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Abstract: Automatic obstacle detection is of great significance for improving the safety of train
operation. However, the existing autonomous operation of trains mainly depends on the signaling
control system and lacks the extra equipment to perceive the environment. To further enhance
the efficiency and safety of the widely deployed fully automatic operation (FAO) systems of the
train, this study proposes an intelligent obstacle detection system based on deep learning. It collects
perceptual information from industrial cameras and light detection and ranging (LiDAR), and mainly
implements the functionality including rail region detection, obstacle detection, and visual–LiDAR
fusion. Specifically, the first two parts adopt deep convolutional neural network (CNN) algorithms
for semantic segmentation and object detection to pixel-wisely identify the rail track area ahead and
detect the potential obstacles on the rail track, respectively. The visual–LiDAR fusion part integrates
the visual data with the LiDAR data to achieve environmental perception for all weather conditions.
It can also determine the geometric relationship between the rail track and obstacles to decide whether
to trigger a warning alarm. Experimental results show that the system proposed in this study has
strong performance and robustness. The system perception rate (precision) is 99.994% and the recall
rate reaches 100%. The system, applied to the metro Hong Kong Tsuen Wan line, effectively improves
the safety of urban rail train operation.

Keywords: rail area detection; obstacle detection; rail traffic; deep convolutional neural network

1. Introduction

With the rapid development of rail transit, fully automated operations systems step
into a stage of rapid development [1,2]. The standard “Railway applications Automated
urban guided transport Safety requirements Part I: General” (GB/T 32588.1-2016) [3] issued
in 2016 clearly states that in driverless train operation (DTO) and unattended train operation
(UTO) operation modes, there will be no operating staff in the front-end cabin of the train.
The control system is responsible for performing rail area detection and preventing the
risk of collision with obstacles within the line boundaries [4,5]. Therefore, the operational
safety of fully automatic operation (FAO) systems requires the support of the automatic
environmental perception of trains.

The obstacles which may appear on the rail lines, such as pedestrians, falling rocks,
and intruders, would break the safety conditions of rail line closure. Thus, detecting these
obstacles and reducing the probability of collision accidents are the goals of the intelligent
train detection system [6].

With the maturity of urban rail transit technology, intelligent train detection systems
have become an important development direction. The intelligent train detection system
covers modern data communication, automatic control, highly reliable positioning, and other
advanced technologies, and represents the highest level of rail transit modernization. First,
the intelligent train detection system is not affected by the subjective factors of drivers; it is of
great significance to improve the safety of vehicle operation [7–9]. Second, compared with the
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traditional manual driving train, the intelligent train detection system will surely improve the
operation efficiency. It has strong flexibility and adaptability in the supply and configuration
of transportation services, which effectively ensures the punctuality and comfort of train
operation. It also helps to enhance the service quality of the transportation system.

At present, there are many schemes of intelligent detection systems applied in the
traffic field. These mainly include the detection system scheme based on computer vision,
radar (millimeter-wave radar), and visual–LiDAR (Light Detection and Ranging) fusion.
The detection scheme based on computer vision collects the images from the moving
direction of the train through cameras [10]. This method only requires the configuration
of the camera sensor and does not require complicated calibration [11,12]. This solution
is economical, simple to deploy, and can be employed in a dark environment. However,
the camera is greatly affected by the external environment (such as light, rain, and snow).
The detection scheme based on radar mainly transmits and recovers the signal through the
radar and compares the received signal frequency with its frequency to obtain the relative
distance and speed between the vehicle and the obstacle [13]. Radar has the characteristics
of small volume, light weight, and high spatial resolution. Meanwhile, the millimeter wave
guide seeker has a strong ability to penetrate fog, smoke, and dust. However, this solution
requires the deployment of equipment beside the railway, which increases the difficulty of
implementation and maintenance. The detection scheme based on visual–LiDAR fusion
integrates the information of visual and LiDAR [14]. It can make up for the deficiencies of
a single vision or LiDAR detection schemes. The scheme is less affected by environmental
factors, so it has high reliability.

In this paper, the key methods of the intelligent train detection system are studied. We
integrate visual and LiDAR information, which realizes pixel-wise identification of the rail
track area and obstacles in front of the running train. The FAO system can leverage the
perceptual information to warn the control center or directly output a brake. It ensures that the
train can accurately identify the obstacles ahead and enhances the safety of train operation.

