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Abstract: In past decades, manufacturing companies have paid considerable attention to using
their available resources in the most efficient way to satisfy customer demands. This endeavor is
supported by many Industry 4.0 methods. One of these is called MES (Manufacturing Execution
System), which is applied for monitoring and controlling manufacturing by recording and processing
production-related data. This article presents a possible method of implementation of a risk-adjusted
production schedule in a data-rich environment. The framework is based on production datasets of
multiple workshops, which is followed by statistical analysis, and its results are used in stochastic
network models. The outcome of the simulation is implemented in a production scheduling model to
determine how to assign the production among workshops. After collecting the necessary data, the
reliability indicator-based stochastic critical path method was applied in the case study. Two cases
were presented based on the importance of inventory cost and two different scheduling results were
created and presented. With the objective of the least inventory cost, the production was postponed
to the latest time possible, which means that workshops had more time to finish their previous work
on the first day due to the small production quantity. When the cost was not relevant, the production
started on the first day of each workshop, and the production was completed before the deadline.
These are optimal solutions, but alternative solutions can also be performed by the decision maker
based on the results. The use of the modified stochastic critical path method and its analysis shed
light on the deficiency of the production, which is a merit in the continuous improvement process
and the estimation of the total project time.

Keywords: manufacturing execution system; MES; Industry 4.0; risk management; risk assessment

1. Introduction

Sustainability in production is a great intention of companies—one of its peak points
in modern history is the advance of the Toyota Production System (TPS) in Japan [1]. The
lack of resources has urged manufacturing companies to produce high-quality products by
creating the fewest defective products [1,2]. This attitude aligns with a better understanding
of customer needs and conscious usage of raw materials, human and machine power, in
short, resources. Due to this production strategy, numerous papers have presented a
significant decrease in production cycle time [3] or an increase in machine availability [4],
optimizing cost and/or sales indicators [5–7], or layout optimization [8] in order with
inventory and supermarket decrease and shorter lead times with no extra waste time [9]. A
“side effect” of this thorough production is the lower cost implications and lower price for
the customer. As reported in [10,11], technology enhancement is a catalyst to the spread of
the TPS worldwide because of the data resource. With this available data, much hidden
information can be revealed, and well-established decision-making can be made. Parallel
with the advent of the Industry 4.0 methodology, customer requirements toward a product
or service have increased, and production transparency and traceability have become
“must-have” features of a product [12]. Such features require digital transformation and
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great investment from the company’s side, but this system promotes process improvement
opportunities and aids thoughtful production scheduling, which is—in other words—good
management of resources. The main objective of this article is to present an approach
with the use of which reliability issues can be implemented in the planning phase which
bases a fundamental point in the negotiation with the customer and the signature of the
final contract. This can result in an increase in the reputation of the company, while the
company can avoid paying penalties. The case study presents a practical presentation of a
workshop layout and small-batch project scheduling task, where all the workshops work
independently but in a project structure. The result of the modified stochastic method
supports the scheduling at the factory when the inventory cost plays and does not play a
crucial role in the decision making.

2. Literature Background

The main goal of the research is to find a way to implement reliability-based indicators
in the stochastic critical path method and its result to be integrated into the process of
production scheduling. Since much relevant data is available at many of the companies,
Industry 4.0 and a very valuable field, MES, are discussed. In the next subchapters, the
fundamentals of risk management in project scheduling are discussed, and the widely used
methods are discussed. As an establishment for the result part, the Critical Path Method
(CPM) and Stochastic Critical Path Method (SCPM) are briefly presented.

2.1. Industry 4.0 (I4.0) and Manufacturing Execution System (MES)

Industry 4.0 is the terminus of digitalized manufacturing. The automated manufac-
turing machines are connected to each other and to databases, and all necessary infor-
mation about the production is recorded and analyzed with the use of I4.0 tools [13,14].
The methodology supports not only environmental sustainability by novel and inno-
vative production techniques (such as additive manufacturing or digital layout plan-
ning [8]) but economic (e.g., production cost and efficiency) and social/human perspectives
(e.g., ergonomic workplace) are developed as well. With high-tech equipment such as
sensors, as well as sophisticated software applications and analysis tools, every aspect
of production becomes measurable, from emissions during production to product de-
livery [12]. Additionally, life cycle assessment becomes more accurate and action plans
for changing KPIs (e.g., reducing emissions or increasing profits) become much more
predictable when supported by data [15,16].

One of the important modules of Industry 4.0 is Manufacturing Execution System
(MES). This is a fundamental component of Industry 4.0 methodology. It supports su-
pervision over production with traceability and real-time production monitoring, as well
as controlling production to achieve the desired product in quantity and quality [12,14].
This is carried out by connecting the shopfloor layer (machines, the production and ma-
terial flow as well as human resources) with the enterprise resource system (where or-
ders and production flows can be found) and by providing helpful, real-time data for
decision-makers [13,17]. As an outcome, it facilitates personalized production, which is a
value-added factor for customers in fields such as the automotive or electrical industries.
Data collection is performed using Internet of Things (IoT) equipment, storing historical
data in databases, as well as requiring software from which all the necessary produc-
tion management-related information (order, production logic, bill of material) can be
obtained [12]. The collected information can be analyzed to create capacity plans but is
vital for understanding production more in detail and preparing for uncertainties both in
the manufacturing process and in the demand [18,19].

