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Abstract: The transportation sector is one of the primary sources of air pollutants in megacities. Strict
regulations of newly added vehicles to the local market require precise prediction models of their
fuel consumption (FC) and emission rates (ERs). Simple empirical and complex analytical models
are widely used in the literature, but they are limited due to their low prediction accuracy and high
computational costs. The public literature shows a significant lack of machine learning applications
related to onboard vehicular emissions under real-world driving conditions due to the immense costs of
required measurements, especially in developing countries. This work introduces random forest (RF)
ensemble models, for the urban areas of Greater Cairo, a metropolitan city in Egypt, based on large
datasets of precise measurements using 87 representative passenger cars and 10 typical driving routes.
Five RF models are developed for predicting FC, as well as CO2, CO, NOx, and hydrocarbon (HC)
ERs. The results demonstrate the reliability of RF models in predicting the first four variables, with
up to 97% of the data variance being explained. Only the HC model is found less reliable due to
the diversity of considered vehicle models. The relative influences of different model inputs are
demonstrated. The FC is the most influential input (relative importance of >23%) for CO2, CO, and
NOx predictions, followed by the engine speed and the vehicle category. Finally, it is demonstrated
that the prediction accuracy of all models can be further improved by up to 97.8% by limiting the
training dataset to a single-vehicle category.

Keywords: vehicle; emission rate; fuel consumption; prediction; Greater Cairo

1. Introduction

The number of vehicles running on fossil fuels is globally increasing with increasing
living standards and urbanization rates [1]. The emission rates (ERs) of such vehicles
are also progressively increasing, raising global concerns about the environmental impact
of the transportation sector, especially in mega and metropolitan cities [2]. The ERs of
vehicles, including that of carbon monoxide (CO), carbon dioxide (CO2), and nitrogen
oxides (NOx), depend on many factors (e.g., factors related to vehicle design and age).
In contrast, others are related to driving conditions, such as driving mode (e.g., idling,
acceleration, deceleration, and cruise), ambient conditions, road grade/architecture, traffic
conditions, and behavior of the drivers [3,4]. Different codes and standards have been
proposed or put in action, mostly in the United States (US) and the European Union (EU),
to limit the environmental impact of the transportation sector on public health in urban
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areas. However, any measure to be taken in this regard requires precise measurements
and accurate tools for quantifying the on-road ERs to enable certifications and other
legislative actions [5].

Due to the complexity, costs, and skilled labor required for such measurements,
predictive models are becoming increasingly popular among researchers and stakeholders,
especially in the era of artificial intelligence and the internet-of-things. Smit et al. [6]
classified the models used for predicting vehicular emissions based on the model type,
accuracy level, and the set of inputs required for making estimates. They showed that by
far, the ‘modal’ and the simple average speed models are the most popular for practical
purposes nowadays. However, these models suffer from low accuracy, especially for short-
term predictions [7]. Furthermore, most of the models developed in the literature are
primarily used for predicting CO2 release rates, with less attention paid to other emissions,
such as CO, hydrocarbons (HC), and NOx, which arguably have a higher impact on public
health [8]. Part of the reason behind this is the weaker correlations between the rates of
these emissions and the commonly used engine parameters, such as engine torque and
speed, compared to CO2 [5].

Although empirically developed models are limited in terms of accuracy, analytical
models excel in this regard. However, analytical models are more complex to develop and
use since they require multiple specific inputs that depend on the vehicle under study. Their
accuracy comes from the fact that they comprise sub-models of fluid flow, heat transfer,
energy balances, and combustion reactions, making them computationally intensive and
too specific for general use of on-road and real-time prediction purposes, which are the
applications targeted in this study [5,9]. However, data-driven machine learning models
are expected to solve such problems with non-linear correlations between the model input
and output, especially when trained using comprehensive and sufficiently sized datasets.

Various studies have been reported in the literature for predicting vehicular ERs,
yet most of those studies were dedicated to estimating the emissions of certain combi-
nations of engine and fuel types. Most of those studies were also carried out on engine
test beds, rather than real-world conditions. Molkdaragh et al. [10] used wavelet neural
networks and a stochastic gradient algorithm to correlate the engine power, consumed
fuel, emission production, and the concentration of nanoparticles at different speeds for
a compression ignition engine working with a nanoparticle diesel fuel. The superiority
of the selected algorithm over the back-propagation network and the non-linear autore-
gressive network with exogenous input (NARX) was demonstrated. The multi-layered
perceptron neural network was adopted in another study by Saraee et al. [11] for correlating
engine power and ERs with concentrations of cerium oxide nanoparticles in diesel fuel.
Domínguez-Sáez et al. [12] adopted artificial neural networks and symbolic regression
techniques for predicting the CO2 and NOx emissions of a 2.0 Euro 4 engine working with
pure diesel and animal fat fuels and running on a dynamometer test with the NEDC cycle.
Table 1 shows a summary and comparison of the popular algorithms used in the literature
for estimating vehicles’ FC and ERs.

Table 1. Comparison between the commonly used algorithms in the literature for the prediction of
FC and ERs in vehicles.

Algorithm Advantages Limitations Example Studies

Artificial neural networks (ANN)

• Suitable for complex
non-linear problems

• Widely employed in
the literature

• Successfully used for
different problems

• Likely to overfit
• Requires large training datasets
• Could converge to local minima

[2,9,13,14]
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Table 1. Cont.

