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Abstract: The treatment of medical wastewater by the peroxone (AOP) and electro-peroxone (E-
peroxone) processes was analyzed. The E-peroxone process is based on the production of hydrogen
peroxide electrochemically from an O2 and O3 gas mixture produced in sparged ozone generator
effluent using graphite-polytetrafluorethylene cathodes. The electrogenerated H2O2 reacts with
sparged ozone to produce hydroxyl radicals. All advanced oxidation processes presented in this
study effectively removed chemical oxygen demand (COD) by up to 87%. The use of E-peroxone
showed 15% better results in COD reduction than conventional peroxone. The research suggests
that E-peroxone is more sufficient at removing pollutants in wastewater than peroxone. Hence,
E-peroxone was found to be more cost-effective than AOP in this case.
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1. Introduction

Wastewater from medical facilities constitutes a significant part of municipal sewage
discharge, because the processes of maintaining hygiene conditions in these facilities
causes high water consumption. The high level of suspended substances and chemicals,
anionic surfactants and organic substances often exceed the norms regarding the quality
of municipal wastewater. The surfactants used for disinfection and washing are the main
pollutants in medical wastewater. In recent years, the need to reduce the concentration
of chemicals, especially surfactants, in wastewater streams is widely promoted due to
more stringent environmental conditions and legal provisions. Surfactants are a group
of water-soluble and non-water-soluble detergents. Their task is to remove substances
difficult to clean (e.g., oils, blood, inorganic pharmaceuticals). The presence of surfactants in
wastewater increases COD and makes the process difficult for quick wastewater treatment—
their connection with pollutants is permanent and difficult to break down in the wastewater
treatment plant. Excessive concentration of these compounds may also contribute to
slowing down the processes of biological wastewater treatment or to partial death of the
biological deposit. The most commonly used processes for the purification of this type
of wastewater are conventional processes such as coagulation, flotation and chemical
oxidation or their combinations [1,2].

The conducted research on ozonation of wastewater in order to degrade recalcitrant
contaminants does not give satisfactory results [3,4]. In the conventional ozonation process,
ozone decomposes to oxygen immediately after its production due to a very short half-life
in the aquatic environment [3,4]. This causes problems in the implementation of the process,
such as high cost and the requirement for ozone generation on site. Some of the impurities
present in the wastewater are persistent for ozone due to its selectivity in the oxidation of
some organic compounds [3–6]. For this reason, ozone is often used in combination with
other processes and oxidants, such as electrolysis [5,6] and H2O2 [7,8]. These connections
increase the efficiency of pollutant degradation. Although the combination of O3 processes
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and electrolysis have a large potential for removing contaminants, there are contaminants
which in comparison with each of these processes separately, continue to generate problems
in the process due to the limited adaptability of ozone generators [9].

The use of O3 and H2O2 combination in the associated peroxone production process
(AOP) has a synergistic effect on the removal of pollutants [10–12]. Peroxone is used for
cleaning soil, ground water and polluted wastewater with volatile organic compounds,
polycyclic aromatic compounds, hydrocarbons, petroleum hydrocarbons, chlorinated sol-
vents and metals, ammunition, diesel oil, methyl tert-butyl ether (MTBE), BTEX (benzene,
toluene, ethylbenzene and xylene), trinitrotoluene (TNT) and other soluble components
from waste [13].

Turkay et al. [14] in their research describe and highlight the advantages of electro-
peroxone processes as a combination of two different systems for hydroxyl radical gen-
eration (ozonation and electrolysis). The results showed that the combination of ozone
and electrolysis with carbon-based cathodes in optimised conditions will lead to higher
degradation, removal rates, and efficiencies compared to using ozonation and electrolysis
individually. The comparation tests conducted by Donghai et al.l revealed that the coupling
of electrolysis and ozonation could synergistically produce hydroxyl radicals (HO•) and the
separation of cathodic reactions and anodic oxidations further promoted HO• generation,
which was responsible for the enhancement of PABA elimination in the compartmental
E-peroxone process [15].

Electro-peroxone (E-peroxone) is an advanced method of electrochemical wastewater
oxidation. In this method, the production of H2O2 occurs in controlled conditions, in
contrast to the conventional oxidation process. The main advantage of using E-peroxone
is the use of graphite cathode to form H2O2 from water and oxygen in the gas mixture
(O3 and O2). Hence, this process is simple in application, cost-effective and safe. The
effectiveness of this process was evaluated in the neutralization of oxalic acid [16], 1,4-
dioxane [17], methylene blue [18], Orange II [19] and numerous pharmaceuticals [20]. All
studies concentrated mainly on organic substances and results were highly effective. The
innovative factor in the conducted research is the use of E-peroxone technology in the
process of neutralizing medical wastewater. This issue has not been deeply described in
the literature and the potential for using the above-mentioned technology as an alternative
to commonly used solutions is noted.