MES is not a standalone element of the IT infrastructure; several complementary
modules can be attached to the system itself. Furthermore, as can be read in [14], it is
advised to build an MES application modular, that is continuously revised and developed
to achieve higher performance or efficiency.
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Besides the requirements listed by the article [13], new demands arise during the
design or implementation of an MES application. One notable feature is discussed by
the authors in [14], which is the inclusion of risk management in the prediction. In the
same article [14], additional needs were mentioned which are also important to create an
environment-conscious system, namely MES, which must provide a system for energy
resource control, as well as supervision of dispatch control: assign energy consumption
figures to machines or created products.

2.2. Risk Management and Decision-Making under Industry 4.0 Domain

To serve the customers’ needs and support the company’s interests, risk management
of certain main processes is needed, and for this request, practical and theoretical tools are
also available [20,21]. These tools facilitate a deeper understanding of possible problems
during a certain process, support management to think ahead of the problem to reduce the
reaction time, and provide flexibility in the decision-making process. Several operations
strategies, especially project management, deal with risk management more actively since
the project creates a unique output that is too costly to repeat or even rework. Most of the
traditional risk management tools are qualitative; however, in a data-rich environment,
quantitative methods, such as mathematical risk calculations or simulations, are applied. It
is hard to decide which is better, but based on [22], the two approaches can be complemen-
tary to each other. Risk matrices as a standalone or complemented with other tools [23]
and FMEA [24] are widely accepted and recommended methods—as semi-quantitative
tools—in many fields of industry; nevertheless, many research studies have aimed at im-
proving them [24–26]. Most of these improvements have been made to make these methods
more objective. The main disadvantage of using these tools is that the results cannot be
directly implemented in production scheduling because these methods focus on ranking
potential risks, not on the time effect on the production.

This can be aligned with the objectives of Industry 4.0 methodology, whose aim is
to have full control over the data collection, processing and analysis that relate to the
manufacturing process [13]. This goal supports data-driven risk management and data-
driven decision-making by providing real-time data for professionals [27]. Not only do
professionals benefit from the increased volume of data, but sophisticated tools such as
regression modeling (or machine-learning tools) will also be available, and patterns can be
identified [28]. Furthermore, one of the most crucial fields, production scheduling, can use
the outcome of the accumulated information [29,30]. As many studies show, there is a high
need to know when is the most realistic time to produce the right amount of product for
the customer, or how production should be allocated to be the quickest [30,31], or the most
eco-sustainable [31,32].

2.3. Stochastic Methods for Project Risk Management

As a main project scheduling method, the Critical Path Method (CPM) is used for
planning production and investigating potential critical activities, as well as determining
the total production time. This network optimization method seeks to find the shortest
path of the network (minz = xn − x1), while all the activities are carried out totally. The
optimization’s sensitivity and other activities enable the decision maker to gather additional
and crucial information about the project itself, such as time floats [33,34]. However,
as [33,35] report, there are some drawbacks of the method, such as the deterministic
approach it uses. This implies that only one scenario can be checked at a time. Another,
complementary method is called the Project Evaluation and Review Technique (PERT), but
its result can be unreliable because it is based on the result of the CPM technique.

One of the significant inputs of deterministic network planning, i.e., the classic critical
path method, is the effect of individual activity times on each other (dependency or prereq-
uisite), as well as the deterministic time data for each activity. One of the assumptions of
the stochastic critical path method, based on Schwickert [36], is that the time for each activ-
ity x1, x2, . . . xn represents a value T(xi) generated from a non-negative random number.
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Additionally, the maximum time elapsed between two arbitrary nodes of a given stochastic
network (i.e., the shortest path during which all activities are performed):

D(u, v) = max
π ∈ ∏ (u,v)

{
∑
π

T(xi)

}
(1)

This can be described by the above equation; the purpose of the function is to minimize
the total lead time. As described in the article by Yuya et al. [37], the individual activity
times are independent of each other, so the change in the time of one activity is not closely
correlated with the change in the time of another activity. Badiru’s article [38] presents an
alternative to PERT analysis, the stochastic CPM method, and its comparison. The models
described in the article work on the basis of historical data.

3. Materials and Methods
3.1. Research Problems, Objectives and Research Questions

Since most of the Industry 4.0-ready machines are equipped with sensors and ap-
plications that can communicate via different ports and communication channels, data
collection about the production environment has become evident and highly required by
the customers to ensure product quality and traceability [13]. Most of the companies are
satisfied if the basic modules of MES are working (which is mostly needed directly by the
customer), there is no resource or proper method, or just enthusiasm for analyzing data to
create a short-term forecast for the production’s capability.

A key to creating such a forecast for production is the proper definition of availabil-
ity, performance and quality indicators, which are referred to as the Overall Equipment
Efficiency (OEE) [19,39]. This indicator originated from the Total Productive Maintenance
methodology, which calculates how efficient a machine was in the past. However, it was
developed to measure efficiency historically, papers have argued for using it in the future,
for the planning phase as well [40].