Algorithm Advantages Limitations Example Studies

Support vector machines (SVM)

• High prediction accuracy
• Highly stable
• More likely to converge into

the global minimum
• Better performance with

limited-size datasets
• Better generalization accuracy

• Higher computational cost in
optimizing hyperparameters

• Needs kernel functions
[13,15,16]

Extreme learning machine (ELM)
• High accuracy levels
• Less tendency to converge

into local minima

• Could be less accurate than
ANN in complex problems [17]

Gradient boosting (GP)
• Intuitive and

simple algorithm
• Less tendency to overfit

• Needs extensive
hyperparameter optimization

• Less accurate with large datasets
[18]

Random forest (RF)

• Easier hyperparameter
tuning compared to GP

• More stable
• Accepts both numerical and

categorical inputs

• Slow training and predictions
when using large numbers of
decision trees

• Less accurate than ANN
and SVM

[13,19–21]

K-nearest neighbor (KNN)
• Institutive and simple
• No learning costs
• Robust to outliers

• Less suitable for large and
complex datasets

• Intense training costs for
large datasets

• Sensitive to irrelevant or
inter-correlated inputs

[15]

Prediction of real-time exhaust emissions under different traffic conditions started to
grab the attention of researchers only recently due to the undeniable deviations between
synthetic driving cycles of dynamometer tests and real-world driving [22]. For instance,
Ramos et al. [23] compared the real-world driving NOx emissions of light-duty diesel fuel
with the emissions of the same vehicle when running on the new European driving cycle,
and revealed a significant difference between the two sets of results. However, available
studies that tried to take advantage of the capability of data-driven algorithms in simulating
highly stochastic, high-dimensional, real-world vehicles’ data are rare. Wang et al. [9]
developed a vehicle-specific power (VSP)-based neural network model for estimating the
emissions of different types of buses operating with different fuels in Zhenjiang, China.
Jaikumar et al. [24] developed another neural network-based model for estimating the
emissions of passenger cars running on urban roads in India. On-board measurements were
used to train the model based on the inputs of the vehicle’s speed, revolutions per minute,
and specific power. Antanasijević et al. [25] developed a general regression neural network
for estimating the emissions of vehicles based on acquired data from 26 European countries.
All estimations were found in good agreement with measured data, except for NOx and
non-methane volatile organic compounds. Azeez et al. [26] developed a hybrid model
of correlation-based feature selection, support vector machines (SVM), and geographical
information system (GIS) data to predict on-road vehicles’ emissions at specific times and
locations in Kuala Lumpur. Moradi and Miranda-Moreno [27] found that the category-
specific long short-term memory (LSTM) model outperforms classic approaches in the
literature for forecasting the fuel consumption (FC) and ERs of 35 vehicles in three cities in
Canada, Iran, and Colombia. As stated in Table 1, random forest (RF) ensembles are known
to be equally precise and stable in similar problems [28]. They have been used in scarce
studies, as demonstrated in Table 2. It should be noted that the studies summarized in this
table have several significant differences other than what is stated in the table, such as the
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approach and frequency of collecting the data, and the techniques for model development
and construction.

Table 2. Summary of the studies in the literature on using RF techniques for predicting vehicles’ FC
and ERs.

Authors Predicted Variables Model Inputs Fleet of Vehicles Location Model Accuracy

Qiao et al. [20] HC, CO, NOx, CO2,
and FC

Speed, acceleration,
VSP, and roughness
of the road.

One vehicle Texas Root mean square
error < 6.4%

Yao et al. [13] FC

Driving data
collected from phone
application
(idle time,
speed, acceleration,
deceleration, etc.).

20 taxis (same
vehicle type) Beijing

Mean absolute
error < 10%
(better than ANN
and SVM)

Gong et al. [21] FC

21 inputs, including
truck specifications,
weather, road
features, and
vehicle status.

34 diesel trucks Jinan, China

Prediction
accuracy of 86.6%
(better than ANN
and decision trees)

Massoud et al. [29] FC

Vehicle speed, the
rotational speed of
the engine, and
throttle position.

Collected data
from Envirocar
database

-

Coefficients of
determination up
to 89.6% (better
than fuzzy logic)

Yang et al. [30] FC

64 inputs of location,
vehicle specifications,
driving conditions,
and weather. Data
were collected from
a phone application.

Gasoline vehicles China

Mean absolute
percentage error of
7.5% and coefficient
of determination of
77.6% (better than
the five
other algorithms)

Based on this survey of the public literature, it can be stated that:

i. There is an apparent lack of studies on data-driven models of on-road vehicle
emissions rather than emissions of engines running on testbeds due to the immense
costs of required measurements, especially in urban areas of developing countries.

ii. For Egypt, such studies are completely lacking, where classic models are used
instead, which deviate significantly from real-world driving conditions [3].

iii. The limited available models of on-road ERs are typically developed based on
measurements carried out for specific vehicles or a limited fleet of vehicles, such
as in [20], which limits their extrapolation potential to other vehicles in use in the
same area.

iv. Furthermore, these studies are mostly adopting ANN-based models for this
purpose, which are known to be prone to overfitting and lack accuracy when
carelessly developed.

v. The RF technique has been employed in [20] for one vehicle, but its potential in
handling large datasets for a diverse fleet of vehicles is still to be addressed.

vi. Vehicle category-based models seem to be a good compromise between vehicle-
specific models and region-specific models in terms of accuracy and ability to
generalize. RF excels in accepting both numerical and categorical inputs while
having unbiased estimates. Yet, this has not been explored in the context of the
present study to the best of the authors’ knowledge.

Motivated by the aforementioned research gap, the potential of the RF ensemble
technique in estimating FC and on-road emissions of different categories of passenger
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vehicles is investigated in this study. The novelty and contributions of the study can be
summarized as follows:

a. Five ensemble models are developed and validated carefully to estimate FC and
emission rates (CO, CO2, NOx, and HC) for lightweight gasoline passenger cars in
the metropolitan region of Greater Cairo, Egypt.

b. The models are developed based on extensive and precise onboard measurements
from 87 vehicles driven over 10 different types of routes in the region.

c. The proposed models accept both numerical and categorical inputs, and the relative
impact of each input variable is demonstrated to examine the potential of simplifying
the models or testing their performance in case of incomplete data.

d. The models are also tested to evaluate their performances in terms of the dataset
size (e.g., in the case of limited collected data) and the number of sub-decision trees
(to evaluate the model robustness).

e. Finally, category-specific models were customized to check the possibility of increas-
ing prediction accuracy when focusing on specific vehicle weight, age, and engine
type combinations.

