<@ sustainability

Article

Plant Disease Classification and Adversarial Attack Using
SimAM-EfficientNet and GP-MI-FGSM

Haotian You, Yufang Lu * and Haihua Tang

check for
updates

Citation: You, H.; Lu, Y,; Tang, H.
Plant Disease Classification and
Adversarial Attack Using
SimAM-EfficientNet and
GP-MI-FGSM. Sustainability 2023, 15,
1233. https://doi.org/10.3390/
sul15021233

Academic Editors: Hossein

Bonakdari and Majid Sartaj

Received: 14 November 2022
Revised: 29 December 2022
Accepted: 3 January 2023
Published: 9 January 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Information Science and Engineering, Guilin University of Technology, Guilin 541004, China
* Correspondence: luyufang165@163.com

Abstract: Plant diseases have received common attention, and deep learning has also been applied
to plant diseases. Deep neural networks (DNNs) have achieved outstanding results in plant diseases.
Furthermore, DNNSs are very fragile, and adversarial attacks in image classification deserve much
attention. It is important to detect the robustness of DNNs through adversarial attacks. The paper
firstly improves the EfficientNet by adding the SimAM attention module. The Sim AM-EfficientNet
is proposed in this paper. The experimental results show that the accuracy of the improved model
on PlantVillage reaches 99.31%. The accuracy of ResNet50 is 98.33%. The accuracy of ResNet18
is 98.31%. The accuracy of DenseNet is 98.90%. In addition, the GP-MI-FGSM adversarial attack
algorithm improved by gamma correction and image pyramid in this paper can increase the success
rate of attack. The model proposed in this paper has an error rate of 87.6% whenattacked by the GP-
MI-FGSM adversarial attack algorithm. The success rate of GP-MI-FGSM proposed in this paper is
higher than other adversarial attack algorithms, including FGSM, I-FGSM, and MI-FGSM.

Keywords: plant diseases; DNN; SimAM,; efficientNet; FGSM; gamma correction; image pyramid

1. Introduction

Agriculture produces food and other products through artificial cultivation.
Plant diseases have received common attention, and deep learning has also been applied
to plant diseases. Many kinds of plant diseases reduce the yield and quality of the crop.
They bring losses to agricultural workers and have a bad influence on farmers. In addition,
the efficiency of manual diagnosis of plant diseases is low. The accuracy rate may not
be guaranteed. Therefore, the classification of plant diseases has received more attention
from academic circles in recent years; it is a hot topic. Anshul used a genetic algorithm
to classify plant diseases. Deep learning techniques are used to analyze diseases of tea,
apple, tomato, grapevine, peach, and pear. Much progress has also been made in applying
DNN:s to classify plant diseases [1]. The exploration of artificial intelligence recognition
technology started from the research of biological vision in the 1950s. Generally, the image
capture equipment is used to automatically receive the target image and process. It also
analyzes the image. It has the characteristics of fast speed, good stability, and high accuracy.
In addition, the image capture equipment also has the potential to replace the human eye
for recognition. In the 21st century, traditional machine learning methods and deep learning
have been widely used in the research of artificial intelligence to identify agricultural pests
and diseases. Early studies were based on static specimen images, and the recognition effect
in the complex field environment needs to be improved. However, deep learning has cer-
tain advantages in processing massive data, which can automatically extract object features
from large-scale data and use classifiers for classification and recognition. Compared with
traditional machine learning, deep learning has a significant improvement in recognition
accuracy and efficiency. It has significant advantages in improving recognition accuracy
and reducing labor input. Therefore, the application of artificial intelligence in recogniz-
ing tea plant diseases and pests has great potential and demand. With the development

Sustainability 2023, 15, 1233. https:/ /doi.org/10.3390/su15021233

https:/ /www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15021233
https://doi.org/10.3390/su15021233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su15021233
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15021233?type=check_update&version=2

Sustainability 2023, 15, 1233

20f18

of artificial intelligence recognition technology in the identification system of agricultural
pests and diseases, some progress has been made in the classification of plant diseases.
The common neural networks are ResNet, VGG, and DenseNet [2-4]. Drumus used tomato
images of the PlantVillage dataset to train many deep neural networks, and the accuracy
of networks such as SqueezeNet improved a lot [5,6]. Shanwen Zhang identified the leaves
of crape myrtle and other diseases and insect pests, and the classification accuracy reached
92.41% [7]. Lily proposed a simple and robust methodology for plant disease diagnosis
using images in the visible spectrum of plants [8]. Kaur proposed the model DAG-ResNet
in his paper. He used ECOC to identify many tomato diseases [9]. The accuracy was
98.8%. Wenliang Tang used conditional convolution, channel attention module, and knowl-
edge distillation to improve the model, and the average accuracy reached 97.7% [10]. In
this paper, the no-parameter attention SimAM is integrated into EfficientNet [11,12], and
the improved SimAM-EfficientNet has the advantages of smaller parameters and shorter
training time. The accuracy reaches 99.6%. The security issues of DNN have begun to re-
ceive attention because of the vulnerability of deep neural networks. Current studies
have shown that DNNSs are very susceptible to the interference of adversarial examples,
and they make misjudgments. Adversarial examples are formed by adding carefully de-
signed small perturbations to normal examples. These adversarial examples are used
to fool humans and various DNNs. According to the circumstances, whether the internal
structure of the target model is transparent, adversarial attack algorithms have two types:
black-box attack and white-box attack. The white-box attack algorithms include FGSM,
DeepFool, JSMA, C&W, etc. [13-16]. The black-box attack algorithms currently include
single-pixel attack algorithms, local search attack algorithms, and other algorithms [17].
FGSM and other adversarial attack algorithms are based on gradients. They use gradients
to add interference to normal examples and effectively generate adversarial examples
to interfere with various deep neural networks. GP-MI-FGSM incorporates image pyramid
and histogram normalization in the field of image enhancement into adversarial attack
algorithms based on gradients. The adversarial attack algorithm can generate adversarial
examples with higher attack success rates, and it is universal to various deep neural net-
works. In addition, the perturbation is so small that people can hardly detect it. At present,
the classification of plant disease can still be improved, so we propose a new DNN called
Sim AM-EfficientNet. It basically adds the SiImAM attention module into EfficientNet. A
number of experiments prove that our network model has a good performance. In addition,
our team also designed a new adversarial example algorithm called GP-MI-FGSM. The
adversarial examples generated by this algorithm can also be used to train DNNs. Training
with adversarial examples will make DNNs more robust.