The Overall Equipment Efficiency is developed for mass manufacturing circumstances,
where idle time should not be significant, and improvements can be attempted and con-
ceived [39]. This study focuses on a production environment, where a mix of project and
serial production is established: a customer orders a special product in a moderate quantity
while the production runs in a workshop format and some teams produce the same amount
of product until the required quantity is reached. Such a setup requires well-thought-out
production planning and scheduling, which takes the probable risks and uncertainties
into account.

The objective of this study is twofold: authors present what data are needed and
processed to make decisions, additionally they create a conceptual framework, where the
decision-making process is presented. To be coherent, the following questions (RQs) and
goals and theses (GTs) are generated:

(GT1) The application of two machine reliability-based indicators in the stochastic
critical path method: Mean Time Between Failures (MTBF) and mean downtime.

(GT2) The integration of the modified critical path method’s results into a linear pro-
gramming method, which provides alternatives to decision-makers in terms of production
scheduling. This method would take reliability indicators into account during the planning
phase.

To support the hypothesis testing, one research question was defined:
(RQ1) How can MES-based data be implemented in the decision-making process?
(RQ2) Is the combination of risk assessment and product scheduling methodologies

providing a proper foundation for decision-makers to define a production schedule?
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3.2. Conceptual Framework
3.2.1. Data Collection

A machine or a workstation that supplies information about the production needs
an efficient IT infrastructure: software that can communicate with the machine via ports,
and a database that stores these data in a structured format with a dashboard that displays
real-time as well as historical data. This information is crucial to collect based on the
literature [12].

• Cycle time determination:

◦ A trigger is when the product arrived at an exact station or that specific process
step. To have accurate data, a unique identification system is needed for
the products.

◦ Another trigger is when the product is being processed fully and it is ready to
move to or start another activity.

◦ These triggers must be differentiated, so “process_start” and “process_finish”
states have to be created. A cycle time is counted between two identical points
of production (e.g., between two “process_start” states), but it is also a point
to make difference between the process cycle time itself and waiting times, as
waiting time is a waste, like it is stated in some lean literature [1].

◦ In the case of physical work, where there is no industry 4.0-ready machine in
production, hand scanners with a PC can be utilized. The primary aim is to see
how long a certain activity takes with “detailed” reporting. Most of the burden
has to be taken off the workers’ shoulders, a system must be implemented
which supports reporting and does not cause any extra work for the employees.

• Parameters of production:

◦ When a product is being processed, much information can be collected: environ-
mental parameters, such as temperature or humidity but also machine-related
information (specific characteristics from the machine—force, torque, etc.) can
be registered. The latter information is vital for determining the quality of the
process step, but the prediction of the machine condition or maintenance is
feasible in case of proper data collection.

• Breakdown information:

◦ When production is temporarily suspended, information should be given
about the characteristic of the downtime to make deeper analyses about the
root causes as well as make a prediction for the future.

In the case of workshop layout, multiple workshops work on similar products parallel,
the gathered information about a workshop must be distinguished from the other ones;
however, it is advised that values must be aggregated for analyses. Because it is hard to
find 2 or more totally identical workshops, the main KPIs must be measured separately for
risk analysis.

3.2.2. Data Processing

As presented in the authors’ previous research [40], the following calculation and
simulation must be carried out to get the most information out of the data. The production
flow is described by a network model with all its necessary information:

• The activity time is stochastic, theoretical distribution or distribution given by experi-
ence must be assigned to each activity.

• The activity times are stochastic, while the occurrence of any reliability issue is not
given in a ratio or an exact number, such as the calculation of Mean Time Between
Failure (MTBF), it is given in “cycle” (every nth iteration of the simulation the reliability
issue happens). One iteration of the simulation model is for the production of 1 piece
of product.

• When reliability issues happen, a downtime value has to be assigned to the activity.
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• Total Process Time prediction is performed by a linear regression model. The basis of
the model is the simulated total process times, and the aggregated total process times.

• The production efficiency is calculated per shift, day, and week. This was complemented
by the analysis of critical paths since issues modified the critical activities as well.

• As [11] discusses, a process mining tool is also available for analysts to easily calculate
main indicators since the products are easily distinguished by their unique code, and
other parameters are easily attached to the products’ life.

3.2.3. Decision-Making Process

As many companies aim, the main objective is to reduce all the related resources
of production while they fulfill the customer requirements. The selected resource or
indicator is usually the manufacturing cost, but other costs, such as the cost of rework, the
cost of additional resources (either human or raw material) can be measured, calculated
and compared in the process. As a first step, it is advised to determine the indicator
and the process for collecting this information. As far as the decision-making process is
concerned, optimization methods play a crucial role in the field. This induces stretched
and “fragile” production schedules, but it shows what is the maximum point where the
capacity of a production system is maximized. Based on the decision-maker's attitude to
risks, different strategies can be followed, and the result of the optimization model can be
adjusted/overwritten based on the manager’s attitude to risk.