Therefore, the developed models can be viewed as sort of general models (in terms of
vehicle specifications), customized for the specific characteristics of the study location, or
other locations with similar traffic conditions, rather than for specific vehicles. The proposed
algorithm is relatively simple and intuitive compared with other data-driven algorithms
(such as ANNs), and can be adopted by interested researchers and engineers without deep
expertise in machine learning. Such models not only would serve as a valuable tool in
estimating the consumed energy and emitted pollutants in the transportation sector but
can also help policymakers in planning a more sustainable urban transportation sector.

2. Materials and Methods
2.1. Study Area

The study takes place in Greater Cairo (GC), which is a highly urbanized and densely
populated megacity, comprising multiple main cities in Egypt, such as Cairo, Giza,
6th of October, and El-Qalyubiyya. Egypt is known as the largest Middle Eastern coun-
try with a population of more than 100 million citizens and an annual increase in the
population of around 2.7%. Vehicle ownership comes at a rate of ~0.12 cars per capita. More
than 11.0 million vehicles are in use, and this number is increasing yearly at
a rate of ~10%. There are 51, 1, and 14% light-weight vehicles, city buses, and heavy-
weight vehicles among these vehicles. The rest of the vehicles are motorcycles and other
special-use vehicles [31].

Being an urban area in a developing country and one of the oldest and most populated
areas worldwide, the driving patterns and conditions in GC can be expected to significantly
deviate from those of developed countries. Specifically, the roads in GC are relatively
narrow, especially in residential areas. Over time, the road network has been expanding to
accommodate the increasing population, with heterogeneous traffic comprising vehicles
of different sizes and purposes, ranging from motorcycles to city buses. With the lack
of reliable automated traffic management systems in most streets, the driving process is
primarily non-lane-based, with generally slower vehicle speeds and higher ERs [3,31].
Traffic congestion can be particularly noticed in small arterials in low-income areas, where
the street is partially used for parking and marketing. In the same areas, there is a lack of
traffic lights and strictly identified pedestrian crossings, which results in aggressive driving
and frequent accelerations and decelerations with the semi-random crossing behaviors of
pedestrians. Last but not least, the Egyptian vehicular standards, despite being frequently
updated, are still falling behind those of the US or EU, where even vehicles manufactured
in the past century are still in use, resulting in higher ERs in the city [3,31].

The aforementioned key differences between the traffic conditions and road networks
in GC as a developing metropolitan area and similar urban areas in developed countries
make it challenging to accurately develop reliable models for the prediction of FC and ERs
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of vehicles. The models described in the following sections can be re-developed for other
regions worldwide, and they are expected to provide even more accurate estimates under
more regulated and predictable traffic conditions.

2.2. Field Investigation and On-Road Measurements

To represent the driving patterns in different areas of GC in a cost-effective way,
representative driving routes were identified by transportation experts as part of the
“Sustainable Transport Project for Egypt” project, as detailed in [3]. These routes were
selected based on different features, most notably the location, width, and the number
of lanes of the street, the nominal traffic conditions, and the type and level of income of
the surrounding areas. These routes are graphically shown in Figure 1. The 10 routes
were, respectively, covered by 803, 69, 75, 94, 87, 80, 79, 73, 79, 83, and 84 trips by the
vehicles described hereinafter, resulting in total distances of 4932, 203, 581, 506, 357, 121,
374, 1068, 860, 376, and 486 km. The reader is referred to [3] for more details on this route
selection process.

Figure 1. The examined routes, superimposed on the map of GC.

Only gasoline passenger vehicles are considered in this study since the number of
lightweight diesel vehicles is marginal in Egypt [32]. A field inventory followed by a
technical check was carried out to identify the most frequently used vehicles in GC. A total
of 87 cars were finally selected for the on-road measurements, as detailed in Table 3. The
table shows 18 categories of these vehicles based on their production year, size, and fuel
system. Each of the aforementioned routes was covered by at least 1 vehicle from each
category in Table 3.

The on-road measurements of vehicular fuel consumption (FC) and ERs were carried
out using the CATI’s OEM-2100AX® Axion unit [33,34], as shown in Figure 2. This unit
measures the carbon emissions (CO2 in g/s, CO in mg/s, and HC in mg/s) via a non-
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dispersive infrared gas analyzer. Meanwhile, an electrochemical sensor is employed for
measuring the NOx ER (in mg/s). Other measurements of the unit include the FC rate (g/s),
intake air flow rate (g/s), intake pressure (kPa), intake temperature (IAT, ◦C), intake relative
humidity (%), manifold pressure (MAP, kPa), and manifold temperature (◦C). The unit uses
the speed density method to determine the exhaust gas flow rate (g/s) [35]. The unit also
recorded the car speed (km/h), engine speed (RPM), location (longitude in ◦N, latitude in ◦E,
elevation in m above sea level, and local date and time using an integrated GPS unit). The
category of the car (based on year, size, and fuel system) was manually recorded.

Table 3. Size of the collected dataset (following preprocessing) and distribution of data points over
the 18 different vehicle categories.

Category Year Size Fuel System #Cars #Original Datapoints #Reduced Datapoints

1 >2001 Small MPI 2 21,737 3396
2 SPI 3 27,730 3690
3 CRB 3 18,648 2985
4 Medium MPI 21 191,153 28,666
5 SPI 4 40,318 6150
6 CRB 1 11,260 1689
7 Large MPI 3 29,926 4403
8 1991–2000 Small SPI 2 1168 200
9 CRB 9 79,751 12,100

10 Medium SPI 2 19,802 3587
11 CRB 5 41,524 6729
12 Large SPI 1 10,238 1484
13 1981–1990 Small CRB 10 104,272 15,135
14 Medium CRB 8 74,384 10,622
15 Large CRB 4 55,748 8591
16 <1980 Small CRB 2 17,180 2198
17 Medium CRB 3 28,812 3913
18 Large CRB 4 32,933 6061

Total 87 806,584 121,581

SPI: single-point injection; MPI: multiple-point injection; CRB: carburetor.