The general contributions of this work are as follows:

(1) The convolutional neural networks are leveraged to realize the computer vision tasks
under the urban railway scenario, i.e., rail track area detection and obstacle detection;

(2) A visual and LiDAR information fusion method is proposed. It achieves a better perfor-
mance for obstacle detection by implementing the two aforementioned tasks in real-time;

(3) A method to judge the relationship between rail track and obstacles is proposed to
improve the accuracy of early warning.

2. Literature Review
2.1. Rail Track Region Detection

The existing rail track region detection algorithms are mainly divided into two cate-
gories. One is to extract the rail region by feature extraction operator, the other is to detect
the rail region based on deep learning method.

Qi et al. [15] propose to use gradient direction histogram features to build integral images
and use the area growth algorithm to detect the rail area. Based on the prior knowledge,
Wu et al. [16] preliminarily determine the characteristics of the rail in the lower part of the
image and then detect the rail area through the angle calibration measurement algorithm.
This algorithm shows strong robustness to both color and light. Researchers [17,18] used a
multi-threshold algorithm to segment rail tracks in a complex environment. They used the
pixel tracking algorithm to extract the feature points of the rail track and select the appropriate
curve model to construct the rail equation.

However, the method based on the feature extraction operator is relatively fixed to a
specific scenario; it is difficult to apply one method in all railway environments. This is
because the method based on the feature extraction operator is usually rule-based, while
in the actual environment, the rail track is changeable, and the single rule is insufficient
to describe the rail track in detail. Furthermore, with the rapid development of deep
learning in recent years [19,20], the convolutional neural network has been applied in
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many fields [21,22]. We find that the convolutional neural network has a strong feature
extraction capability for the whole image. Segmentation networks such as SegNet [23]
and ERFNet [24] show good performance in image segmentation. Chaurasia et al. [25]
propose the ENet network structure by reducing the size of the feature map in advance
and reducing the size of the decoder, which improved the running speed of the model.
ROMERA et al. [24,26] designed the ERFNet network to improve the segmentation accuracy
while keeping the model with low computational complexity. However, these methods
are aimed at semantic segmentation of automotive autonomous driving, few studies focus
on the semantic segmentation of rail track. Therefore, this study focuses on the semantic
segmentation of rail track based on deep learning.

2.2. Obstacle Detection

In the research of obstacle detection technology, one may leverage the efficient existing
methods based on deep learning models for object detection.

Object detectors based on CNN, such as Faster RCnn [22], SSD [27], and YOLO [28],
can recognize and locate objects in images. Faster RCnn generates a large number of
bounding boxes and then performs image recognition on each of them. YOLO directly
predicts category scores and box offsets in multiple categories within one step, with a fixed
set of default bounding boxes of different sizes at each position of the feature map with
different shapes. SSD is a combination of Faster RCNN and YOLO; the regressor-based
model is adopted to directly return the category and location of objects in the network, and
the region-based concept is also used. In the process of detection, many candidate regions
are used as ROI.

Based on the Caffe framework, Garnett [29] uses Google net as the backbone network
and SSD and StixelNet as two network branches for pedestrian position detection and con-
ventional obstacle detection, respectively. The networks use the labels generated by LiDAR
for training and realize the detection and classification of three-dimensional information of
objects through the network.

Aycard et al. [30] use the original data of LiDAR and stereo vision system as input
to detect the surrounding obstacles in the visual sensing system and LiDAR sensing
system, respectively, and obtain the list of moving objects. Premebida et al. [31] propose
a pedestrian and vehicle detection system using cameras and LiDAR. The system uses
a traditional Adaboost classifier and GMM classifier to classify ROI (region of interest)
data and obtain detection results; however, the performance of the classifier has limited
accuracy. Fan et al. [32] applied a 3D point cloud camera for object detection and distance
measurement, but the algorithm is complex and demonstrates low real-time performance
and the equipment is expensive. Garcia et al. [33] designed a detection architecture in which
the vehicle is equipped with visual–LiDAR and LiDAR for demanding different distances.
The method combines detection-level fusion with track-level fusion which improves the
robustness and detection accuracy.

Current detection methods can only detect common obstacles within the detection
range of sensors. However, the railway scene often involves unpredictable obstacles. At
the same time, the current methods lack the understanding of the railway scene. Only
the obstacles within the rail track limit will affect the operation of the current train, and
the obstacles within the near rail track limit do not need the warning. Aiming at these
shortcomings, in this paper, we propose an intelligent train detection system. The proposed
system not only detects the obstacle, but also detects the rail track. The results of obstacle
detection and rail track detection are further combined in order to judge whether the
detected obstacle affects the train running.