As an additional aspect of decision-making it is useful to investigate a certain decision
situation from different points, with different KPIs, if possible. If these indicators do not
correlate with one another, decision-makers should expect different solutions for the same
problem. This provides some flexibility as well, which can be used to create and use
workaround to minimize negative effects.

3.2.4. The Framework

The process of the full decision making regarding production scheduling is dis-
played in Figure 1. Since the least resource-demanding production strategy is pull
manufacturing—and project manufacturing is a typical form of pull manufacturing—the
production order determines what, how many and in which quality the customers want
the product. Simultaneously, a well-established analysis can be carried out regarding the
workshops’ machine reliability as well as any other risks or uncertainties that can occur
during production. All the indicators must be calculated either via a process mining tool,
or any other analyst software. The result would serve as input for a production scheduling
model. In alignment with the PDCA cycle, a counter measurement must be performed, and
data have to be updated to be closer to the real-life case, if applicable.

As Figure 1 presents, the framework provides a solution for a multi-workshop (WS)
production layout where the inputs are given regarding the production (order quantity and
quality, production steps as well as delivery date), and the machine reliability (mean time
between failures—MTBF; mean time to repair—MTTR; mean downtime which represents
the extra time). These pieces of information construct a database, which is the foundation
of the Monte-Carlo simulation. The analysis of the simulation is the following activity,
which provides enough information for the production performance, as well as shedding
light on any changes in total process time and possible critical path changes. An additional
scheduling method is also fitted in the framework to see what the state of the production
schedule is as well as extra uncertainty information can be acquired that makes decision
making more value based.
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Figure 1. Conceptual framework for quantitative risk analysis-based production scheduling.

4. Experiment
4.1. Process Presentation, Inputs for the Study

As a case study, a wooden furniture manufacturing process was investigated. The
process of such an order was simple: the company with the customer created a design
about the product-to-be in which specifications and raw materials were agreed on and
discussed, and other requirements, such as produced quantity and deadline and probable
production interval, were defined. One of their projects is presented in this case report.

The company received an order of 100 pcs products and based on the manufacturing
company’s capacity and aggregate planning, there will be 1 week in their schedule to
manufacture all the products until the deadline. As far as the production strategy is
concerned, there are four workshops on the shopfloor that can do the same quality work.
The process network is demonstrated in Figure 2.

The expertise and qualification of the teams are different, so as the tools they are using,
and their reliability as well. These activity times were implemented in the process, see
Table 1. The data are acquired by the method described above. Only one activity is treated
as deterministic, other activity times are considered stochastic.
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Figure 2. AOA Process representation for the workshops. Arrows represent activities, nodes
represent events.

Table 1. Stochastic elements regarding activities and workshops.

Activity
(Between Nodes) Workshop 1. Workshop 2. Workshop 3. Workshop 4.

A (x1–x2) [12,17] [10,14] [10,12] [11,16]
B (x1–x3) [27,32] [27,29] [25,28] [28,32]
C (x2–x3) [17,26] [20,22] [20,22] [19,23]
D *(x2–x4) 30 30 30 30
E (x3–x4) [16,18] [15,16] [15,17] [16,17]
F (x4–x5) [12,14] [12,17] [10,15] [14,16]
G (x5–x6) [7,13] [8,16] [8,11] [9,14]

* D activity is a non-stochastic waiting time.

The table above presents the minimum and maximum cycle times of each activity
per workshop. Symmetric beta distribution with a parameter of α and β, β(α = 2; β = 2)
was applied for each activity which was transformed from a [0;1] scale to the level of the
activity times. Table 1 is for presenting the minimum and maximum activity times used
for the beta distributions. As an additional input for the process, uncertain elements were
identified regarding machine reliability which is described in Table 2.

Table 2. Possible risks in the production per workshop.

Activity Workshop 1. Workshop 2. Workshop 3. Workshop 4.

A (x1–x2) 30 min every 5th repeat - 15 min every 5th repeat 20 min every 7th repeat
B (x1–x3) 25 min every 8th repeat 15 min every 10th repeat 10 min every 5th repeat 10 min every 5th repeat
C (x2–x3) 30 min every 10th repeat 15 min every 9th repeat 15 min every 10th repeat 15 min every 8th repeat

D * (x2–x4) - - - -
E (x3–x4) 50 min every 20th repeat 32 min every 8th repeat 40 min every 11th repeat 20 min every 25th repeat
F (x4–x5) - - - -
G (x5–x6) - - - -

* D activity is a non-stochastic waiting time.

The table above presents risks implemented in the simulation. The first number
stands for the time of downtime during production, which increases the activity time, and
the second figure in the cells represents how frequent the problem is (MTBF), given by
frequency. In this case study, the most important problems are presented, and multiple
problems can be implemented in the model.
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As additional information, the performance of different workshops was compared to
the Takt Time. The Takt Time was calculated in the following way (see Equation (2)):

TT1 machine =
D× S× H

I
= 76.8 mins (2)

where,
TT1 machine = Takt Time calculating with 1 machine,
D = maximum number of days,
S = shifts per day,
H = hours per shift,
I = Demand during the available time.
As a result of the calculation, it can be stated that one workshop is not enough for

satisfying the customer needs, since the vast majority of its total process times are above
the maximum time with which requirement can be fulfilled, see Figure 3.