2. Deep Neural Network
2.1. Convolutional Neural Network

Deep learning provides various models and algorithms to process data as efficiently
as the human brain’s biological nervous systems or neuronal responses [18]. A convolu-
tional neural network contains a convolutional structure. It includes five parts: input layer,
convolutional layer, pooling layer, fully connected layer, and output layer. Compared with
traditional neural networks, a convolutional structure can reduce the amount of memory
occupied by the deep network, effectively reducing the network’s complexity [19]. Many
convolutional neural networks, such as VGG, ResNet, and DenseNet, are commonly used
to classify pests and diseases [20-22]. In this paper, the improved EfficientNet is used
for classification, and it is fast and accurate.

2.2. EfficientNet

In May 2019, Google proposed a new convolutional neural network named Effi-
cientNet. Although the current network has made good progress in accuracy and speed,
the author uses a multidimensional hybrid model scaling method to make the model
consider both speed and accuracy. ResNet mainly increases the depth of the network to im-

Sustainability 2023, 15, 1233

30f18

1-D channel-wise weights

Generation E.]]:l

7

prove accuracy. EfficientNet balances the network depth, width, and resolution through
compound scaling factors, ensuring speed and improving accuracy. The first EfficientNet
model, EfficientNet-BO0, is structured as shown in Table 1. B0 is the most basic model. B1
to B7 are seven models modified from B0 in terms of channels, layers, and resolution.

Table 1. EfficientNet-BO0 structure.

Stage Operator Channels Layers Resolution
1 Conv3 x 3 32 1 224 x 224
2 MBConv1,k3 x 3 16 1 112 x 112
3 MBConv6,k3 x 3 24 2 112 x 112
4 MBConv6,k5 x 5 40 2 56 x 56
5 MBConv6,k3 x 3 80 3 28 x 28
6 MBConv6,k5 x 5 112 3 14 x 14
7 MBConv6,k5 x 5 192 4 14 x 14
8 MBConv6,k3 x 3 320 1 7x7

Convl x1 &
9 Pooling & FC 1280 1 7x7

2.3. SimAM Attention Module

A lot of current attention modules generate 1D or 2D weights. Then, the generated
weights are expanded for channel and spatial attention. Most current attention modules gen-
erally have the following two problems. The first is that these attention modules can only
extract features by channel and space, which leads to the inflexibility of attention weights.
In addition, the structures of various convolutional neural networks are complex and are
influenced by a series of factors. In contrast to them, SImAM considers both space and
channel. It proposes three-dimensional attention weights without adding parameters to the
original network. In detail, it defines an energy function based on neuroscience theory
and derives a solution that can be quickly converged. This process can be implemented
in 10 lines of code. Another advantage of SimAM is that it avoids too much adjustment
to the network structure. Therefore, SImAM is more flexible, modular, and lightweight. In
many cases, SIMAM is superior to the most representative SE and CBAM attention modules.
As shown in Figure 1, SimAM can outperform these two popular kinds of attention mod-
ules [23,24].

2-D S'pm‘iul-wise weights 3-D weights

Generation ﬁjﬁﬂﬁﬂﬂw

\E‘xpansin Generaty EE: \E‘xpansion &y@ﬂ Expansion

iy W= N}

H
X Fusion X Fusion X Fusion
w W w W ﬂﬂ:ﬂ w
C C C C
(a) Channel-wise attention (b) Spatial-wise attention (c) Full 3-D weights for attention

Figure 1. Comparisons of three kinds of attention steps.

The SimAM module looks for important neurons and defines an energy function.
It uses binary labels and adds regular terms. Finally, the minimal energy can be calculated
with the following:

e = (4(A+02)) /(£ - +207 +24) (1)

where
2

1 M-1) M~
M_1 X; Xi, Oy = Z Xj — ut) 2)
i= i=1

Sustainability 2023, 15, 1233

40f18

Among them, y; is the mean of all neurons. af is the variance of all neurons. t is
the target neuron. x; are other neurons in a channel of the input feature. A is the regulariza-
tion coefficient. The number of neurons on that channel can be obtained by M = H x W. In
conclusion, the difference between neurons and peripheral neurons is related to energy. The
significance of each neuron can be calculated by 1/¢*. It uses a scaling operator to refine
features. The entire refinement phase of the SimAM module is:

X = X e sigmoid(1/E) ®)

where E groups all e across the channel and spatial dimensions. We use sigmoid to limit
the size of value in E.

2.4. SimAM-EfficientNet

The basic structure of EfficientNet is shown in Table 1, and EfficientNet-B0 has a total
of nine stages. The first stage is a 3 x 3 convolution layer. The second to eighth stages
are MBConv, which is also the most important structure of this network model. The last
stage is composed of a 1 x 1 convolution layer, a pooling layer, and the last fully connected
layer. MBConv consists of five parts. The first partisa 1 x 1 convolution layer. The second
part is a depthwise convolution, followed by the SE attention module. The fourth part
isa 1 x 1 convolution layer for dimensionality reduction. Finally, the last is a dropout
layer to alleviate overfitting problems. The SimAM module was added after the first
convolutional layer to increase channel and spatial weights. The basic structure in this
paper is shown in Figure 2, namely, MBConv. The rest of the structure is appropriately
modified by it. The original EfficientNet includes the SE attention module. Our model adds
the SImAM attention module to improve it.