2.3. Visual–LiDAR Fusion

The algorithms of visual–LiDAR fusion can be divided into pre-fusion and post-fusion:

(1) Pre-fusion includes data fusion and feature fusion. The main method is to combine
the features of the original image data and point cloud data, and then detect and
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locate them. Rovid et al. [34] proposed a neural network method to fuse the image
and LIDAR point cloud to form a dense point cloud and estimate the position of the
target based on the point cloud. However, the pre-fusion method consumes a lot of
resources and is insufficient to realize the on-board real-time application;

(2) Post-fusion is also called decision fusion. Firstly, the data obtained by the two sensors
are detected, and the target detection results are fused and located. Sualeh et al. [35]
first use the network to detect the image and point cloud, respectively, and find the
two corners and the third corner of the diagonal of the target detection bounding box
according to the three-dimensional point cloud so as to update the shape and position
of the target.

Most of the existing rail track obstacle detection method relies on a single sensor; few
of them are based on multi-sensor fusion. To detect the objects in front of the train quickly
and obtain the shape and position of the target accurately. We use post-fusion technology
to detect the shape and position of the obstacles.

3. Method

This section first introduces the workflow of the proposed method, and then each
functional part will be introduced in detail.

3.1. Workflow

The main function of the intelligent train detection system is to detect the obstacles in
the rail track and give early warning. The algorithm needs to provide information about the
number, type, and distance of obstacles. To realize the sensing function, the intelligent train
detection system in this paper includes the following equipment as the input: one short
focal camera is used to detect near obstacles, and one long focal camera is used to detect
long-range obstacles. Besides, a LiDAR is used to measure the distance of the obstacle.

The main components of the intelligent train detection system consist of rail region
identification, obstacle detection, vision and LiDAR fusion, and spatial relationship judg-
ment. The rail region identification module detects the train running area and provides rail
region and rail track direction information; the obstacle detection module detects common
obstacles in rail transit, such as trains and pedestrians, and provides location and classifica-
tion information; the vision and LiDAR Fusion module detects the unknown obstacles in the
rail region (moreover, it can output the distance information of obstacles which are detected
by the obstacle detection module); the spatial relationship judgment module can judge
whether the obstacle needs warning according to the rail track direction and the position of
the obstacle. The workflow of the intelligent train detection system is shown in Figure 1.
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3.2. Rail Region Identification

One core function of the intelligent train detection system is rail track identification,
which is to extract the rail area from the input image. Accurate and reliable rail region
identification can not only provide accurate rail limits [36,37], but also accurate regions
of interest [38,39] for obstacle detection. This makes obstacle detection more accurate and
efficient. However, the traditional image processing algorithm is difficult to adapt to all
scenes because of the complex environment of the rail region in the operation environment
and the interlacing of various scenes such as curves and straights. Besides, in recent years,
artificial intelligence, especially deep learning, has achieved rapid development and has
been widely used in various fields. We find that the semantic segmentation algorithm has a
strong ability to extract image features. Therefore we try to apply semantic segmentation
to rail region recognition which mainly include a cascading downsampling layer (Cas-
cading downsampling layer: Downsampling is performed by convolution and pooling),
a convolution layer, a dilated convolution layer (Dilated convolution layer: Convolution
with skip connections), a deconvolution layer (Deconvolution layer: The inverse operation
of convolution which increases the resolution of the feature map), and a Softmax layer
(Softmax layer: Used to achieve pixel-level classification). The image segment network
structure is shown in Figure 2.
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The rail region recognition network mainly consists of the encoding section and
decoding section. The encoding section is mainly used to analyze and extract the features
of the rail region, which is composed of the convolution layer and the pooling layer. In
addition, the encoding section also contains a dilated convolution layer. The convolution
layer is mainly used to extract the rail region features of each layer. The pooling layer
is mainly used to reduce the resolution of the image. On the one hand, the subsequent
convolutional layer can have a larger receptive field. On the other hand, the computational
amount of subsequent convolutional operations can be reduced to ensure the real-time
performance of the algorithm. Dilated convolution extracts the features of different scales
by applying different dilated convolution coefficients. These features are combined to
achieve feature extraction of different scales without changing the size of the image feature
map. The decoding section is followed by the encoding section. The decoding section
mainly consists of a series of upsampling layers. The semantic information of the features
extracted from the encoding section is restored to the original size to realize the pixel-level
image understanding. In the last part of the network is the Softmax layer, which is mainly
used to classify each pixel in the image to achieve pixel-wise rail track segmentation. The
specific structure of the rail region detection network is shown in Table 1.
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Table 1. Rail region detection network.

