehicles) and also their position. It will
be implemented in the second part of the paper, and threshold curves will be proposed
for different vehicles and operating conditions. In particular, several urban profiles have
been investigated to evaluate the effects of localized irregularities taking into account
different urban users (bike, automobile, and bus). The results, presented in part II, allowed
the authors to propose four classes to describe geometric and comfort stone pavement
conditions that consider also their effects on vulnerable road users.
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Figure A1. 8 dof mechanical automobile/bus model.

Elements of the Matrices

A1,1 = 0 A1,2 = 1 A1,3−16 = 0

A2,1 = −(ks1 + ks2 + ks3 + ks4 + k)/m A2,2 = −(cs1 + cs2 + cs3 + cs4 + c)/m A2,3 = ks1/m A2,4 = cs1/m

A2,5 = ks2/m A2,6 = cs2/m A2,7 = ks3/m A2,8 = cs3/m A2,9 = ks4/m A2,10 = cs4/m

A2,11 = (−ks1·L1,2
G − ks2·L1,2

G + ks3·L3,4
G + ks4·L3,4

G − k·LS,G
L )/m

A2,12 = (−cs1·L1,2
G − cs2·L1,2

G + cs3·L3,4
G + cs4·L3,4

G − c·LS,G
L )/m

A2,13 = (ks1·L1,3
G − ks2·L2,4

G + ks3·L1,3
G − ks4·L2,4

G + k·LS,G
T )/m

A2,14 = (cs1·L1,3
G − cs2·L2,4

G + cs3·L1,3
G − cs4·L2,4

G + k·LS,G
T )/m A2,15 = k/m A2,16 = c/m

A3,1−3 = 0 A3,4 = 1 A3,5−16 = 0

A4,1 = ks1/mt1 A4,2 = cs1/mt A4,3 = −(kt1 + ks1)/mt1 A4,4 = −cs1/mt1 A4,5−10 = 0

A4,11 = ks1·L1,2
G /mt1 A4,12 = cs1·L1,2

G /mt1 A4,13 = −ks1·L1,3
G /mt1 A4,14 = −cs1·L1,3

G /mt1 A4,15−16 = 0

A5,1−5 = 0 A5,6 = 1 A5,7−16 = 0

A6,1 = ks2/mt2 A6,2 = cs2/mt2 A6,3−4 = 0 A6,5 = −(kt2 + ks2)/mt2 A6,6 = −cs2/mt2 A6,7−10 = 0
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A6,11 = ks2·L1,2
G /mt2 A6,12 = cs2·L1,2

G /mt2 A6,13 = ks2·L2,4
G /mt2 A6,14 = cs2·L2,4

G /mt2 A6,15−16 = 0

A7,1−7 = 0 A7,8 = 1 A7,9−16 = 0

A8,1 = ks3/mt3 A8,2 = cs3/mt3 A8,3−6 = 0 A8,7 = −(kt3 + ks3)/mt3 A8,8 = −cs3/mt3 A8,9−10 = 0

A8,11 = −ks3·L3,4
G /mt3 A8,12 = −cs3·L3,4

G /mt3 A8,13 = −ks3·L1,3
G /mt3 A8,14 = −cs3·L1,3

G /mt3 A8,15−16 = 0

A9,1−9 = 0 A9,10 = 1 A9,11−16 = 0

A10,1 = ks4/mt4 A10,2 = cs4/mt4 A10,3−8 = 0 A10,9 = −(kt4 + ks4)/mt4 A10,10 = −cs4/mt4