MBConv

—_— (gc:(r;lv =+ SimAM/+> D?;V:i,se* SE = (Elt;(r;lv = | Dropout |m=— ﬁ

Figure 2. Modified MBConv.

As shown in Figure 3, the final SimAM-EfficientNet can be obtained after modify-
ing MBConv.

In this paper, SimAM-EfficientNet is composed of seven improved SimAM-MBConv
modules, two convolutional layers, one pooling layer, and one fully connected layer.
In Figure 3, different colors and sizes represent different layers. To begin with, the images
with dimensions of 224 x 224 x 3 are ascended by the 3 x 3 convolutional layer. The dimen-
sions of the obtained images with features are 112 x 112 x 32. The next step is extracting
the images’ features using SimAM-Conv. If two SimAM-Convs are the same, the connection
will be deactivated, and the input will connect. After 1 x 1 point by point convolution,
the original channel is restored, and the fully connected layer is used for classification.

Sustainability 2023, 15, 1233

50f18

Conv3x3 224x224x32
SimAM-MBConv1,3x3 112x112x16
SimAM-MBConv6,3x 3 112x112x24

SimAM-MBConv6,5x5 i 565640

1

SIMAM-MBConv6,3x3 M 282880

1

SimAM-MBConv6,5x5 v 14x14x112

1

SimAM-MBConv6,5%5 v 14x14x192

1

SimAM-MBConv6,3x3 v 7x7x320

1

v
Conv,1x18Pooling&FC gy 7x7x1280

e

Figure 3. SimAM-EfficientNet structure.

3. Adversarial Examples
3.1. Adversarial Attack

Adversarial examples are designed to attack DNNs. They are almost indistinguish-
able from normal examples but can lead to model errors. The existence of adversarial
examples threatens the deep neural networks and affects the security of related fields.
The existing adversarial attack algorithms include white-box attack algorithms and black-
box attack algorithms [25,26]. White-box attack algorithms require detailed information
about the attacked models, such as gradients. At present, the white-box attack algorithms
have also achieved good results. Black-box attack algorithms do not know the information
of the attacked model.

3.2. FGSM

FGSM (Fast Gradient Sign Method) is an algorithm based on gradient generation
of adversarial examples. It was presented by Goodfellow at the ICLR2015 conference.
After that, improved I-FGSM and MI-FGSM appeared successively. The main reason
for the low attack success rate of current methods is the phenomenon of overfitting
in the generation of adversarial examples. Adversarial examples for one model are less
successful when used for other models. Therefore, the image enhancement technology
of the training model is integrated into adversarial examples in this paper. The overfitting
phenomenon is alleviated, and the attack success rate and transferability are improved.

3.3. GP-MI-FGSM
3.3.1. Formulas

In this paper, a new adversarial attack algorithm based on image pyramid and his-
togram normalization is proposed by using image enhancement technology. Image pyra-

Sustainability 2023, 15, 1233

6 of 18

mids are divided into the Laplacian pyramid and the Gaussian pyramid. The algorithm can
resize the images. This algorithm improves the diversity of input images through image
pyramid and histogram normalization. It effectively alleviates the overfitting phenomenon
of adversarial attacks and improves the attack success rate of adversarial examples. FGSM
is the most basic adversarial attack algorithm. Adversarial examples can be obtained by:

X0 = x + e e sign(VyJ(x,y)) 4)

In the formula, sign() is a symbolic function and V,J(x,y) represents a gradient. ¢

makes the disturbance satisfy the norm constraint. I-FGSM is an iterative version of FGSM.

It decomposes a single step into multiple steps to achieve less disturbance. Adversarial
examples can be obtained by:

deU =x, x?ﬂ = x?dv + e sign(Vx?dv](x?d”,y)) (5)
adv

In the formula, x{79 is the adversarial example generated by iterating t + 1 times.
T represents the number of iterations. The step length can be obtained by a = ¢/T.
It ensures that the adversarial examples generated are in the neighborhood of x. ¢ is the size
of the neighborhood. MI-FGSM is based on I-FGSM and adds a momentum factor. In
each iteration, the gradient information of each previous iteration is added to stabilize
the update direction and avoid falling into the local extremum. The update process can be
described by the following:

1 = 1081+ (Vg0 (%) /1| (7 g0 (689,)) s ©
X[l = Clipix{™ + o o sign(gy 1) 7

In the formula, g;41 means that the cumulative gradient iterated t 4 1 times, and y is
the momentum decay factor. Therefore, this paper effectively integrates image pyramid
and histogram normalization with MI-FGSM to become a better adversarial attack algo-
rithm. D is the image enhancement function. It includes image pyramid and histogram
normalization. The final function is given by:

g1 = 10 8t + (Voaao [(D(x{™), 1)) / | (V 4o J(D(x{%), 1)) |1 ®)

3.3.2. Concrete Steps

As shown in Figure 4, the original adversarial examples generate the adversarial exam-
ples through the adversarial attack algorithm. Firstly, the example is processed by histogram
normalization and image pyramid, and a 224 x 224 x 3 image is obtained. Then, the obtained
image is input into the model, and the loss function is calculated. The example is updated
iteratively along the gradient of the loss function, and then the perturbation is added.
If the requirements are not met, iterations continue until it succeeds. Finally, the adversarial
example is output. The final GP-MI-FGSM algorithm is divided into several steps.