Level Type Output Feature Map Size

1 Cascading downsampling 16 240 × 180
2–3 Convolution 64 240 × 180

4 Cascading downsampling 128 120 × 90
5–6 Convolution 64 120 × 90

7 Cascading downsampling 256 60 × 45
8–9 Convolution 256 60 × 45

10–11 Dilated convolution (rate = 2) 256 60 × 45
12–13 Dilated convolution (rate = 4) 256 60 × 45

14 Deconvolution 128 120 × 90
15–16 Convolution 128 120 × 90

17 Deconvolution 64 240 × 180
18–19 Convolution 64 240 × 180

20 Deconvolution 16 480 × 360
21–22 Convolution 16 480 × 360

23 Softmax 2 480 × 360

The segmentation results are shown in Figure 3. Green pixels are the track area.
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3.3. Obstacle Detection

In obstacle detection part, the system uses a convolutional neural network to detect
obstacles in the rail region. Depthwise separable convolution and residual network struc-
ture are used. We combine the output of the multi-layer feature layer to implement the
detection, which includes bounding box regression and obstacle classification.

Considering the real-time requirements of the algorithm for practical train applications,
the forward obstacle detection network was designed based on the fast deep learning
objects detection network SSD [27]. The network includes three main parts: the first part is
the feature extraction network, which extracts the features of the input rail environment
image through multi-layer neural networks; the second part is the extra convolution layer,
which aims to obtain the feature maps with a smaller scale; the third part is the network
prediction layer, which is used to predict the target position of the forward obstacle. The
obstacle detection network structure is shown in Figure 4. As the main part of the train



Sustainability 2023, 15, 1184 7 of 14

forward obstacle detection framework, the feature extraction network consumes most
of the computing resources of the network. At the same time, the feature extraction
of the rail environment image is also determined by this part. In the forward obstacle
detection network, the residual connection is used in the design of the network [40]. The
residual connection can eliminate the gradient vanishing. Meanwhile, depthwise separable
convolution is applied in the forward obstacle detection network [20]. Depthwise separable
convolution can reduce the computation of the network while maintaining the accuracy
of the network. In addition, multiscale feature map fusion is applied in the design of a
forward obstacle detection network. Multi-scale feature fusion combines feature maps with
different resolutions so that the rich detail information in the lower layer of the network
can be fused with the rich feature information in the upper layer. Therefore, the network
has a stronger feature extraction ability.
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The goal of setting extra layers in the train forward obstacle detection framework is
to further compress the features extracted by the feature extraction layer to obtain more
global features. Thus, it can be used for the subsequent detection of large-size obstacles.

After completing the design of the extra layer, the network prediction layer should
be designed. The network prediction layer selects several layers from different feature
graphs for decision-making. Each pixel in the feature map of the prediction layer can map
its position to the original graph and corresponds to an obstacle detection bounding box
of fixed size in the feature map. To detect obstacles of different sizes, six sizes of feature
maps are selected for prediction. The category of the target bounding box at each position
and the offset of the initial bounding box were obtained. The final size and position of the
obstacle detection bounding box were obtained by combining the location information of
the initial target bounding box set.

The a priori bounding box used to predict trains gradually increases from low-level
feature maps to high-level feature maps. The formula used to predict the a priori bounding
box of layer k is shown in Equation (1):

Sk = Smin +
Smax − Smin

m− 1
(k− 1), k ∈ [1, m] (1)

where Sk is the predicted bounding box the size of which is between the Smin and the Smax,
Smin is the minimum scale for prediction, Smax is the maximum scale for prediction, and m
is the number of feature maps for prediction. In addition, we added three additional layers
at the end of the train identification network to improve the accuracy of train detection.
The specific structure of the additional layers is shown in Table 2.

The obstacle detection effect is shown from Figures 5–7. It can be seen that the proposed
method has a good effect on a variety of scenarios such as daylight, night, tunnels, and
elevated tracks.
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Table 2. Structure of additional layers.