Figure 2. FC and ER measurements using OEM-2100AX unit.
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The measurements were performed on a 1.0 Hz basis during 106 weekdays (Sunday to
Thursday in Egypt), distributed over 14 months of field activities based on the availability
of the 87 vehicles (driven by their owners, rather than professionals). All measurements
were carried out during working hours (6:00 to 18:00). The unit was carefully checked
before any planned trip of each vehicle and was calibrated frequently, as detailed in [3]
based on the 2-point method [34].

2.3. Data Processing

The two steps of data processing and model development were carried out in MATLAB
R2020a. Data files of incomplete trips were entirely discarded in the later steps of the study.
A considerable fraction of the raw dataset was excluded based on the detected anomalies
or faulty data records (e.g., negative values), especially in the measured ERs due to drifts
in the sensors or errors in the unit’s setup. The data files were checked after each trip to
decide whether a calibration process was required. The final processed dataset, used for
training and testing the RF models, comprised a total of 803 round trips for a total distance
of ~4932 km over a total of ~255.56 h of driving.

2.4. Model Development and Evaluation
2.4.1. Decision Tree Regressor

The RF algorithm is an extension of the regression tree (RT) concept. Regression trees,
which were originally proposed by Breiman et al. [36], are simple, non-parametric methods
that apply the concept of recursive-partitioning regression, where the input space is split
into many smaller regions and the estimated output of each region is simply the average of
all observations falling in that region [37]. Starting with a single first decision (root), the RT
is grown to some terminal nodes, where the final decision is made, as illustrated in Figure 3.
Some decision nodes determine the outcome based on a splitting criterion between the
root and the terminal leaves. Typically, the split is made at the point that maximizes
the reduction in prediction error. For instance, at node t of an RT (T), the objective is to
determine the optimal split st for which splitting the input Nt samples into the left and
right branches (tL and tR) maximizes the drop ∆E(s, t) of an impurity/error measure E(t):

∆E(s, t) = E(t)− pLE(tL)− pRE(tR) (1)

where
pL = NtL /Nt (2)

pR = NtR /Nt (3)

RTs are grown until a predetermined number of observations at the terminal nodes is
obtained [38]. Detailed computations of RT regressors are provided in [39].

Figure 3. A schematic of the training and variable selection processes in the RF algorithm.
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2.4.2. Random Forest Ensemble

RTs are relatively weak and unstable learners. Fortunately, they can be used as base
learners in more powerful ensembles, such as the RF regressor [28]. In RF, many bootstrap
samples are drawn from the original dataset, and each sample is used to fully grow an
RT, as shown in Figure 3. The input variables selected at each decision node are randomly
selected to reduce the correlations between the different grown RTs. Eventually, each RT is
used to estimate the desired output, and the final prediction of RF is simply the average of
all RTs predictions (aggregation step) [36,38,39].

In RT-based ensembles, the bagging concept is the concept of aggregating the pre-
dictions of different weak sub-learners to come up with a strong global learner. For a
training dataset G = {(Xi, Yi), i = 1, . . . , n}, a B number of samples (bootstrap samples)
is extracted from the global dataset, where each bootstrap has the same distribution as
the original dataset. Then, these samples can be expressed as G∗b =

{(
Xi
∗b, Yi

∗b
)}

, and

each bootstrap (G∗b) is used to grow a different RT (T∗b) to build a new sub-learner µ̂∗b(X).
Therefore, the final estimation of the ensemble is simply the arithmetic average of the
estimates offered by all RTs, i.e., [36,38,39]:

µ̂bag(X) =
1
B

B

∑
b=1

µ̂∗b(X) (4)

Knowing that each RT is only trained by a subset of the data, the ensemble can be
evaluated using out-of-bag (OOB) observations. For a specific RT, OOB data points are
those excluded from the training dataset of that RT.

The RF algorithm extends the bagging concept by taking samples of the model inputs
at each node to make the optimal split (alongside taking samples of the training data). This
is to increase the diversity and decrease the inter-correlation of different grown RTs. Hence,
the steps of the algorithm can be briefed as shown below [36,38,39].

I. Consider a global training dataset G = {(Xi, Yi)}, with P representing the number
of model inputs, m standing for the number of model inputs used in each node
(i.e., m < P), and B standing for the number of bootstrap samples.

II. Repeat the following steps for b = 1, . . . , B:

a. Take a bootstrap sample (G∗b) without replacement from G, with a size n.
b. Pick m input variables from the total set of P of the model.
c. Use the bootstrapped data and the selected m variables to make the

best split.
d. Gradually grow the RT (T∗b) by making successive splits until one of the

stopping criteria is satisfied.
e. Create an independent random vector (θb) for T∗b, where the RT would be

defined as h(X, θb).

III. Feed the new input data X’ to all grown RTs so each can make a different estimate
of the predicted variable.

IV. Take the arithmetic average of the estimates offered by all RTs, as per Equation (5),
which would be the final estimation of the RF model [36,38,39].

Ŷ
(

‘
X
)
=

1
B

B

∑
b=1

h
(
X′, θb

)
(5)

Aside from using it as a predictive least-square-based algorithm for estimating the
emission factors, RF is also used for assessing the relative importance of input variables (I),
i.e., for determining the most influential input variables. According to Breiman [36], this is
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achieved by weighting the error drops p(t) ∆E(st, t) of all nodes t in which the variable Xp
is used as a splitting criterion, averaged over all RTs (NT) in the ensemble:

I
(
Xp
)
=

1
NT

NT

∑
T=1

∑
t∈T:v(st)=Xp

p(t) ∆E(st, t) (6)

where p(t) = Nt/N, i.e., the proportion of data points reaching the t split, while v(st) is
the variable used for splitting the input space at the t node. Of course, this can be achieved
using the RTs. However, due to the inherent instability of those learners, the estimated
relative influences are more likely to change from a grown RT to another one trained using
the same dataset [38,40].