To begin with, several inputs are required. x is a original example and its actual label
is denoted as y'"¢. Deep neural networks are expressed as f. L is a loss function. D is
a image enhancement function. € represents the maximum disturbance value. T is the
maximum number of iterations. The decay factor is denoted as y. Then the perturbation

is calculated by « = ¢/T. x3% is initialized to x. g is initialized to 0. After iterations, the

example x% can be obtained by D(x#%). The next step is to calculate the loss function

\Y x?dv](D(x?d”),y). Futhermore, g;+1 and x‘ffi are obtained. Finally, the value of X44°

is returned.

Sustainability 2023, 15, 1233 7 of 18

-

Original example Image enhanced example

Model

Calculate the gradient
No of the loss function

Add

disturbance

Whether iteration
requirements are met

Output adversarial examples
Figure 4. Using GP-MI-FGSM attack models.

4. Model Training Strategy
4.1. Learning Rate Decay

In the early stage of model training, the larger the learning rate, the longer the step length.
Then the gradient can move down at a faster rate. However, in the later stage of model training,
the strategy of gradually reducing the learning rate and the step length is adopted. It will help
the algorithm converge and easily find the optimal solution. Thus, the experiments in this paper
add learning rate decay to the training process. According to the training situation without adding
learning rate decay, the method of exponential decay is finally chosen. As shown in Figure 5,
the learning rate will decline exponentially.

exponential_decay

0.5 4

0.4 4

o
w
i

learing rate

o
~N

0.1 1

0.0 T T T T T T T T T
0 25 50 75 100 135 150 175 200
step

Figure 5. Exponential decay.

4.2. Momentum

In classical mechanics, momentum is the product of mass and velocity [27]. It is
a physical quantity related to the mass and velocity of an object. The stochastic gradient
descent optimizer (5GD) has a problem with oscillations caused by updates that do not
fully use curvature information [28]. It causes SGD to slow down when the curvature
is high. The faster optimization path can be obtained by using the average gradient.
It helps suppress oscillations because the gradient in the opposite direction is canceled out.
Momentum causes a change in the opposite direction, which leads to vibration attenuation
on surfaces with high curvature. If the momentum term is big, the learning rate should
remain small. Large values of momentum also mean that convergence will occur quickly;
however, if both momentum and learning rate remain big, minimum should be skipped
by leaps and bounds. Small momentum values cannot effectively avoid local minima.

Sustainability 2023, 15, 1233

8 of 18

It also makes training slow. If the gradient keeps changing direction, momentum will also
help smooth the change.

4.3. Weight Decay

Although enlarging datasets may alleviate overfitting, acquiring additional data is
often difficult. Weight decay is a common method to deal with overfitting problems. In
a sense, smaller weights indicate lower complexity of the network and better data fitting,
which has also been verified in practical applications. The regularization effect of L2 is
often better than that of nonregularization. When overfitting, the coefficient of the fitting
function is generally large. Overfitting means that the fitting function needs to consider
every point, and the final fitting function fluctuates greatly. The value of a function
can change dramatically in a very short period of time. It signifies that the derivative
value of the function in some cells is very large. Because the value of the independent
variable is uncertain, only the coefficient is large enough to ensure a big derivative value.
Regularization restricts the norm of parameters, which are not too large. The overfitting
situation can be reduced to a certain extent.

4.4. Transfer Learning

Many deep neural networks trained on natural images show a strange phenomenon
at the first layer, where they learn features similar to filters and color blobs [29].
These first-layer features do not appear specific to a particular dataset or task. Instead,
they apply to many datasets and tasks. Finally, features must transition from general
to specific by the last layer of the deep neural network. Transfer learning stores the knowl-
edge or model learned in one domain and applies it to other related domains or problems.
For example, the knowledge used to identify cars can also be used to improve the ability
to identify trucks. The underlying characteristics of image datasets in different domains
are similar. The transfer learning method improves learning efficiency through the com-
mon features of the convolution layer and knowledge transfer. The learning process is
relatively stable. Training with a large ImageNet dataset, EfficientNet will obtain initial
weights. Then, the trained weights are transferred to the Sim AM-EfficientNet model for pa-
rameter initialization. Finally, the PlantVillage dataset is used for optimization learning,
and fine-tuning model parameters enhance the learning ability of SimAM-EfficientNet.
Compared with random weight initialization, weight initialization using ImageNet to pre-
train can greatly accelerate the model’s convergence and improve the model’s generaliza-
tion ability.

5. Experimental Results and Analysis
5.1. Classification
5.1.1. Experimental Environment and Parameter Settings

All experiments used the same environment with 32 GB RAM, GPU NVDIA GeForce
2070, deep learning framework Pytorch, and 500 GB hard drive. In terms of parameter
settings of model training, the experiments adopted the batch training method that divides
the training set and test set into multiple batches. The batch size was set to 16. The
number of iterations was 50 rounds. The stochastic gradient descent (SGD) algorithm
optimized the model during the training process. The experimental learning rate was set
to 0.001, and the dropout was 0.0005. The exponential decay of learning rate was adopted
in the experiment, and gamma was set to 0.9.

5.1.2. Experimental Data Source

The experiment used the PlantVillage dataset to train models. The dataset contains
54,303 health and disease images, divided into 38 categories. The dataset was divided into
training, validation, and test sets by 90%, 7%, and 3%.

Sustainability 2023, 15, 1233

90f18

5.1.3. Performance Metrics

Multiple classifications are required because the PlantVillage dataset has 39 categories.
The definitions of indices are given between Equations (9)—(16). They include true positive
(TP), true negative (TN), false positive (FP), and false negative (FN). TP is the number
of correctly classified unhealthy images. TN is the number of the correctly classified images
in all other categories except for the correlative class. FN is the number of incorrectly
classified images from the correlative class. FP is the number of incorrectly classified
images in all other categories except for the correlative class.