Figure 3. Performance of the workshops compared to the Takt Time.

When all four machines are taken into account, Takt Time became 307.2 min
(4× 76.8 min), which is enough for providing the customer with the required amount
of products.

4.2. Stochastic Modeling and Simulation

The process flow was translated into a linear network model, where activities and
their activity times were the constraints, while the alternatives were the nodes. As the
capacity values are concerned, the values were calculated from the simulation. The risk
and uncertain values are then added into the simulated cycle times. A detailed explanation
of the model can be found in the article by the authors in [41].

The optimization task’s objective (Equation (3)) is to find the least total process time
needed to perform the project (or as it is known—find the longest path between the first
and the last nodes), while the constraints of the model—that determine the total activity
time passed between two nodes—this means that a certain node (or “event state”) can only
be achieved if all the prerequisite activities are finished (xi node), and a certain activity
between nodes i and j is completed, which has a time unit (Equation (4)). The negative node
represents the source node, while the positive node displays a sink node [33,34]. A reason
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for using such a model for the determination of lead time is to have additional reporting
possibility, such as the calculation of different slack times, a list of critical activities [38].

Objective:
xn − x1 → MIN TPT! (3)

Constraints:
− xi + xj ≥ tij (4)

where:
xi = representation of node i,
tij = time duration of activity.
To visualize equations, the following table was constructed (Table 3).

Table 3. Network modeling of the investigated process.

Activity x1 x2 x3 x4 x5 x6 Total Operator Capacity

x1-x2 (A) −1 1

∑xij ∗ uij

≥ Tx1x2
x1-x3 (B) −1 1 ≥ Tx1x3
x2-x3 (C) −1 1 ≥ Tx2x3
x2-x4 (D) −1 1 ≥ Tx2x4
x3-x4 (E) −1 1 ≥ Tx3x4
x4-x5 (F) −1 1 ≥ Tx4x5
x5-x6 (G) −1 1 ≥ Tx5x6

Objective (TPT) −1 1 MIN!

The table above represents the mathematical model. A −1 value stands for source
node, while a 1 value represents sink nodes. In the total column, xij symbolizes the source
(i) and sink (j) nodes, while uij displays the result of the optimization which is the earliest
starting time of the activities. The difference between two nodes represents the maximum
activity time—in the case of critical activity total = activity time, in the case of non-critical
activity, total > activity time, and as a consequence, time slack can be realized.

The simulation was run 100 times per workshop, which means 400 iterations for the
analyzed database. Not only were the cycle times, the earliest starting time of the activities
and the total process time collected, but other reports were also gathered, such as sensitivity,
limit and answer analyses. The simulation was run on MS Excel, and the database was
also loaded and analyzed in that software. The reason for selecting this application is the
requirement of the company for whom the author's team works.

4.3. Analysis of Simulation Results

The simulation was carried out based on the inputs described in the previous sec-
tion. As a result, we can see that all of the workshops manufacture one product at the
same time on average, but differences can be also found. If the distribution of the TPT
values is concerned, it can be clearly seen that the most stable workshop is the fourth
(x = 81.35; s2 = 70.13) and because this workshop has the lowest variance, there are no
outliers in the dataset. This is also presented in the Figure 4. boxplot diagram, where all the
individual process runs and their brief statistics can be seen. The most uncertain workshop
is the first since the variation is high: there are some iterations where TPT has significantly
increased to around 200 min. For a clearer picture, additional descriptive statistics can be
found in Table 4.

Applying a linear trend to the accumulated TPT values, it can be stated that on the
“long run” (calculating with 100 iteration), the production workshops’ performance seems
linear (and a hectic time-dependent dataset is estimated with a linear formula), as the
following formulas (Equations (5)–(8)) present:

Workshop 1. : y = 89.77x− 47.417 (r2 = 0.99) (5)

Workshop 2. : y = 82.14x− 15.228 (r2 = 1.00) (6)
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Workshop 3. : y = 83.63x− 11.624 (r2 = 1.00) (7)

Workshop 4. : y = 82.042x− 27.415 (r2 = 1.00) (8)

Figure 4. Box plot of the total process times per workshop.

Table 4. Descriptive statistics of the simulated production.

Workshops Minimum TPT Maximum TPT Average (x) Std. Deviation (s) Confidence
Interval (0.95)

Workshop 1. 70.00 190.00 89.82 27.53 84.358–95.282
Workshop 2. 68.00 122.00 81.91 12.36 79.457–84.363
Workshop 3. 69.00 128.00 83.80 14.38 80.947–86.653
Workshop 4. 71.00 105.00 81.85 8.37 80.188–83.512

Total 68.00 190.00 84.35 17.47 82.628–86.062

Descriptive statistics of the dataset can be found in the following table (Table 4):
As far as the capacity values are concerned, a calculation has been performed. The net

time of production is 480 min, and the daily capacity is calculated accordingly, as can be
seen in Figure 5.