2.4.3. Developed Model

Following the major objective of the study to develop global (independent of fuel
type/engine model), yet local (dependent on specific driving patterns in developing cities)
models of vehicle emissions, 4 models were developed for predicting the emission factors,
namely carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), and unburned
hydrocarbons (HC), using the RF algorithm. Eight candidate inputs (model year, vehicle
size, fuel system, vehicle speed, engine speed, VSP, FC, and engine stress) were selected
to develop the models as shown in Table 4. The first 3 inputs are categorical and their
values are based on the categories shown in Table 3. The model year or vehicle’s age value
can be very old (before 1980), old (1981–1990), new (1991–2000), or very new (after 2000).
The vehicle size value can be small, medium, or large. The fuel system value can be
SPI, MPI, or CRB (see Table 3). Meanwhile, the remaining inputs are numerical and their
descriptive statistics are provided in Table 4. All numerical inputs were measured except for
the vehicle-specific power (VSP in kW/ton) and the engine stress (Stress), both determined
here based on the EPA’s IVE model, as follows [41]:

VSP = 1.1 C S + 0.132 S + 0.000302 S3 + 9.81 tan−1(sin(RG)) (7)

Stress = iRPM + 0.08 PAP (8)

where S and C are the speed (m/s) and acceleration (m/s2) of the vehicle, respectively,
RG is the road grade (radians), iRPM is the RPM index, and PAP is the pre-average
power [3,41,42]. The fifth and last model of FC is developed using the same set of inputs,
except for the second last one (FC).

Table 4. A list of the inputs and outputs of the models developed for predicting ERs, alongside
their statistics.

Variable Unit Type
Original Dataset Reduced Dataset

Mean Median STD Mean Median STD

Outputs

CO2 g/s Numerical 1.071 0.645 1.275 1.072 0.692 1.185
CO mg/s Numerical 141.9 67.46 230.0 145.8 76.16 216.7

NOx mg/s Numerical 6.355 1.130 15.48 5.695 1.279 13.06
HC mg/s Numerical 14.59 5.860 40.41 15.67 6.530 43.33

Inputs

Model year - Categorical - - - - - -
Vehicle size - Categorical - - - - - -
Fuel system - Categorical - - - - - -

Vehicle speed km/h Numerical 19.27 14.10 18.08 16.76 12.367 16.22
Engine speed RPM Numerical 1628.6 1439.7 932.7 1633.4 1463.7 855.7

VSP kW/ton Numerical 0.892 0.000 5.824 0.419 0.000 6.145
FC g/s Numerical 0.419 0.270 0.449 0.422 0.290 0.417

Engine stress - Numerical 4.275 2.782 3.676 3.742 2.659 3.214
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It should be noted that these models aim to predict the rates (per unit time) at which
the vehicles consume fuel or emit pollutants. Hence, FC and CO2 are predicted in g/s
whereas CO, NOx, and HC are predicted in mg/s. Some studies in the literature present
these rates per unit distance (e.g., g/km). Such an estimation can still be undertaken using
the developed models via a simple conversion (as shown in [3] for example). Other studies
estimate trip energy consumption (TEC), which is a more suitable unit for other types of
vehicle, such as EVs [43], or city buses with fixed routes and schedules [44].

A 5th model has been developed using the same approach to predict the fuel
consumption (FC) of the vehicle in g/s based on the 7 inputs in Table 5. In the 4 aforemen-
tioned ER models, FC is considered a known model input. However, if both FC and ERs
are to be predicted simultaneously, the 5th model can be used first to estimate FC, and
then, these estimates of FC can be used in the first 4 models to estimate CO2, CO, NOx, and
HC. It should be noted that the models of the 5 variables (CO2, CO, NOx, HC, and FC) are
developed separately. In other words, each model has a single output (CO2, CO, NOx, HC,
or FC). The ER models accept the 8 inputs in Table 4, whereas the FC model accepts only
the 7 inputs in Table 5.

Table 5. A list of the output and inputs of the model developed for predicting FC, alongside
their statistics.

Variable Unit Type
Original Dataset Reduced Dataset

Mean Median STD Mean Median STD

Output FC g/s Numerical 0.419 0.270 0.449 0.422 0.290 0.417

Inputs

Model year - Categorical - - - - - -
Vehicle size - Categorical - - - - - -
Fuel system - Categorical - - - - - -

Vehicle speed km/h Numerical 19.27 14.10 18.08 16.76 12.367 16.22
Engine speed RPM Numerical 1628.6 1439.7 932.7 1633.4 1463.7 855.7

VSP kW/ton Numerical 0.892 0.000 5.824 0.419 0.000 6.145
Engine stress - Numerical 4.275 2.782 3.676 3.742 2.659 3.214

2.4.4. Computations and Model Evaluation

After the data preprocessing step described in Section 2.3, a data reduction step was
carried out for FC and ER modeling to reduce the computational costs of the data-driven
algorithm and to eliminate the influence of potential outliers on the predictive accuracy of
the developed models. The reduction was accomplished by averaging the 1.0 Hz sequential
observations corresponding to the same driving mode, i.e., idling, cruise, acceleration, and
deceleration. As shown in Table 4, this step considerably reduces the dataset size from
806,584 to 121,581 observations without significantly influencing the overall descriptive
statistics of the models’ inputs and outputs.