Sen = TP/(TP +FN))
Spe =TN/(TN + FP) (10)
Acc = (TP+TN)/(TP+ FN+ TN + FP) 11
Pre =TP/(TP + FP) (12)
classes
A = 1
veragenSen T ; Sen (13)
classes
A Spe = S 14
veragenSpe asses & pe (14)
classes
A Acc = A 1
veragenAce = ——— ; cc (15)
classes
AveragenPre = Insees Pre (16)

1

5.1.4. Results

In order to verify the performance advantages of the proposed SimAM-EfficientNet model,
the PlantVillage dataset was used to train multiple datasets in a single experimental envi-
ronment. The models include ResNet18, ResNet50, DenseNet121, VGG16, EfficientNet, and
SimAM-EfficientNet (our model). As seen in Table 2, the accuracy of SimAM-EfficientNetB0
was 99.31%, 2.5% higher than the original model. The best remaining model, DenseNet121,
achieved 98.90% accuracy, only 4.1% lower than our model. Two members of ResNet per-
formed poorly in the experiment. The accuracy of ResNet18 was 98.31%, 0.02% lower than
ResNet50. VGG16 had an average performance and 98.51% accuracy. Finally, a pretraining strat-
egy was added to improve the recognition accuracy. It improved the accuracy to 99.47%.
Efficiency is also important when deep learning networks perform recognition tasks.
The number of parameters is an important index to measure efficiency. The table shows that
the number of parameters varies greatly between models. VGG16 has the largest number
of parameters and runs slowly. Resnet50 has 23.5 M parameters, about 100 M less than
VGG16. ResNetl8 has a more streamlined structure, with half the number of parameters
of ResNet50. DenseNet121 is an improvement of ResNet and has few parameters compared
to the previously mentioned models. Finally, Sim AM-EfficientNetB0 has the lowest number
of parameters, about 30 times fewer than VGG16. Its number of parameters is 3.83 M.
The experimental results showed that the time per epoch of Sim AM-EfficientNetB0 was
still the shortest. Under the same environment and configuration, the time per epoch
of SimAM-EfficientNetB0 during the training takes only 642 s, which is about half that
of ResNet18. VGG16 has a large number of parameters and takes up to 2880 s per epoch.
The time per epoch of DenseNet121 is 1560 s. In addition, SimAM-EfficientNetB0 takes

Sustainability 2023, 15, 1233 10 of 18

an average of 1.12 s to detect a single image. It takes less time than other models. Compared
with the original model, the proposed model in this paper does not add any parameters.
The model in this paper considers both efficiency and accuracy.

Table 2. Comparative experiments of different models.

Time per Parameters Time Cost
o, o, o, o,
Model Avg Acc (%) AvgSen (%) AvgSpe (%) Avg Pre (%) Epoch (s) ™))
SimAM- o o o o
EfficientNetB0 99.31% 97.92% 99.61% 98.29% 642 3.83M 1.12
SimAM- o o o o
EfficientNetB1 98.32% 96.11% 99.35% 96.11% 980 6.22M 1.18
SimAM- o o o o
EfficientNetB2 98.29% 96.72% 99.41% 96.25% 991 831 M 1.21
SimAM- o o o o
EfficientNetB3 98.29% 96.77% 99.81% 96.39% 1190 1022 M 1.25
SimAM- o o o o
EfficientNetB4 99.22% 96.82% 99.33% 97.31% 1680 16.75M 1.28
SimAM- o o o o
EfficientNetB5 99.15% 97.11% 99.28% 96.77% 2270 27.05M 1.42
SimAM- o o Y o
EfficientNetB6 99.27% 95.16% 99.39% 96.38% 2880 38.87M 1.58
SimAM- o o Y o
EfficientNetB7 99.31% 96.88% 99.20% 95.22% 3580 60.86 M 1.66
SimAM-
EfficientNetB0 99.47% 98.11% 99.89% 98.78% 642 3.83M 1.12
(pretrained)
ResNet18 98.31% 93.54% 99.32% 96.45% 1150 112M 1.14
ResNet50 98.33% 95.49% 99.84% 95.31% 1780 23.5M 1.28
VGG16 98.51% 94.21% 99.25% 96.77% 2880 1344 M 1.68
DenseNet121 98.90% 97.87% 99.71% 97.92% 1560 6.9M 1.25
EfficientNetB0 99.06% 96.81% 99.77% 97.29% 642 3.83 M 1.12

As seen in Table 3, the eight indices measure the performance of SimAM-EfficientNet
on 38 different classes. The model proposed in this paper classifies images successfully
in most cases, but there are some errors in Corn Cercospo, Peach Bacterial spot, and Tomato
Septoria leaf spot.

Table 3. Classification performance of Sim AM-EfficientNetBO.

Class TP TN FP FN Acc (%) Sen (%) Spe (%) Pre (%)

Apple scab 50 1900 0 0 100 100 100 100
Apple Black rot 50 1900 0 0 100 100 100 100
Apple Cedar apple rust 50 1900 0 0 100 100 100 100
Apple healthy 50 1900 0 0 100 100 100 100
Background without leaves 50 1900 0 0 100 100 100 100
Blueberry healthy 50 1900 0 0 100 100 100 100
Cherry Powdery mildew 50 1900 0 0 100 100 100 100
Cherry healthy 50 1900 0 0 100 100 100 100

Corn Cercospora leaf spot 50 1898 2 0 99.9 100 99.89 96.15

Gray leaf spot

Corn Common rust 50 1900 0 0 100 100 100 100
Corn Northern Leaf Blight 50 1900 0 0 100 100 100 100
Corn healthy 50 1900 0 0 100 100 100 100
Grape Black rot 50 1900 0 0 100 100 100 100
Grape Esca (Black Measles) 50 1900 0 0 100 100 100 100
Grape Leaf blight 50 1900 0 0 100 100 100 100
Grape healthy 50 1900 0 0 100 100 100 100