A10,11 = −ks4·L3,4
G /mt4 A10,12 = −cs4·L3,4

G /mt4 A10,13 = ks4·L2,4
G /mt4 A10,14 = cs4·L2,4

G /mt4 A10,15−16 = 0

A11,1−11 = 0 A11,12 = 1 A11,13−16 = 0

A12,1 = (−ks1·L1,2
G − ks2·L1,2

G + ks3·L3,4
G + ks4·L3,4

G − k·LS,G
L )/Jθ

A12,2 = (−cs1·L1,2
G − cs2·L1,2

G + cs3·L3,4
G + cs4·L3,4

G − c·LS,G
L )/Jθ A12,3 = ks1·L1,2

G /Jθ A12,4 = cs1·L1,2
G /Jθ

A12,5 = ks2·L1,2
G /Jθ A12,6 = cs2·L1,2

G /Jθ A12,7 = ks3·L3,4
G /Jθ A12,8 = cs3·L3,4

G /Jθ A12,9 = ks4·L3,4
G /Jθ

A12,10 = cs4·L3,4
G /Jθ A12,11 = −(ks1·L1,22

G + ks2·L1,22

G + ks3·L3,42

G + ks4·L3,42

G + k·LS,G2

L )/Jθ

A12,12 = −(cs1·L1,22

G + cs2·L1,22

G + cs3·L3,42

G + cs4·L3,42

G + c·LS,G2

L )/Jθ

A12,13 = (ks1·L1,2
G ·L

1,3
G − ks2·L1,2

G ·L
2,4
G − ks3·L1,3

G ·L
3,4
G + ks4·L2,4

G ·L
3,4
G + k·LS,G

L ·L
S,G
T )/Jθ

A12,14 = (cs1·L1,2
G ·L

1,3
G − cs2·L1,2

G ·L
2,4
G − cs3·L1,3

G ·L
3,4
G + cs4·L2,4

G ·L
3,4
G + c·LS,G

L ·L
S,G
T )/Jθ A12,15 = k·LS,G

L /Jθ

A12,16 = c·LS,G
L /Jθ

A13,1−13 = 0 A13,14 = 1 A13,15−16 = 0

A14,1 = (ks1·L1,3
G − ks2·L2,4

G + ks3·L1,3
G − ks4·L2,4

G − k·LS,G
T )/Jα

A14,2 = (cs1·L1,3
G − cs2·L2,4

G + cs3·L1,3
G − cs4·L2,4

G − c·LS,G
T )/Jα A14,3 = −ks1·L1,3

G /Jα A14,4 = −cs1·L1,3
G /Jα

A14,5 = ks2·L2,4
G /Jα A14,6 = cs2·L2,4

G /Jα A14,7 = −ks3·L1,3
G /Jα A14,8 = −cs3·L1,3

G /Jα A14,9 = ks4·L2,4
G /Jα

A14,10 = cs4·L2,4
G /Jα A14,11 = (ks1·L1,2

G ·L
1,3
G − ks2·L1,2

G ·L
2,4
G − ks3·L1,3

G ·L
3,4
G + ks4·L2,4

G ·L
3,4
G + k·LS,G

L ·L
S,G
T )/Jα

A14,12 = (cs1·L1,2
G ·L

1,3
G − cs2·L1,2

G ·L
2,4
G − cs3·L1,3

G ·L
3,4
G + cs4·L2,4

G ·L
3,4
G + c·LS,G

L ·L
S,G
T )/Jα
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A14,13 = −(ks1·L1,32

G + ks2·L2,42

G + ks3·L1,32

G + ks4·L2,42

G + k·LS,G2

T )/Jα

A14,14 = −(cs1·L1,32

G + cs2·L2,42

G + cs3·L1,32

G + cs4·L2,42

G + c·LS,G2

T )/Jα A14,15 = −k·LS,G
T /Jα A14,16 = c·LS,G

T /Jα

A15,1−15 = 0 A15,16 = 1

A16,1 = k/ms A16,2 = c/ms A16,3−10 = 0 A16,11 = k·LS,G
L /ms A16,12 = c·LS,G

L /ms A16,13 = −k·LS,G
T /ms

A16,14 = −c·LS,G
T /ms A16,15 = −k/ms A16,16 = −c/ms

B1−3,1−4 = 0 B4,1 = kt1/mt1 B4,2−4 = 0 B5,1−4 = 0 B6,1 = 0 B6,2 = kt2/mt2 B6,3−4 = 0 B7,1−4 = 0

B8,1−2 = 0 B8,3 = kt3/mt3 B8,4 = 0 B9,1−4 = 0 B10,1−3 = 0 B10,4 = kt4/mt4·B11−16,1−4 = 0

C1,1−2 = 0 C1,3 = kt1 C1,4−16 = 0 C2,1−4 = 0 C2,5 = kt2 C2,6−16 = 0 C3,1−6 = 0 C3,7 = kt3 C3,8−16 = 0

C4,1−8 = 0 C4,9 = kt4 C4,10−16 = 0

D1,1 = −kt1 D1,2−4 =0 D2,1 =0 D2,2 = −kt2 D2,3−4 =0 D3,1−2 =0 D3,3 = −kt3 D3,4 = 0 D4,1−3 = 0

D4,4 = −kt4

as(t) =
k·[z(t)− zs(t)]− r·

[ .
zs(t)−

.
z(t)

]
+ k·

[
LS,G

L ·θ(t)− LS,G
T ·α(t)

]
− r
[

LS,G
T ·

.
α(t)− LS,G

L ·
.
θ(t)

]
ms

Table A1. Automobile Data.

Symbol Value Unit Description

ms 100 kg Driver body mass

m 1300 kg Sprung vehicle mass

mt,1 40 kg Tire front/left–unsprung mass 1

mt,2 40 kg Tire front/right–unsprung mass 2

mt,3 35 kg Tire rear/left–unsprung mass 3

mt,4 35 kg Tire rear/right–unsprung mass 4

Jθ 2700 kg m2 Body (automobile) sprung mass pitch moment of inertia

Jα 400 kg m2 Body (automobile) sprung mass roll moment of inertia

p 2.59 m Automobile wheelbase

L1,2
G 1.0 m Distance between front-axle/CG

L3,4
G 1.59 m Distance between rear-axle/CG

L1,3
G 0.8 m Axle semi width (left)

L2,4
G 0.8 m Axle semi width (right)
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Table A1. Cont.