The training process starts by identifying the appropriate inputs among the 8 candidate inputs
discussed above. Next, the number of grown RTs and the maximum number of observations
at tree terminal leaves are set to 500 RTs (the significance of this number will be discussed
in Section 3.2) and 5 observations, respectively. The number of randomly selected inputs
at each split is set to one-third of the number of model inputs [45]. The reduced dataset
is then perturbed and split into 2 subsets for training and testing the models, with size
fractions of 0.7 and 0.3, respectively. The models’ training was carried out using custom
scripts, with the aid of the treebagger function in MATLAB R2020A®. Out-of-bag samples
from the training subset are used routinely to adjust the tree parameters to minimize the
cost function (mean squared error) and the training continues until the stopping criteria
are met. Finally, the testing subset is used to evaluate the performance of the trained model
in simulating new data that were not used in the training phase. The prediction accuracy is
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measured using 3 statistical indicators, namely: mean bias error (MBE), root mean squared
error (RMSE), and coefficient of determination (R2) [46–52], all defined as follows:

MBE =
∑N

n=1

(
Ôn −On

)
N

(9)

RMSE =

√√√√∑N
n=1

(
Ôn −On

)2

N
(10)

R2 = 1−
∑N

n=1

(
Ôn −On

)2

∑N
n=1
(
On −On

)2 (11)

In Equations (9)–(11), the actual and estimated outputs of the model are, respectively,
represented by On and Ôn, where n is the observation index (1 ≤ n ≤ N), and the number
of observations (N) is listed in Table 3. Meanwhile, On is the average of measured values.
Based on these equations, the model performs better as its MBE and RMSE measures
approach 0.0, and its R2 reaches to 1.0 [53].

3. Results and Discussion

As discussed previously, the RF algorithm is proposed for modeling emission factors
in Greater Cairo. Compared with other data-driven algorithms, the relatively stable nature
of the algorithm makes it a strong candidate for simulating highly stochastic datasets [28].

3.1. Overall Performance of the Models

At first, the five suggested models of FC and ERs (CO2, CO, NOx, and HC) were
developed using the complete list of inputs (seven and eight candidate inputs for FC
and ERs, respectively), with a model size of 500 RTs. The error values of the models are
provided in Table 6, whereas goodness-of-fit plots of the models are shown in Figure 4. In
this figure, the data points are distinguished by color based on whether they have been
used for training or testing the models. The figure shows different predictive accuracies
of the five models depending on the strength of correlations between the FC/ERs and the
proposed inputs. The CO2 model shows excellent estimations with correlation coefficients
of 0.989 and 0.972, corresponding to the training and testing datasets, accordingly. The
corresponding MBEs are nearly zero in both stages, whereas the RMSEs are lower than
0.2 g/s. Based on the R2 values, the model manages to explain more than 97% of the
variance in the two subsets. The close values of errors in the two phases suggest that the
model can be used for efficient prediction of CO2 emissions at such a large scale without
considerable overfitting.

Table 6. Error statistics of the five developed models. The mean bias error (MBE) and the root mean
square error (RMSE) have the same unit as the model output, whereas the coefficient of determination (R2)
is dimensionless.

Model
Training Errors Test Errors

MBE RMSE R2 MBE RMSE R2

CO2 0.000 0.126 0.989 0.003 0.194 0.972
CO −0.030 66.35 0.905 0.666 94.87 0.814

NOx 0.006 5.586 0.814 0.020 7.963 0.642
HC −0.007 22.82 0.683 0.004 41.17 0.301
FC 0.000 0.150 0.871 −0.001 0.214 0.735

Figure 5 further highlights the model’s accuracy by showing a series plot of
150 data points randomly selected (nonconsecutive) from the testing dataset. A very
strong agreement between the observed CO2 ERs and the corresponding predictions can be
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noticed. The nearly normal distributions of the training and prediction errors, as displayed
by the corresponding histogram, emphasize the proper training of the model as there are
no significant patterns in the residuals (centered around a zero value).

Figure 4. Correlations between observed and estimated ERs. Orange and violet colors indicate the
data points of the training and testing subsets of the data.

Figure 5. Left: series of 150 actual ER values against their corresponding predicted values.
Right: histograms of training and predicting errors.
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The second model shows less accurate, yet very good, estimations of CO ERs. The test
MBE and RMSE, respectively, are 0.666 and 94.871 mg/s. The model shows higher levels
of unexplained variance in the measured dataset, with a testing R2 of 0.814. This can be
noticed in the higher level of dispersion around the perfect model line (y = x). However,
the corresponding series plot in Figure 5 still shows a strong agreement between measured
and estimated values.

As for the NOx emissions, the developed model generally shows underestimations
in the range of high ERs, as displayed by the deviation of the data points away from the
reference line in Figures 4 and 5 for NOx rates higher than 50 mg/s. For lower ERs, the data
points are clustered around the reference line, but with a higher level of dispersion. Overall,
the model explains more than 64% of the variance of the input data, which is satisfactory
considering the high diversity in the used vehicles. On the other hand, the HC model seems
less reliable for predicting the unburned hydrocarbons in the considered scale, or with
the suggested inputs. It tends to overestimate the high HC rates. The test RMSE value is
almost double that of the training phase, showing a tendency to overfit new data. Figure 5
highlights the lower potential of this model in simulating high HC data points, compared
with the previous models. If the same model is fed with more homogenous data, e.g., data
from a few specific types of vehicles (especially new cars), it is expected to have higher
prediction accuracy. This is because the HC ER is less correlated to the adopted input
engine variables, compared with, e.g., CO2, especially in relatively old vehicles. Finally,
the FC model shows very good agreement with the observed data, showing a performance
comparable to that of the CO model. Specifically, it explains more than 73% of the variance
in the observed data, with a test RMSE of 0.214 g/s.

There are considerable differences between the models developed here and those of-
fered in previous studies (as shown in Table 2) in terms of the studied region, types of model
inputs, and dataset size and diversity. This does not allow for a fair direct comparison.
However, Table 6 shows that the dimensionless error levels reported here are competi-
tive. For instance, Table 6 demonstrates a testing coefficient of determination (R2) of 73.5%,
which is in the same order of magnitude as the one reported by Yang et al. [30], i.e., 77.6%.
Massoud et al. [29] reported larger R2 (up to 89.6) values, but this is due to the lower
resolution dataset they employed, making predictions relatively easier.