Sustainability 2023, 15, 1233 11 of 18
Table 3. Cont.
Class TP TN FP FN Acc (%) Sen (%) Spe (%) Pre (%)

Orange Haunglongbing 50 1900 0 0 100 100 100 100

Peach Bacterial spot 50 1898 2 0 99.9 100 99.89 96.15
Peach healthy 50 1900 0 0 100 100 100 100
Pepper, bell Bacterial spot 50 1900 0 0 100 100 100 100
Pepper, bell healthy 50 1900 0 0 100 100 100 100
Potato Early blight 49 1899 0 1 99.95 98 100 100
Potato Late blight 49 1899 0 1 99.95 98 100 100
Potato healthy 50 1900 0 0 100 100 100 100
Raspberry healthy 50 1900 0 0 100 100 100 100
Soybean healthy 50 1900 0 0 100 100 100 100
Squash Powdery mildew 50 1900 0 0 100 100 100 100
Strawberry Leaf scorch 50 1900 0 0 100 100 100 100
Strawberry healthy 50 1900 0 0 100 100 100 100
Tomato Bacterial spot 50 1900 0 0 100 100 100 100
Tomato Early blight 49 1899 0 1 99.95 98 100 100
Tomato Late blight 50 1900 0 0 100 100 100 100
Tomato Leaf Mold 50 1900 0 0 100 100 100 100

Tomato Septoria leaf spot 50 1898 2 0 99.9 100 99.89 96.15
Tomato mites 50 1900 0 0 100 100 100 100
Tomato Target Spot 50 1900 0 0 100 100 100 100
Tomato Leaf Curl Virus 50 1900 0 0 100 100 100 100
Tomato mosaic virus 50 1900 0 0 100 100 100 100
Tomato healthy 50 1900 0 0 100 100 100 100

As shown in Table 2, the performance of SimAM-EfficientNet proposed in this paper
is superior to other models. The specific training process is shown in Figures 6-11.

Model top 1 accuracy&loss

3.0 A —— train loss
train acc
— valid loss
2.5 1 .
—— valid acc
2.0 4
1.5
1.0 A
0.5 1
0.0 A
T T T T T
20 30 40 50
epoches

Figure 6. Changes in recognition accuracy and loss values during training of ResNet50.

Sustainability 2023, 15, 1233 12 of 18

Model accuracy&loss

4.0 4 —— train loss
—— train acc
35 — valid loss
—— valid acc
3.0 1
2.5 4
2.0 A
1.5 A
1.0 4
0.5 1
0.0 4
T T T T T T
0 10 20 30 40 50
epoches

Figure 7. Changes in recognition accuracy and loss values during training of ResNet18.

Model top 1 accuracyé&loss

— train loss
—— ftrain acc
50 - — val?d loss
— valid acc
1.5
1.0 4
0.5 1
0.0 4
T T T T T T
0 10 20 30 40 50

epoches

Figure 8. Changes in recognition accuracy and loss values during training of DenseNet121.

Sustainability 2023, 15, 1233 13 of 18

Model top 1 accuracy&loss

—— train loss

2.0 - —— train acc
— valid loss
— valid acc

1.5 1

1.0

0.5 1

0.0

0 10 20 30 40 50

epoches

Figure 9. Changes in recognition accuracy and loss values during training of VGG16.

Model accuracy&loss

—— ftrain loss
57 —— train acc
— valid loss
— valid acc
4 .
3 -
2 .
l .
0 -
T T T T T T
0 10 20 30 40 50

epoches

Figure 10. Changes in recognition accuracy and loss values during training of EfficientNet.

Sustainability 2023, 15, 1233

14 0f 18

Model top 1 accuracy&loss

—— train loss
train acc
2.0 A — valid loss
— valid acc
1.5
1.0 4 —_—
~
0.5 \
s E
0 10 20 30 40 50

epoches
Figure 11. Changes in recognition accuracy and loss values during training of Sim AM-EfficientNetB0.

Through the comparison of the above seven training processes, the results can be
obtained. The convergence process of SimAM-EfficientNet is smooth while ensuring
speed and accuracy. In this paper, the transfer learning strategy is added to improve
convergence speed. To begin with, ImageNet is used to pretrain the model in this paper.
Then, the pretrained model is trained with the PlantVillage dataset. The improved model
in this paper has many advantages. Compared with other models, the model in this paper
has the smallest training loss and the fastest convergence speed. After more than six
iterations, the loss value tends to be stable. It is verified that the improved model can be
better applied to the field of pest classification.

5.2. Experiment of Adversarial Example
5.2.1. Experimental Data Source
PlantVillage is still used for the dataset. The models include ResNet, DenseNet,

VGGI16, EfficientNet, and Simam-EfficientNet. The dataset contains 54,303 health and
disease images, divided into 38 categories.

5.2.2. The Benchmark Method

In order to comprehensively and fairly prove the effectiveness of the adversarial attack
algorithm proposed in this paper, the experiment includes two other classical white-box
antiattack methods (I-FGSM and MI-FGSM).

5.2.3. Hyperparameter Settings

The study did not set the hyperparameters exactly as the norm in the momentum
method, but, instead, chose smaller perturbations, in order to make the perturbations more
difficult to detect. Maximum disturbance ¢ = 0.3; iteration times T = 10; step size « = 0.03;
attenuation factor y = 1.0.

5.2.4. Experimental Results

The adversarial examples and original examples generated by the experiment are
shown in Figure 12. Various algorithms were used to generate adversarial examples.