The purpose of the study was to determine the effect of using E-peroxone on the accelera-
tion of the organic matter biodegradation rate in medical wastewater from healthcare facilities.
The biodegradation conditions were controlled over time using COD measurements.

2. Materials and Methods

The sample of wastewater was collected from IBC containers, which were delivered to
a waste disposal company located in Poland. Sample (0.1 m3 HDPE container) after collec-
tion was stored at 5 ◦C. After 24 h, conditioning sample was divided into 10 subsamples
and subjected to an oxidation process. Before the oxidation process, subsamples were not
pretreated. pH of the main sample was measured by an Elmetron CP-511 conductome-
ter with an EPS-1 glass electrode for the measurement of pH in the aqueous solution, in
accordance with PN-EN ISO 10523:2012. The initial value of pH was 5.2 units.

The wastewater oxidation process was carried out in a glass laboratory reactor with
a capacity of 2.5 dm3. The reactor, with the help of electronically controlled dosing systems,
was simultaneously treated with wastewater as well as ozone and hydrogen peroxide.
The reagents were mixed while dispensing with the use of an electromagnetic stirrer with
a constant speed of 1000 rpm. In the process of using E-peroxone, graphite electrodes were
additionally mounted to the reactor. The electrodes were supplied with DC current of 500,
1000 and 2000 mA (Figure 1).
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Figure 1. Example of experimental set-up.

Each oxidation process lasted 10 min. After each minute of the process, 25 cm3 of
the COD measurement mixture was automatically collected from the reactor discharge
port. For each test, the COD index was determined by means of a miniaturized method
using sealed tubes according to PN-ISO 15705:2005, repeating each determination three
times. Determination of the chemical oxygen demand consists of the introduction of
a specified amount of the chemical oxidant and the necessary catalysts and auxiliary
substances to the leachate sample. Then, under strict conditions and time, the oxidation
process is conducted. After oxidation, the remaining amount of oxidant is determined.
The loss of oxidant, converted into oxygen, is given as COD in mgO2/dm3. The COD
was tested in combination with a spectrophotometer (Hach DR-2800). The averaged
values of all measurements were assumed for the analysis, after rejecting extreme results
(mean value ± 2 times the standard deviation). During testing, the air temperature was
maintained at 22 ± 1 ◦C and air humidity at 55 ± 5%.

Hydrogen peroxide (30%, w/w) was of analytical reagent grade (Merck, Darmstadt,
Germany). Ozone was produced in the O3PRO30,7VW generator, equipped with a corona
electrode system. Gas ozone concentration and flow (in g/Nm3) was measured by an ultra-
violet gas ozone analyzer, Eltech 200. Ozone in the off-gas was measured by Lenntech AQL
S200 analyzer.

3. Results

Electro-generation of hydrogen peroxide occurs during ozone presence in the reac-
tor along with wastewater. E-peroxone transforms O2 gas from O3 decomposition at
graphite cathodes to electro-generate H2O2 (Equation (1)) efficiently. Its conjugated base
(Equation (4)) may then react with sparged O3 gas to form hydroxyl radicals and other
radical species (Equations (3)–(8)) [14].

O2 + 2H+ + 2e− → H2O2 (1)

H2O2 ↔ H+ + HO2
− (2)

HO2
− + O3 → •HO2

− + •O3
− (3)

•O3
− + H− → •HO3 (4)

•HO3 → •HO + O2 (5)

•HO2
− + •HO→ •O2

− + H2O (6)

•O3
− ↔ O2 + •O− (7)
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•O− + H2O↔ •HO + OH− (8)

It has been established that the dissociation of H2O2 (Equation (4)) increases with
increasing pH, as the pKa value of H2O2 was 11.6 [21] and H2O2 reacts with O3 to produce
•OH only when present as its conjugated base, •HO2

−
.

COD reduction in the analyzed wastewater is presented in Figure 2. For the analyzed
oxidation processes, a 30% COD reduction between 2 and 3 min of reaction was obtained.
After this period, the AOP process slowed down its speed, and. E-peroxone proceeded at
a similar speed. After completion of the reaction at 10 min, both processes obtained similar
COD reduction results, which differed by 450 mg/dm3 COD.
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Figure 2. COD removal during AOP and E-peroxone processes (experimental conditions: reactor
volume of 2.5 dm3; applied current of 500 mA; ozone flow rate of 30 dm3·h−1; outlet O3 gas
concentration of 0.3 mg/dm3).

According to Figure 2, the regulation of the current in the E-peroxone process resulted
in a slight improvement in the kinetics of the oxidation reaction. Studies have shown that
the use of a current of 500, 1000 and 2000 mA accelerate the COD removal process.

The analysis of the obtained results suggests that the optimal rate of H2O2 formation
occurs when using a current of 2000 mA. The use of a higher current intensity applied to
the graphite cathode provides faster transformation of the ozone into the hydroxyl radicals
in the aqueous environment.

As a result, it is possible to avoid a situation in which the presence of hydrogen
peroxide lowers the efficiency of the process, due to the better affinity for hydroxyl radicals
than the impurities present in wastewater. This situation is often observed in the AOP
process [10,11,22–24].