3.2. Impact of the Dataset Size and Number of RTs

The sensitivity of the developed models to the size of the dataset and the number
of RTs is shown in Figure 6 based on a different set of model training. The R2 value in
prediction is plotted against five values of ensemble size (50, 100, 200, 300, and 400 RTs)
and five values of the data fraction, i.e., the number of used data points divided by the
size of the reduced dataset (121,581 observations). The figure clearly shows that the
models’ performances are mostly insensitive to the number of observations if they are
sufficient and have the same characteristics as the original dataset (representative of the
population), which should justify the prior decision to reduce the dataset size saving
the computational costs. In this figure, the smallest considered fraction is 0.2, which
corresponds to 24,316 data points. On the other hand, the prediction accuracy is highly
dependent on the number of RTs, especially for CO, NOx, and HC models, previously
shown to be less accurate than the FC and CO2 models. All models showed some degree of
improvement in the prediction accuracy as the number of RTs increased, until the number
of trees came close to 500 trees, or even lower as in the case of the FC and HC models,
where no more significant increase is obtained. Model sizes up to 1000 RTs were tried to
make sure the developed models are not undertrained.
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Figure 6. Sensitivity of ensemble models to the dataset size and the number of RTs.

3.3. Relative Importance of Model Inputs

One of the merits of the RF algorithm is that it can be used to generate unbiased esti-
mates of the relative influences of all candidate inputs on the models’ output, as discussed
in Section 2.4.2. The relative influences of the suggested inputs of the FC and ER models
are illustrated in Figure 7. The figure shows that for CO2 emissions, the most influential
input is FC with a relative importance of ~48%, followed by the type of the fuel injection
system (System), which has considerably less influence compared to FC (~12% importance).
As for the CO emissions, FC, vehicle size, and engine speed are the top inputs, with
total relative influences of 59%. For the NOx emissions, FC is still the most influential
factor (~25%), followed by the model year, the type of fuel injection system, and the engine
speed (all ~15%). As for the HC emissions, the most influential variable is rather the
VSP (~20%), followed by the model year, FC, and the type of injection system. The results
presented in this figure could be used as a guide in developing similar models when not all
such measurements are available.

Figure 7. Relative importance of considered predictors on fuel consumption and emission rates.
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Figure 8 is provided to demonstrate the anticipated level of prediction accuracy when
only some of these inputs are used. To do so, eight models were trained and tested for
each emission factor and seven models were developed for FC. The number of inputs of
the eight models is increased from one to eight/seven. The first model of each emission
factor is based on the most influential input, as shown in Figure 7, and for each of the
following models, the next most important input is considered. As Figure 8 suggests, the
prediction accuracy increases, and the prediction errors decrease as the number of inputs
increases. This should be expected since machine learning models are generally greedy
for high-dimensional input data. However, the accuracy of the ER models tends to stall at
seven inputs, meaning that the engine stress can be safely removed from the list of input
parameters without jeopardizing the models’ performances. The increase in training and
prediction errors of most models with two or three inputs is attributed to the addition
of categorical variables, whose values are not as diverse as those of numerical variables.
Hence, it is recommended to consider categorical inputs only when at least three other
continuous inputs are available.

Figure 8. The variation of the prediction accuracy with the number of explanatory variables.
Blue and red curves represent the RMSE and R2 metrics (left and right axes, respectively). The
solid and dash lines represent the training and testing phases of the model, respectively.

3.4. Prediction Accuracy for Different Vehicle Categories

As discussed before, the prediction accuracy of the developed models is not expected
to be as high as those of models developed for specific combinations of engine and fuel
types using measurements made in the laboratory environment. The only exception was
the CO2 model, which was superior due to the high correlation between FC/ERs and the
selected inputs. This issue is further addressed in Figure 9, which shows the prediction
errors of 18 category-based models, compared to those of the previously discussed models
of all categories. These are the same categories shown in Table 3. In these models, the first
three categorical inputs (model year, vehicle size, and type of fuel system) were omitted
since they have the same value in the training and testing datasets of each model, and each
ER model has been developed using the other five (numerical) inputs (Speed, RPM, VSP,
FC, Stress). Meanwhile, the FC model was developed using Speed, RPM, VSP, and Stress
as inputs. For these models, the original dataset has been used instead of the reduced
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dataset because some categories have limited numbers of data points in the reduced dataset,
such as the 8th category (see Table 3). By inspecting Figure 9, it can be noticed that the
accuracy of the developed models is highly dependent on the characteristics of the vehicles.
The MBEs can be higher or lower than those of the all-data models, which is the reason
behind the relatively marginal MBEs of the all-data models (i.e., positive and negative
MBEs of different vehicles nearly cancel each other). The same applies to the RMSEs.
However, a potential for substantially reducing the random error components by focusing
on specific vehicle categories can be noticed in the figure, where RMSEs can be reduced
by up to 69.7, 85.9, 77.9, 97.8, and 61.6%. It should be noted that this potential exists for
specific vehicle categories, let alone specific vehicle models. The figure also shows that, in
general, the emissions from very new cars, especially the small ones (e.g., category #1), are
more predictable than the emissions of other categories.

Figure 9. Scatter plots of the test MBEs and RMSEs of category-based and all-data models of ERs and
FC using RF ensembles.