If one workshop wants to fulfill the customer's need, it would require 18–19 working
days (~4 weeks), so multiple workshops are needed to be included to satisfy the customer
demand in terms of quantity. The last days’ capacity is low due to the fact that 100 pcs
of product were ordered and based on the lean principles there is no need for producing
more products. The most frequent daily capacity is 6 pcs in workshops 2-3-4, and a lower
average capacity can be calculated in the first workshops. This can be due to the relatively
frequent and long downtimes.

Average capacity usage was also calculated, based on the simulated values:

Usagecapacity =
daily capacity

maximum simulated capacity per day
(9)

This indicator was calculated individually per workshop, and for the full production
system, as well. Having checked Table 5, the highest usage was achieved by the fourth
workshop since the capacity vale was stable, while the lowest values were for the second
and third workshops. The reason for this is quite simple: both workshops have one or two
very effective days, in which the daily capacity is 7 pcs, and they are not able to maintain
this high level of capacity. Two calculations have been carried out since the last day of
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production would distort the overall KPI (only 1–2 pcs were left on the last days). The
second calculation methodology is for 100 pcs of product.

Figure 5. Daily capacity per workshop.

Table 5. Capacity utilization.

Workshop 1. Workshop 2. Workshop 3. Workshop 4. Full Production

Calculation for
100 pcs product 87.7% 79.4% 79.4% 92.6% 84.8%

Calculation for full
days of production 88.9% 83.2% 82.4% 97.1% 87.9%

Another important indicator that comes from the reports gathered is the distribution
of the different critical paths during production. As can be seen from Figure 2, there
are multiple ways to produce the product, which implies multiple critical paths as well.
Because of the investigation, we can see that in most of the workshops, there are alternative
critical paths, but in one case (workshop 3), only one path is available, see Table 6.

Table 6. Distribution of critical paths.

Workshop 1. Workshop 2. Workshop 3. Workshop 4. Full Production

“A” path 89.00% (89/100) 91.00% (91/100) 100.00% (100/100) 85.00% (85/100) 91.25% (365/400)
“B” path 11.00% (11/100) 9.00% (9/100) 0.00% (0/100) 15.00% (15/100) 8.75% (35/400)

Based on the distribution of critical paths, it can be stated that downtimes have a great
influence on the activity times and the total project times. As an exception, in the case
of workshop 3, it is stated, that uncertainty of production does not have an effect on the
critical path, so process improvement at first only has to focus on the critical activities,
while in any other cases, parallel improvement has to be performed to improve the system.
Regarding process improvement, this must fund and influence the problem statement
as well.

4.4. Production Scheduling
4.4.1. Optimization Method and Result

After analyzing the results from the simulation, real production scheduling is the
focus. Since the company only had a cost calculation for production, our assumption is that
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cost differences of production are related to higher resource consumption. Nevertheless,
regarding optimization, their objective was always minimizing certain KPIs.

To achieve a manageable mathematical model in size, daily capacities were imple-
mented in the production scheduling method, which meant a daily scheduling program
as a result. Since the cost implications for each simulation run had been calculated, the
authors used average production cost figures per day. Besides this, since other costs can
occur during production, another cost type, the inventory cost is built into the model. Based
on lean principles, the company does not have to schedule its production to the earliest
date possible because it is a waste. From the decision-maker's perspective, sometimes the
safety of its service level is most important, and they would take extra costs just to keep
the product in the inventory. It is up to the decision-maker; however, both these cases are
discussed later.

As far as the optimization is concerned, the alternatives were the following:

• Producing on 1st/2nd/3rd/4th workshop on the 1st day (4 alternatives);
• Producing on 1st/2nd/3rd/4th workshop on the 2nd day (4 alternatives);
• Producing on 1st/2nd/3rd/4th workshop on the 3rd day (4 alternatives);
• Producing on 1st/2nd/3rd/4th workshop on the 4th day (4 alternatives);
• Producing on 1st/2nd/3rd/4th workshop on the 5th day (4 alternatives).

The model not only includes production, because additional alternatives such as
inventory creation between days are added (four alternatives), since concluding from the
results presented in the previous section, one day of production is not enough for fulfilling
the customer need in terms of quantity.

The constraints of the model are acquired from the simulation and provided by the
company: daily capacity per workshop is added (20 constraints), as well as demand
information agreed (4 constraints). As per the orders, there is no continuous delivery,
100 pcs of product had to be delivered by the end of the week.

Constraints regarding capacity:
xij ≤ cij (10)

i ∈ [1; 4], j ∈ [1; 5]

where
xij represents production of a workshop i on a certain day called j,
cij represents capacity of a workshop i on a certain day indicated j,
Constraints regarding demand in the first 4 days:

4

∑
i=1

4

∑
j=1

xij ≥ Ij (11)

where
xij represents production of a workshop i on a certain day called j,
Ij represents the demand of a certain day indicated j (j ∈ [1; 4]).
Based on the case study, the value for Ij in the first 4 days is zero since the total amount

of product should be delivered on the last day of production, in one batch.
Constraints regarding demand on the last day:

4

∑
i=1

xi5 + T4 ≥ I5 (12)

where
xij represents production of a workshop i on the 5th day,
T4 presents the accumulated inventory on the day 4.
Ij indicates the demand on the last (5th) day.
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As far as the last day’s constraint is concerned, the calculation can be the accumulated
inventory on day 4th + 5th day of production from all workshops.