Sustainability 2023, 15, 1233

150f18

The adversarial examples generated by GP-MI-FGSM proposed in this paper differ little
from the original examples and are hard to distinguish with human eyes.
Compared with many existing adversarial attack algorithms, the maximum perturba-
tion was only set to 0.3. The experiment used subtle perturbations, and the success rate
of the attack algorithm increased. As shown in Table 3, the experiment compares four
white-box adversarial algorithms, including FGSM, I-FGSM, MI-FGSM, and GP-MI-FGSM
proposed in this paper. VGG16, ResNet50, DenseNet121, ResNet18, EfficientNet, and
SimAm-EfficientNet were all attacked with these four adversarial attack algorithms. The
experimental results show that all five models are vulnerable to adversarial attacks. The
recognition accuracy of the proposed model also decreased by about 91%.

"
'
{

Original examples FGSM I-FGSM MI-FGSM GP-MI-FGSM

Figure 12. Adversarial examples generated by various algorithms.

As shown in Table 4, VGG16 performs the worst among these models. The success rate
can reach 99.2% using the adversarial attack algorithm proposed in this paper. The next-worst
performer is Resnet50, which has a recognition rate of only 2.9% when attacked by this algorithm.
DenseNet was 1.8 percent more accurate than ResNet50. The algorithm’s EfficientNet attack
success rate was 92.1%, 1.5% higher than SimAM-EfficientNetB0. The table also shows the gap
among the four adversarial algorithms. In the experiment of VGG16, the attack success rate
of GP-MI-FGSM was 6.7% higher than FGSM. In the experiments using the model proposed
in this paper, the difference was 4.1%. It can be seen that the GP-MI-FGSM adversarial algorithm
proposed in this paper has the highest attack success rate.

Table 4. Comparison of attack success rates of different adversarial attack algorithms.

. . . SimAM-
Algorithms VGG16 ResNet50 DenseNet EfficientNet EfficientNetB0
FGSM 92.5% 88.1% 87.2% 86.9% 86.5%
I-FGSM 92.6% 89.3% 88.5% 87.8% 86.8%
MI-FGSM 93.1% 90.2% 89.9% 89.3% 88.7%
GP-MI- 99.2% 97.1% 95.3% 92.1% 90.6%
FGSM) :) : .

Adpversarial examples can enhance the generalization ability and performance. There-
fore, 10,000 adversarial examples generated by GP-MI-FGSM were added to the training
set. After adversarial training, the accuracy of each model is shown in Table 5. The pre-
trained Sim AM-EfficientNet achieves an accuracy of 99.78%. The accuracy is 0.31% higher
than the training without adversarial examples. The remaining models also show some

Sustainability 2023, 15, 1233

16 of 18

performance gains. The experimental results show that the adversarial examples generated
by GP-MI-FGSM can improve the deep learning models.

Table 5. The experiment results on the Image VID dataset.

Models mAP (%) mAP (%) (Slow) mAP (%) Medium) mAP (%) (Fast)
SimAM-EfficientNetB0 99.59% 98.22% 99.83% 98.59%
(adversarial trained)
SimAM-EfficientNetB0
(adversarial trained 99.78% 99.05% 99.98% 99.52%
and pretrained)
ResNet18 (adversarial 98.63% 93.74% 99.61% 96.71%
trained)
ResNet50 (adversarial 98.61% 95.72% 99.87% 95.73%
trained)
VGGI6 (adversarial 98.72% 94.63% 99.66% 96.93%
trained)
DenseNet121 99.28% 98.15% 99.82% 98.24%
(adversarial trained)
EfficientNetB0 99.32% 97.21% 99.89% 97.79%

(adversarial trained)

6. Conclusions

This paper proposes the SimAM-EfficientNet based on the integration of 3D attention
SimAM with MBConv. SimAM-EfficientNet includes eight models and the best one is
Sim AM-EfficientBO. Currently, SE, CBAM, and other attention can only refine features
through channel and space, leading to inflexible attention weights. Because models are
complex, more dimensions need to be considered. In contrast to these attention modules,
SimAM considers both space and channel. The attention weights of three dimensions are
deduced without adding parameters. In this paper, comparative experiments of multiple
models were carried out to analyze the model recognition rate and required parameters.
The model proposed in this paper was applied to classify pests and diseases. Histogram
normalization and image pyramid were integrated into the MI-FGSM adversarial attack
algorithm, and the new algorithm GP-MI-FGSM was obtained. Experiments included ad-
versarial attacks on different models using various algorithms. The conclusion is as follows:

1. Compared with VGG16, ResNet50, DenseNet, and EfficientNet, the recognition ac-
curacy of SimAM-EfficientNetBO0 is the highest, reaching 99.47%. It has only 3.83 M
parameters and takes an average of 1.08 seconds to test a single image, slightly better
than DenseNet121 and other models. Ten thousand adversarial examples generated
by GP-MI-FGSM were added to the training set. After pretraining and adversarial
training, the accuracy of SimAM-EfficientNetB0 reached 99.78%;

2. The GP-MI-FGSM adversarial attack algorithm has two advantages in the exper-
iment. Its attack success rate is higher than FGSM, I-FGSM, and MI-FGSM, and
the perturbation is too small to be detected by human eyes.

Presently, great progress has been made to classify plant diseases, but less attention
has been paid to adversarial examples. Therefore, the next step is to focus on adversarial
training and other adversarial defense algorithms to enhance the robustness of models.

Author Contributions: Conceptualization, H.Y., Y.L. and H.T.; methodology, H.Y., Y.L. and H.T.; for-
mal analysis, H.Y. and Y.L.; investigation, H.Y. and Y.L.; data curation, H.Y. and H.T.; writing—original
draft preparation, H.Y. and H.T.; writing—review and editing, H.Y. and H.T.; supervision H.Y., Y.L.
and H.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Sustainability 2023, 15, 1233 17 of 18

Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Crr, C,; Psa, A.; Mea, A.; Fn, B. Identification and recognition of rice diseases and pests using convolutional neural networks-
sciencedirect. Biosyst. Eng. 2020, 194, 112-120.

2. He, K,; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the International Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016.

3. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.