The influence of current intensity on H2O2 production in the E-peroxone process is
presented in Figure 3. A rapid increase in H2O2 concentration was observed between the
beginning of the process and the 5th minute of its duration. At that time, the concentration
of hydrogen peroxide was reached at the level of about 1500 mg/dm3. This value was
the maximum concentration for the current intensity in the range of 1000 and 2000 mA.
The increase in H2O2 concentration was slower when the applied current was reduced to
500 mA. The concentration of hydrogen peroxide generated in the reactor during the use of
graphite electrodes reached the equilibrium concentration (~1500 mg/dm3) after 9 min of
the process for all applied values of current intensity.
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Figure 3. Electro-generation of H2O2 (experimental conditions: reactor volume of 2.5 dm3; applied
current of 500, 1000 and 2000 mA; ozone flow rate of 30 dm3·h−1).

The highest ozone consumption occurred between the beginning of the reaction and
the 4th minute of its duration. After this time, the concentration of ozone in the reaction
mixture was reached at the level of about 2 mg/dm3. This value was the maximum
concentration for the current intensity in the range of 1000 and 2000 mA. The increase in O3
concentration was slower when a current of 500 mA was applied. Comparing the effect of
the applied current intensity (Figure 4), it was found that its two-fold increase accelerates
the COD reduction.
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2.5 dm3; applied current of 500, 1000 and 2000 mA; ozone flow rate of 30 dm3·h−1; hydrogen peroxide
start dose 50 cm3).

The conducted experiments also show that after reaching the chemical equilibrium
in the reactor (5th minute of the process), the current intensity’s influence on the course
of the reaction is balanced. This observation suggests that the optimal current intensity
for wastewater treatment is 1000 mA. Comparing the above statements with Figure 3, it
was found that the H2O2 formation rate increases with the current applied to the graphite
cathode. As a result, faster and more efficient transformation of ozone into hydroxyl
radicals in the E-peroxone system is achieved.
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During the tests, it was also found that in the 5th minute of the process hydrogen
peroxide begins to take over the action of hydroxyl radicals. This phenomenon confirms the
stabilization of H2O2 concentration and of the content of ozone dissolved in water (Figure 5).
An analogous phenomenon occurs when using the standard AOP process described in [11].
As can be seen in Figure 5, the applied current intensity below 1000 mA can provide very
different process effects, whereas above this value the effects of the oxidation process are
not so diverse. The critical current level may depend on many factors, such as the reaction
conditions (O3 dose, pH, suspension, etc.) and the properties of the organic impurities
present in the wastewater to be neutralized.
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4. Summary

The article presents the results of research on the wastewater treatment process from
a medical facility, using the conventional and electric peroxone systems. The formation of
peroxone with the use of electric current is based on the production of hydrogen peroxide
on the graphite cathode. The H2O2 generated during the reaction reacts with the ozone
dissolved in water, causing the formation of highly reactive hydroxyl radicals. In the
E-peroxone process the concentration of H2O2 was maintained at 1500 mg/dm3, with the
flow of ozone through the reactor at the amount of 30 dm3·h−1.

The use of both processes for wastewater treatment has produced positive results.
The use of E-peroxone showed 15% better results in COD reduction than conventional
peroxone. For analysis of the cost-intensity of the process, the energy consumption for ozone
production and reactor functioning was assumed to be 5 kWh/kgCOD; cost of electricity
to power 0.25 EUR/kWh; cost of purchasing electrodes, 10 EUR/2pcs; cost of purchasing
hydrogen peroxide with a concentration of 35%, 400 EUR/m3; reaction time is 5 min. Based
on the above assumptions, the operating cost of the oxidation process using peroxone is on
average 2.54 EUR/kgCOD, and 2.62 EUR/kgCOD for the E-peroxone process.

The conducted research confirms the legitimacy of modifying standard oxidation
processes that are sufficient to remove most organic pollutants. In practice, before using
E-peroxone, it is necessary to consider what kind of wastewater is subject to purification,
because its properties will affect the amount of H2O2 that should be generated during
neutralization. Considering that the removal of pollutions occurs most intensively in the
first minutes of the oxidation process, it is very important to evenly discharge the leachates
and discharge the neutralizer from the reactor. It is not recommended to use long reaction
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times, because excessive concentration of peroxone does not significantly affect the quality
of the neutralizer.

E-peroxone was found to be an efficient process for removing wastewater pollutants,
the efficiency of the process depending on the type and constituents of the wastewater.
Besides, an insufficient amount of O3 and excess amount of H2O2 in the solution may reduce
the process efficiency. Therefore, the amount of electro-generated H2O2 and aqueous O3
should be controlled during the process.

The presented study is a preliminary experiment provided at the laboratory scale.
Obtained results of E-peroxone usage for medical facilities’ wastewater will be used at
a semi-technological scale to explore the real problems of the proposed process along with
economic factors.
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