Two objectives were constructed and run during the optimization phase: first, the
authors wanted to know how to schedule the production if they want to produce within
the shortest time, and the second objective was the least total cost. In both cases, the same
objective was applied (see Equation (13), but the variables had different values:

minz =

5

∑
i=1

5

∑
j=1

cijxij +

4

∑
j=1

Tj ∗ ck (13)

where,
∑5

i=1 ∑5
j=1 cijxij= total cost of workshop j at a given day called i,

∑4
j=1 Tj ∗ ck = Total inventory cost accumulated in the first 4 days.

When the earliest project finish was the objective, zero production cost, as well as a
negative inventory cost (−0.001), was applied. That meant that all the capacities in the first
couple of days per workshop would be utilized because in this case, the higher inventory
volume can reduce cost. As a result, the following schedule was calculated, see Table 7.

Table 7. Production schedule when production cost is not relevant.

1st Day 2nd Day 3rd Day 4th Day 5th Day

Workshop 1. 5 6 5 5 6
Workshop 2. 6 5 6 6 5
Workshop 3. 6 5 6 5 0
Workshop 4. 6 6 5 6 0

Inventory 23 45 67 89 100

Because this production volume is a bit tight for the system, we can see that the
company applied full capacity in the first 4 days, and the production pressure only went
down on the last day of the working week. Having the sensitivity analysis investigated,
it can be stated that based on the shadow price of the last day’s production, different
production programs could also be assigned, and the objective value would not have
changed. An important remark or limitation of the previous calculation is that this result is
only available when the production-related costs are irrelevant.

The second scenario was about making cost figures relevant to see how the production
schedule changes. As it was previously mentioned, daily operations costs were calculated
by the division of production costs and number of products produced per day. This induces
different cost figures over time, which—in real life—is also experienced by the companies.

Based on the inputs of the simulation, hourly production costs, raw material costs
and reliability costs for two activities were implemented. The next step was to calculate
the cost of producing 1 pc of product, which was followed by the calculation of the
average production cost per day regarding workshops. The result of the calculation is
displayed in the next table (see Table 8). The values are given in universal metrics, so-called
CU—currency unit in favor of the company.

Table 8. Production schedule when production cost is not relevant.

1st Day 2nd Day 3rd Day 4th Day 5th Day

Workshop 1. 7,240.03 7,093.83 7,207.71 7,153.40 7,240.03
Workshop 2. 7,329.12 7,455.51 7,454.04 7,241.10 7,329.12
Workshop 3. 7,288.40 7,270.69 7,228.86 7,285.89 7,288.40
Workshop 4. 7,521.32 7,218.04 7,496.25 7,237.66 7,521.32

Inventory 350.00 350.00 350.00 350.00 350.00
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These figures were applied in the optimization model. Having the inventory cost
included, it can be clearly seen that the vast majority of the serial production should be
performed later in the time period. As a result of the optimization, the following schedule
would be optimal, see Table 9.

Table 9. Production schedule when production cost is a relevant decision variable.

1st Day 2nd Day 3rd Day 4th Day 5th Day

Workshop 1. 0 6 5 5 6
Workshop 2. 6 5 6 6 6
Workshop 3. 0 5 6 5 7
Workshop 4. 3 6 5 6 6

Inventory 9 31 53 75 100

The beginning of the week dedicated to this production can be used by finishing the
previous projects; additionally, productive maintenance would be performed or assigned
as buffer time. As far as the total cost is concerned, 788 281.02 CU (currency unit) would be
the cost of creating 100 pcs of product, when the optimal cost is the objective.

When the supply safety (use the full capacity at the beginning of the week and keep
higher inventory until the end of the period) is the priority, the cost would be slightly higher
(up to 17 823.91, which is ~2.26%) to realize 806 104.93 CU as a cost value. If this cost reduction
possibility is utilized, it is essential to pay enough attention to improvement possibilities.

4.4.2. Additional Analyses without Cost Calculations

Complementary to this analysis, the worst and best cases were also analyzed where
the least and most capacity days were implemented in the optimization model. As the
diagram shows below (Figure 6), in the best-case scenario, there is no need for production
on the last day (fifth), additionally, in the worst-case plan, it is impossible to produce the
required amount of product.

Figure 6. Daily production for all scenarios.

From the manufactured product it is easy to calculate the inventory per day per
scenario indicator. Based on the table below, it can be inferred from the values that in the
worst-case scenario the kept stock and the inventory cost are smaller, but this is because
in this case the workshops are not able to produce 100 pcs of product in a given week
(see Table 10).
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Table 10. Inventory values per scenario.

1st Day 2nd Day 3rd Day 4th Day 5th Day

As-is case based on simulation 23 45 67 89 100
Best case based on simulation 24 52 77 100 100

Worst case based
on simulation 14 30 47 66 87

This case can be also considered when there is a negotiation about the time or the
produced volume. Alternatively, when the best case is under investigation, it can be seen
that there is no need for the last day, another project or serial production can use this slack
time/time puffer. This can make the company feeling comfortable which can compensate
for the tight schedule provided by the optimization.