Symbol Value Unit Description

LS,G
L 0.2 m Longitudinal distance between seat/CG

LS,G
T 0.4 m Transversal distance between seat/CG

ks,1 38,889 N/m Spring constant suspension front/left (1)

ks,2 38,889 N/m Spring constant suspension front/right (2)

ks,3 35,000 N/m Spring constant suspension rear/left (3)

ks,4 35,000 N/m Spring constant suspension rear/right (4)

kt,1 200,000 N/m Spring constant tire front/left (1)

kt,2 200,000 N/m Spring constant tire front/right (2)

kt,3 200,000 N/m Spring constant tire rear/left (3)

kt,4 200,000 N/m Spring constant tire rear/right (4)

k 87,464 N/m Spring constant seat

cs,1 1400 N s/m Damping constant suspension front/left (1)

cs,2 1400 N s/m Damping constant suspension front/right (2)

cs,3 1400 N s/m Damping constant suspension rear/left (3)

cs,4 1400 N s/m Damping constant suspension rear/right (4)

c 3000 N s/m Damping constant seat driver

z var m Body vertical motion coordinate (1-dof)

z1 var m Front/left wheel vertical motion coordinate (2-dof)

z2 var m Front/right wheel vertical motion coordinate (3-dof)

z3 var m Rear/left wheel vertical motion coordinate (4-dof)

z4 var m Rear/right wheel vertical motion coordinate (5-dof)

zs var m Seat vertical motion coordinate (6-dof)

α var rad Body roll motion coordinate (7-dof)

θ var rad Body pitch motion coordinate (8-dof)

zv,1 var m Road profile elevation–front/left

zv,2 var m Road profile elevation–front/right

zv,3 var m Road profile elevation–rear/left

zv,4 var m Road profile elevation–rear/right

Table A2. Bus Data.

Symbol Value Unit Description

ms 100 kg Driver body mass

m 15,890 kg Sprung vehicle mass

mt,1 373 kg Tire front/left–unsprung mass 1

mt,2 373 kg Tire front/right–unsprung mass 2

mt,3 678 kg Tire rear/left–unsprung mass 3

mt,4 678 kg Tire rear/right–unsprung mass 4

Jθ 150,000 kg m2 Body (automobile) sprung mass pitch moment of inertia

Jα 13,000 kg m2 Body (automobile) sprung mass roll moment of inertia
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Table A2. Cont.

Symbol Value Unit Description

p 5.65 m Bus wheelbase

L1,2
G 3.61 m Distance between front-axle/CG

L3,4
G 2.04 m Distance between rear-axle/CG

L1,3
G 1.0 m Axle semi width (left)

L2,4
G 1.0 m Axle semi width (right)

LS,G
L 0.8 m Longitudinal distance between seat/CG

LS,G
T 0.5 m Transversal distance between seat/CG

ks,1 175,000 N/m Spring constant suspension front/left (1)

ks,2 175,000 N/m Spring constant suspension front/right (2)

ks,3 408,650 N/m Spring constant suspension rear/left (3)

ks,4 408,650 N/m Spring constant suspension rear/right (4)

kt,1 1,000,000 N/m Spring constant tire front/left (1)

kt,2 1,000,000 N/m Spring constant tire front/right (2)

kt,3 2,000,000 N/m Spring constant tire rear/left (3)

kt,4 2,000,000 N/m Spring constant tire rear/right (4)

k 40,000 N/m Spring constant seat

cs,1 40,000 N s/m Damping constant suspension front/left (1)

cs,2 40,000 N s/m Damping constant suspension front/right (2)

cs,3 45,973 N s/m Damping constant suspension rear/left (3)

cs,4 45,973 N s/m Damping constant suspension rear/right (4)

c 220 N s/m Damping constant seat driver

z var m Body vertical motion coordinate (1-dof)

z1 var m Front/left wheel vertical motion coordinate (2-dof)

z2 var m Front/right wheel vertical motion coordinate (3-dof)

z3 var m Rear/left wheel vertical motion coordinate (4-dof)

z4 var m Rear/right wheel vertical motion coordinate (5-dof)

zs var m Seat vertical motion coordinate (6-dof)

α var rad Body roll motion coordinate (7-dof)

θ var rad Body pitch motion coordinate (8-dof)

zv,1 var m Road profile elevation–front/left

zv,2 var m Road profile elevation–front/right

zv,3 var m Road profile elevation–rear/left

zv,4 var m Road profile elevation–rear/right
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