4. Huang, G.; Liu, Z.; Weinberger, K.Q. Densely connected Cconvolutional networks. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017; pp. 2261-2269.

5. Durmus, H.; Gunes, E.O.; Kirci, M. A hybrid approach for noise reduction-based optimal classifier using genetic algorithm:
A case study in plant disease prediction. In Proceedings of the 2017 6th International Conference on Agro-Geoinformatics, Fairfax,
VA, USA, 7-10 August 2017; pp. 1-5.

6. Iandola, EN.; Moskewicz, M.W.; Ashraf, K.; Han, S.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <IMB model size. arXiv 2016, arXiv:1602.07360.

7. Zhang, SW.; Kong, WW.; Wang, Z. Plant classification method based on dictionary learning with sparse representation. Acta
Agric. Zhejiangensis 2017, 29, 338-344.

8. Guadarrama, L.; Paredes, C.; Mercado, O. Plant Disease Diagnosis in the Visible Spectrum. Appl. Sci. 2022, 12, 2199. [CrossRef]

9. Kaur, M,; Bhatia, R. Development of an improved tomato leaf disease detection and classification method. In Proceedings of
the 2019 IEEE Conference on Information and Communication Technology (CICT), Jeju, Republic of Korea, 6-18 October 2019;
pp- 1-5.

10. Tang, W.; Huang, Z. Lightweight model of tomato leaf diseases identification based on knowledge distillation. Jiangsu J. Agric.
Sci. 2021, 37, 9.

11. Yang, L.; Zhang, R.Y,; Li, L.; Xie, X. Simam: A simple, parameter-free attention module for convolutional neural networks.
In Proceedings of the International Conference on Machine Learning PMLR, Virtual, 18-24 July 2021; pp. 11863-11874.

12. Tan, M, Le, Q.V. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference
on Machine Learning, PMLR, Long Beach, CA, USA, 9-15 June 2019; pp. 6105-6114.

13. Goodfellow, L].; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. arXiv 2019, arXiv:1412.6572.

14. Moosavi-Dezfooli, S.; Fawzi, A.; Frossard, P. DeepFool: A simple and accurate method to fool deep neural networks.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30
June 2016; pp. 2574-2582.

15. Papernot, N.; Mcdaniel, P; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning in adversarial settings.
In Proceedings of the 2016 IEEE European Symposium on Security and Privacy (EuroS&P), Saarbrucken, Germany, 21-24 March
2016; pp. 372-387.

16. Carlini, N.; Wagner, D.A. Towards evaluating the robustness of neural networks. In Proceedings of the 2017 IEEE Symposium
on Security and Privacy (SP), San Jose, CA, USA, 22-26 May 2017; pp. 39-57.

17. Huang, S.; Papernot, N.; Goodfellow, I.; Duan, Y.; Abbeel, P. Adversarial attacks on neural network policies. arXiv 2017,
arXiv:1702.02284.

18. Zhou, D. Universality of Deep Convolutional Neural Networks. arXiv 2020, arXiv:1805.10769.

19. O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458.

20. Golhani, K,; Balasundram, S.K.; Vadamalai, G.; Pradhan, B. A review of neural networks in plant disease detection using
hyperspectral data. Inf. Process. Agric. 2018, 5, 354-371. [CrossRef]

21. Toda, Y.; Okura, FE. How convolutional neural networks diagnose plant disease. Plant Phenomics 2019, 2019, 9237136. [CrossRef]
[PubMed]

22. Chen, W,; Chen, J.; Duan, R;; Fang, Y.; Ruan, Q.; Zhang, D. MS-DNet: A mobile neural network for plant disease identification.
Comput. Electron. Agric. 2022, 199, 107175. [CrossRef]

23. Hu,]J; Shen, L; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 2, 2011-2023.
[CrossRef] [PubMed]

24. Woo, S,; Park, J.; Lee,].Y.; Kweon, LS. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on 414 Computer Vision (ECCV), Munich, Germany, 8-14 September 2018; pp. 3-19.

25. Guo, C.; Gardner, J.; You, Y.; Wilson, A.G.; Weinberger, K. Simple black-box adversarial attacks. In Proceedings of the International
Conference on Machine Learning, Zhuhai, China, 22-24 February 2019; pp. 2484-2493.

26. Croce, F; Hein, M. Sparse and imperceivable adversarial attacks. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, Seoul, Republic of Korea, 27 October-2 November 2019; pp. 4724—4732.

27. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.

http://dx.doi.org/10.3390/app12042199
http://dx.doi.org/10.1016/j.inpa.2018.05.002
http://dx.doi.org/10.34133/2019/9237136
http://www.ncbi.nlm.nih.gov/pubmed/33313540
http://dx.doi.org/10.1016/j.compag.2022.107175
http://dx.doi.org/10.1109/TPAMI.2019.2913372
http://www.ncbi.nlm.nih.gov/pubmed/31034408

Sustainability 2023, 15, 1233 18 of 18

28. Robbins, H.E. A Stochastic Approximation Method. Ann. Math. Stat. 2007, 22, 400-407. [CrossRef]
29. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? arXiv 2014, arXiv:1411.1792.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1214/aoms/1177729586

	Introduction
	Deep Neural Network
	Convolutional Neural Network
	EfficientNet
	SimAM Attention Module
	SimAM-EfficientNet

	Adversarial Examples
	Adversarial Attack
	FGSM
	GP-MI-FGSM
	Formulas
	Concrete Steps

	Model Training Strategy
	Learning Rate Decay
	Momentum
	Weight Decay
	Transfer Learning

	Experimental Results and Analysis
	Classification
	Experimental Environment and Parameter Settings
	Experimental Data Source
	Performance Metrics
	Results

	Experiment of Adversarial Example
	Experimental Data Source
	The Benchmark Method
	Hyperparameter Settings
	Experimental Results

	Conclusions
	References