3.5. Comparison with ANN models

To further demonstrate the reliability of the proposed RF models, they were compared
with ANN models using the same training dataset. ANNs are employed as reference
algorithms since they are by far the most commonly used algorithms for such a purpose
in the literature. Specifically, five ANN models were developed for each car category to
estimate CO2, CO, NOx, HC, and FC, similar to that undertaken in Section 3.4 with RF
models. The models are of the multi-layered feedforward backpropagation architecture,
where the number of neurons and hidden layers have been optimized by trying up to
300 neurons and three layers to minimize the validation errors. Then the models were
tested independently to evaluate their generalization abilities. All models comprise tan-
gential sigmoid and simple linear activation functions in the hidden and output layers,
respectively, and were trained using the Levenberg–Marquardt learning algorithm. Since
the models of the five predicted variables (CO2, CO, NOx, HC, and FC) are developed
separately, the output layer of each model had a single neuron only. Size fractions of
0.7, 0.15, and 0.15 were used to split the dataset of each vehicle category (see Table 3) into
three subsets for training, validation, and independent testing of the models. In addition,
the following hyperparameters were also employed since they are commonly used in
similar problems [54]:
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â Maximum number of training epochs/iterations = 1000 epochs.
â Performance goal = 0.
â Minimum gradient = 10−7.
â Initial value of the control parameter (µ) = 0.001
â Decrement and increment factors of µ are 0.1 and 10, respectively.

Based on the structural optimization of the ANN models, it was found that all models
perform better and in a more stable manner with two layers only, i.e., a hidden layer
and a single-neuron output layer. This can be ascribed to two factors: (1) the relatively
limited dataset size for most of the categories presented in Table 3, and (2) the higher
tendency of more complex models with multiple hidden layers to overfit when handling
new observations. Hence, simpler two-layer models showed better stability with close
magnitudes of errors in the training, validation, and testing phases. Table A1 depicts the
best numbers of hidden neurons for the models developed for categories 1–18, respectively.

Figure 10 demonstrates the distribution of MBE and RMSE values for different car
categories when using ANN models. It can be noticed that the bias errors and some of the
random error components (represented by MBE and RMSE, respectively) are higher than
those of RF models in Figure 9 despite optimizing the structure of ANN models and their
better training error metrics. This is an intrinsic feature of ANN algorithms, comparedwith
the more stable RF algorithm, as mentioned in Table 1. Figure 10 shows average MBEs
of −0.0011 g/s, 0.1281 mg/s, 0.0315 mg/s, 0.2562 mg/s, and 6.73 × 10−4 g/s for CO2,
CO, NOx, HC, and FC, respectively. These errors are higher than those of RF models by
47.57, 38.92, 236.6, 14.86, and 203%, respectively. The average RMSEs of ANN models are
quite similar to those of RF models, but the ANN models better estimate HC emissions
with a lower average RMSE by 3.7%. This is a relatively small margin, compared with the
drastic superiority of RF models in terms of bias errors, despite their intuitiveness and
simplicity. Moreover, the ANN models show frequent failures in delivering decent accuracy
with older and larger vehicles, which dominate the local market in Cairo. Finally, the RF
ensembles have the additional merit of being able to accept categorical and numerical sets
of inputs without being biased towards inputs with wider ranges.

Figure 10. Scatter plots of the test MBEs and RMSEs of category-based models of ERs and FC using
ANN models.
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Finally, it should be noted that such fast-prediction and accurate models of vehicles’
emission rates and fuel consumption could be utilized for different purposes, such as the
estimation of the contribution of the transportation sector to global air pollution rates in
the region, the certification procedures of vehicles before entering the market, and the
advancement of vehicle telematics [55]. Classic telematics data are often collected from
on-road vehicles to optimize and make recommendations for the best vehicle route, which
could be the fastest, safest, shortest, or straightest route. Data-driven models, such as those
developed here, enable more advanced optimizations to also select the routes with the
lowest predicted fuel consumption and environmental footprint.

4. Conclusions

Models for predicting fuel consumption and onboard emission factors of conventional
vehicles under real driving and traffic conditions are essential tools for various research
and regulatory applications. The objective of this work was to develop the first set of such
models for Greater Cairo, Egypt, based on extensive measurements using representative
gasoline passenger vehicles and driving routes in the city. Five random forest regressor-
based ensemble models were developed to be used for the various models of vehicles in
the city. The results showed that RF models are most successful in predicting CO2 emission
rates, where they explained more than 97% of the variance in the testing dataset. This
was followed by the CO, fuel consumption, and NOx models, all providing satisfactory
prediction accuracies. However, the HC model was the least reliable due to the diversity
of considered vehicle models and the smaller correlation with input engine variables. It
was also found that the prediction performance of those models is less sensitive to the size
of the dataset, provided that it is sufficiently large, but considerably dependent on the RF
ensemble size (up to 500 regression trees).

The relative importance of different model inputs has been highlighted for future
studies on similar models, where it has been shown that fuel consumption is the most
influential input (relative importance of >23%) for CO2, CO, and NOx predictions, fol-
lowed by the engine speed and the vehicle category. The least influential input was the
engine stress (<6%), which can be eliminated while having the same accuracy level. Finally,
it has been shown that the accuracy levels of the different models can be boosted by limit-
ing the dataset to specific vehicle categories, where the RMSEs can be reduced by up to
69.7, 85.9, 77.9, 97.8, and 61.6%, compared to the initially developed models of all vehicles.

For future works, specific engine/fuel-based models will be investigated using more
complex techniques and additional explanatory variables to enhance the prediction accu-
racy of emission models. The RF models will be hybridized with optimization algorithms
to ensure better stability. Finally, the performance of the models will be analyzed as a func-
tion of the traffic conditions, making it possible to develop hyper ensembles comprising
sub-models for distinctive traffic conditions.
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Appendix A

Table A1. The number of hidden neurons in the category-based ANN models.

Category Number
Predicted Variable

CO2 CO NOx HC FC

1 44 55 89 86 77
2 49 91 97 151 82
3 17 106 108 128 119
4 80 105 107 153 125
5 155 43 130 11 67
6 130 45 91 90 7
7 40 31 42 89 129
8 125 5 24 125 83
9 116 147 18 42 126
10 42 136 102 60 63
11 102 54 74 28 152
12 107 75 133 50 140
13 84 51 81 154 93
14 51 77 57 54 15
15 110 16 55 142 30
16 130 145 152 35 45
17 140 76 83 123 62
18 46 142 50 45 122
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