Level Convolution Kernel Output

Conv6_1 1 × 1 × 128 7 × 7 × 128
Conv6_2 3 × 3 × 256 4 × 4 × 256
Conv7_1 1 × 1 × 128 4 × 4 × 128
Conv7_2 3 × 3 × 256 2 × 2 × 256
Conv8_1 1 × 1 × 128 2 × 2 × 128
Conv8_2 2 × 2 × 256 1 × 1 × 256
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3.4. Visual–LiDAR Fusion

The intelligent train detection system further combines the information of images and
LiDAR sensors to achieve a better understanding of the environment. Firstly, the system
unifies the visual and LiDAR data through combining the spatiotemporal information.
Multi-level vision and LiDAR fusion algorithms are used to obtain the distance and class
information of obstacles. Combined with prior knowledge, the results are checked again to
obtain the final perceptual outputs.

Single visual information is difficult to achieve accurate obstacle distance measurement.
In addition, visual information is susceptible to changes in light and other factors. In
addition, a single LiDAR is difficult to determine the type of obstacles, and it cannot
accurately identify the boundaries of the tracks. The intelligent train detection system
integrates visual information with LiDAR information to realize accurate all-weather
obstacle perception.

(1) Multi-sensor spatiotemporal fusion

The visual module of the intelligent train detection system is mainly used for rail
area and train recognition. At the same time, the LiDAR module preprocesses the LiDAR
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point cloud data and filters out the data with a large height of the point cloud. After the
preprocessing of point cloud data, the spatial LiDAR points are mapped to the image
through data association. Thus, sparse image depth information can be obtained.

(2) Abnormal obstacle screening

In the actual train operation environment, there are some objects which rarely appear,
but the occurrence of them will have an impact on the train operation. Therefore, we need
to detect these abnormal obstacles. “Abnormal obstacle” refers to an object with a small
probability. Due to insufficient samples, these objects are difficult to be learned by the
deep learning method. After obtaining the depth information of the image, the rail region
LiDAR points are extracted by mapping of the rail region image. The rail surface fitting of
the LiDAR point cloud is carried out by the RANSAC [41] algorithm to obtain the space
equation of the rail surface. Based on the space equation of the rail surface, the point clouds
above the rail plane are clustered to identify the obstacles within the rail boundaries.

(3) Distance measurement

According to the mapping relationship between the image and LiDAR, the LiDAR
point corresponding to the obstacle detected by the image is determined. The average
distance of the LiDAR point set to the obstacle is calculated as the distance of the obstacle.
The fusion effect of the image and LiDAR is shown in Figure 8.
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3.5. Spatial Relationship Judgment

During the actual train operation, only the obstacles on the train track will affect the
train operation. On the contrary, the obstacles outside the rail track do not affect the train
operation. For the intelligent train detection system, only the obstacles that have an impact
on the normal operation of the train ahead need to be warned. The current algorithm only
detects the obstacle and rail region but does not judge the relationship between the obstacle
and the current train. Therefore, it is necessary to judge the relationship between the current
rail and obstacles. The workflow of spatial relation judgment is shown in Figure 9.
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Step1: Use the chain code tracking algorithm to extract the contours of the rail re-
gion [42] to obtain the outer contour of the rail region;

Step2: Select the set of key points on the left and right sides of the contour of the rail
region as the left and right boundaries;

Step3: Determine whether there is a turnout core point according to the ordinate
change of the outer contour set. If the ordinate of the outer contour set decreases and then
increases, this point is the turnout core point. If there are turnout cores, proceed to 3.1;
otherwise, proceed to 3.2;

Step3.1: Use the quadratic function to fit the left and right contour sets, respectively,
and get two rail curves;

Step3.2. Use the quadratic function to fit the midpoints of the left and right contours
to obtain the rail center curve;

Step4: If the rail curve intersects the lower box line of the obstacle bounding box,
the obstacle is considered to be on the current rail track; otherwise, the obstacle is on the
adjacent rail track.

4. Experiment Results

The experiment was conducted on Hong Kong Tsuen Wan line. There are 16 stations
along the whole of the Tsuen Wan Line, with a total length of about 16 km. Among them,
4 stations of Tsuen Wan Station, Kui Hing Station, Kui Fong station, and Li Jing Station
are above-ground stations, and the other 12 stations are underground. The operation line
includes the ground section and tunnel section. The smallest radius of the line is 310 m and
the maximum grade of the line is 3%. It is a typical rail transit line, which can cover most
scenes encountered by train operation.