This complementary analysis is for investigating all the possible opportunities to have
a full picture of the possible outcomes. As the last step of the decision-preparation period,
the decision-maker has to decide based on his/her risk tolerance level. In most cases
(2/3 cases), the deadline can be easily kept, which means that no penalty has to be paid
because of overdue production on the one hand. On the other hand, the company’s
reputation can also be lifted due to the on-time delivery, which is a crucial part of satisfying
customers. In the worst-case scenario, all the problems occur during the production at each
workshop, which is not likely; however, this also has to be taken into account in order to
provide the broadest information for managers. Based on this, and other negotiated values
(such as penalty and deadline), the company can determine if the project is worthy or not, or
what kind of workaround has to be made in order to reduce the probability of the problems
or increase efficiency—for example, buying or renting other, more reliable machines for
production. This can modify the cost and the selling price, but this is also a valuable
contribution—and another perspective to investigate possible risks during production.

5. Discussion

One of the main ideas of lean manufacturing is to decrease the applied resources to
a level with which the company can fulfill customer demand [1]. This system requires
well-thought-out planning of the product itself, the entire production process, as well as
the assignment of work for different workshops. This ability is valued when a unique
product is designed and produced. The main focus point of the research was to implement
reliability indicators in a stochastic environment since there is a literature gap in this field,
and the Monte-Carlo simulation is frequently used for simulating stochastic process steps.
The developed framework carries through the reader the main milestones of the reliability
indicator-based (or risk-adjusted) production scheduling: what to measure, how to measure,
and how to use and synthesize the gathered information to achieve the best result. The
main barrier during the application of the method is the reliability and availability of the
data necessary, but the process can be effectively applied under the Industry 4.0 domain,
where MES supports the decision-maker's work [18,19].

This paper presents a case study where workshops produce the same product in
smaller quantities (100 pieces), but with slight differences: different machines and human
resources for different workshops, and due to these changes, with different reliability
values. The implementation of reliability-based indicators to the Stochastic CPM method
considering one workshop was discussed earlier in an article [41], and that method was
complemented with a production scheduling approach, which is a critical point when more
than one unit produces the product. For this, a linear programming optimization method
has been applied to the cost of production as well as the cost of inventory holding. Another
merit of the presented result is that the decision-maker will be able to estimate the time
frame necessary to conduct a project with higher confidence and with a smaller margin of
error, which can result in more satisfying customers. The scheduling will also be traceable
and trackable due to real-time data.
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A detailed analysis was provided in this article regarding stochastic cycle times and
total costs, but as a future research direction, more-in-detail analysis can be made from
the company’s controlling perspective. Additionally, in an investigation of a complex
environment, in which many workshop works and products are produced, planning for
the entire year can be also achieved, where projects are prioritized every time a new work
order or request for proposal is placed. As another research direction, the automation of
the presented framework can also be executed, which synthesizes every process run at each
workshop, and the information about the production can be used for the planning of the
remaining quantities’ production. This would serve more accurate planning and flexibility
from the production point of view.

6. Conclusions

In this paper, a combination of a modified stochastic critical path method and a
production scheduling method was presented through a case report. The focus point of the
research was a serial production carried out by four workshops, who are performing their
work based on project manufacturing principles. The objective under investigation was the
minimization of cost since many, non-value-added activities not only consume natural or
not natural resources, but they can also have a great influence on the cost figures as well.
The model was complemented with information about machine reliability—mean time
between failure given in the cycle of machine use, and total downtime, which displays the
time effort repairing the machine to continue production.

Research hypotheses were tested, and case presentation supported the answer: when
process activity times are measured, a more detailed analysis can be made, since more
points can be gathered from an activity than before. The collected time values can support
analysts to fit the theoretical distribution to the activities. Other information regarding
machine reliability can also provide reinforcement for the simulation and forecasting of
production. All the information served as input for the framework that includes process
time prediction and production scheduling as well considering capacity restrictions. The
production scheduling was conducted with the use of linear programming with transfer
variables, which were responsible to indicate inventory level. Two scenarios of production
scheduling were also created: one with inventory cost, and one without inventory cost. The
result of the distinguished objective functions was different, which highlighted two different
production strategies. Such information plays a crucial role in the initial negotiations for
the contracting with the customer since a more realistic deadline can be set up due to the
integration of possible risks in the production. Another workaround can also be invented
in order to avoid risks or decrease the probability of occurrence indicator. Additionally,
cost implications can be calculated.

As the case report demonstrates, the company would be able to finish within the
predetermined time period (5 working days), as well as extra resources were available in
case of delayed production. Planning by the presented risk-adjusted production scheduling
at workshop layout manufacturing process can ensure the company sees their resources,
costs and capacities clearly, which can be a huge advantage on the market, and it can
support well-thought-out deliveries, and other, either value-added or non-value-added
activities. It is important to highlight that the simulation was performed for the “as-is”
situation, which means that no improvement took place during the analysis. Based on lean
principles and many other production strategies, continuous improvement for a reduction
in uncertainty in production should be one of the focus areas.
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