To evaluate the effectiveness of the proposed method, the test lasted nine months and
involved the installation of Train Intelligent Detection System (TIDS) equipment on five trains
of the Tsuen Wan Line as well as the corresponding on-time running tests, with a cumulative
mileage of more than 200,000 km and a total of more than 50,000 km of data collected after
installation. The video with resolution of 1280 × 720 are collected. All experiments were
trained based on Titan Xp GPU, Pytorch 1.1.0, CUDA 9.0, and CUDNN 7.1.

For a straight track, TIDS can achieve more than 240 m detect range. The image
detection effect is shown in Figure 10. For a grade 3% maximum ramp, TIDS can achieve
no less than 100 m detection. The detection effect is shown in Figure 11.
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Figure 10. Straight track detection.

In the case of the sharpest curve of the Tsuen Wan Line (R = 312 m), the system can
achieve a detection distance of no less than 70 m. The image detection effect is shown in
Figure 12.

We sampled more than 100 h of data for statistical analysis of false alarm rate (FAR),
miss detection rate (MDR), perception, and recall of train obstacle detection system results.
The results of this analysis are shown in Table 3.
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Table 3. Analysis of experimental results of intelligent train detection system.

The System Time Results

Effective running seconds (s) 363,268
False alarm time(s) 30

Miss detection time(s) 0

Table 4 shows the analysis results and the detection indicators of this system. The
false alarm rate is 0.008% and the miss detection rate is 0. It shows that our method has
higher precision. Although there are still some false alarms in our methods at this stage,
as a perception system, false alarms do not cause security problems. On the contrary, it is
miss detection that can cause the safety problems, and the miss detection rate is 0 in this
study. This shows that our method can meet the requirements of practical application.

Table 4. Indicator of intelligent train detection system.

Indicators Results

False alarm rate 0.008%
Miss detection rate 0

At the same time, to prove the effectiveness of the fusion method proposed in this
paper, we used vision and LiDAR for train detection, respectively. For the proposed fusion
method, we can achieve accurate forward obstacle detection and distance measurement.
The forward obstacle detection abilities of different methods are shown in Table 5.
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Table 5. Forward obstacle detection ability.

Obstacle Distance (m) Metrical Error

Vision Method LiDAR Method Fusion Method

60 −4% −1.83% −0.5%
80 2.75% 1% 0.75%

100 3.7% × 1.1%
120 3.5% × −0.25%
140 5.5% × 1.57%
160 5.1% × 2.69%
180 6.28% × −1.44%
200 6.8% × 1.45%
220 9.82% × −1.4%
240 7.59% × 1.46%

The “×” in Table 5 indicates that the obstacle cannot be detected. The results show that
our fusion method can achieve better obstacle detection than the single sensor method. This
is because we know the pixel of the forward obstacle from the camera and its corresponding
point from LiDAR; thus, we can achieve accurate forward obstacle detection and distance
measurement.

5. Conclusions

In this paper, an intelligent train detection system is proposed and applied to the urban
rail scenario. The application of different focal cameras improves the perceived range. The
fusion of LiDAR supplements the distance information which is missing from the image
and realizes the detection of unknown small obstacles. In addition, the proposed system
makes full use of existing deep learning-based object detection and semantic segmentation
algorithms to extract regions of interest based on subway scene features. Finally, the spatial
judgment algorithm meets the perception requirements of the rail scenario. Experiments
show that the system can detect the obstacles on the rail track reliably and robustly.

As the active obstacle detection technology is increasingly widely accepted by the
market, the key technologies and implementation methods of the TIDS system must be
paid more attention. In the future, this technology will develop in the direction of high
RAMS. When the FAO line is operating without a driver on duty, the highly reliable SIL4
TIDS will serve as the “eyes” of the train to further detect foreign objects intruding into
the boundary in real time and report to the signal system [43,44]. The existing methods
mainly focus on on-board obstacle detection; however, the braking distance of the train
is too long, and the autonomous perceived distance of the train cannot meet the braking
requirements in curves and other scenarios. Therefore, in the future, it is necessary to
further develop vehicle–road collaborative perception and improve obstacle detection
distance. In addition, a convolutional neural network is used in this study; neural networks
have uncertainty, especially in a dynamic environment [45,46]. In future studies, we will
estimate the uncertainty to improve the interpretability of the model.
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