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Abstract: This paper describes a former sterile dump site that is the result of mining and ore
processing. A large site located in the Baia Mare mining area (Romania) with a significant amount of
Suior-type mining concentrate deposits was selected for this research. The method of analysis used
in this study is inductively coupled plasma optical emission spectrometry (ICP-OES). To characterize
the contaminated area, a total of 27 sterile samples and one soil sample were collected from the
studied site, which was affected by the mining activity. The samples were mineralized by a mix
of hydrochloric acid and nitric acid. The disaggregation of the samples took place on a sand bath,
and the concentrations of nine heavy metals were determined using an inductively coupled plasma
optical emission spectrometer. The investigations provided the information for a detailed analysis
allowing the assessment of trace element concentrations to establish whether the area requires
remediation. This paper aims to highlight the importance of obtaining quantitative analysis data
when characterizing heavy metal contaminated areas that need to undergo the remediation processes,
utilizing accurate and fast systems such as modern multispectral analytical devices. The objective of
this paper consists of the characterization of an area in the Baia Mare municipality, Romania, affected
by high heavy metal concentrations due to sterile mining material being deposited on its surface in
order to determine if the area requires remediation.

Keywords: optical emission spectrometry; trace elements; contamination; health risks; Baia Mare;
Romania

1. Introduction

Over time and particularly in recent decades, water and soil have been drastically af-
fected by pollution as a result of rapid industrialization, urbanization, agricultural practices,
the improper use of chemicals and pesticides, non-qualitative irrigation water, mining, and
increased quantities of waste [1]. Mining wastes pose physical risks due to the construction
of their supporting infrastructure, the increased erosion rates, the suspended materials in
the surface water systems, and increased instability of soil and rocks also involve chemical
risks due to the dispersion of the extracted materials or chemical agents used in mining or
ore processing [2,3].

Anthropogenic and natural activities have led to the contamination of soil and wa-
ter [4–6]. Heavy metal pollution from mining sites causes the immediate and long-term
contamination of soil, water, and air, affecting the flora, the animals, and the nearby human
population [7,8]. The sources of heavy metal pollution in soils are industrial emissions,
effluents, and solid discharges [9]. Heavy metal toxicity and its potential to enter the food
chain are major environmental problems [10–12].

Changes in the quality of soil, water, and atmosphere caused by the presence of heavy
metals due to human activities cause changes in the structure of living organisms and
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pose an exposure risk to people living and working in mining areas [13,14]. Mercury,
lead, arsenic, and cadmium are non-essential metals for the human organism, but they
are lethal [13,15–18]. Heavy metals are absorbed into the body through mechanisms such
as skin contact, soil diet, inhalation, and oral intake; they cannot be degraded and can
cause damage to vital human organs, leading to mutagenesis and carcinogenesis [19].
Increased heavy metal concentrations can be ingested by air, sediments, water, or food
contamination [20,21], causing autoimmune illnesses, allergies, and interference with the
function of the corpus luteum of the ovary, which prepares the mucous membrane of the
uterus for the implantation of a fertilized egg [22], cardiovascular disorders, lung cancer
mortality, and overall mortality [23–25].

Heavy metals accumulate in the adipose tissues as well as in the liver, kidneys, and
brain, influencing biochemical and hormonal processes such as metabolism, cell prolifera-
tion, and fertility [22]. The accumulation of Pb, Se, Hg, As, and Cr in high concentrations
can cause toxic effects in the body and lead to death [18,26–29]. Pb and Cd are nephrotoxic
elements [30], especially in the renal cortex. Pb exposure in children has an irreversible
effect to neurological functions, whereas chronic exposure in adults causes high blood pres-
sure, damage to the cardiovascular system, neurotoxicity, and cancer development [31–33].
As is well known for being toxic to living organisms [34–36]. In humans, the adverse effects
on As ingestion are nausea, stomach pain, bloating, diarrhea, and problems related to the
kidneys, liver, skin, and prostate cancer [37,38]. Cd, more than other heavy metals, is toxic
at very low concentrations to plants, humans, and animal health. It causes serious diseases
in humans if ingested through the food chain [39–41], such as high blood pressure and
constant pain caused by cancer disease [40,42–44]. Chronic Cd exposure can cause the
deterioration of the kidneys, liver, skeletal, and cardiovascular system, as well as vision and
hearing loss and the development of malignancies of the lungs, breasts, prostate, pancreas,
urinary bladder, and nasopharynx [45–49]. Heavy metals alter the Zn metabolism, result-
ing in Zn insufficiency, which can disturb the function of the pituitary, thyroid, adrenal
glands, ovaries, and testicles, reducing fertility [22]. Removing heavy metals from the
soil, including Cd [50], can be carried out through physical, chemical, and physiochemical
remediation technologies to increase the soil’s pH [51].

Soil contamination with heavy metals has become a globally major environmental
concern due to the increase in industrialization and agriculture [16,52]. Globally, over
20 million hectares of soil are contaminated with As, Cd, Cr, Hg, Pb, Co, Cu, Ni, Zn, and Se,
with concentrations above the regulatory levels [19]. Industrial processes such as mining
and metallurgy are the main causes of heavy metal enrichment [19]. Over 100 billion
tons of mining wastes are generated globally per year [53]; the main waste stream is
tailings, a mixture of non-economical crushed rock and processing fluids generated from
a mill, washery, or concentrator during mineral processing that often contain potentially
hazardous contaminants [54,55]. Land contamination with heavy metals has become a
major environmental problem worldwide [12,56–59], and there are serious issues regarding
soil pollution in Romania. There were 108 tailing ponds and 1101 sterile dumps inventoried
in Romania, of which 180 sterile dumps are situated in Maramures County [60].

Maramures County (Romania) has a long history of exploiting non-ferrous minerals;
mining has been an important source of income for the county’s inhabitants for centuries.
After the Union of 1918, the metal mines in the Baia Mare region dealt in gold and silver,
lead, copper, zinc, and pyrite mining [61–63]. The materials extracted from the mines
were subjected to a mineral concentration process in treatment plants. Pre-concentration
was an important factor in the mining industry and was applied in mines around the
world [64]. The flotation method caused the accumulations of wastes that were generated
in tailing ponds and dams [65]. The mining waste deposits and mines closed down
their activity one at a time due to a failure to adhere to the environmental commitments
assumed by Romania through the Treaty of Accession to the Union European Parliament on
1 January 2007. The polymetallic sulfide ores extracted in underground mining works were
processed without environmental concerns, and the generated waste rocks and tailings
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were simply deposited in the vicinity of the exploitation areas [66–68]. Plenty of these
mining sites were abandoned for many years under the action of erosive agents, leading
to the spread of trace elements and the contamination of soils, waters, and sediments
with heavy metals [69]. Some of these mining sites have undergone rehabilitation actions,
mostly using constructive techniques such as coastal fences beyond which the saplings
were planted, but no additional maintenance works were carried out [70]. Many sterile
waste dumps were left in Maramures and the surrounding area of Baia Mare, posing a
serious threat to the environment due to a failure to seal their contents and prevent the
mobilization of heavy metal, and revegetate the abandoned sites [54,70–72].

One of the critical areas in Maramures County, determined by the historical pol-
lution resulting from mining and metallurgical activities, is situated in the Baia Mare
municipality and is represented by arsenic pyrite deposits located near the former Central
Flotation [63,73–75]. Detailed knowledge of the characteristics of the accumulated wastes
is required to carry out the remediation of the contaminated sites [65]. Therefore, it is
necessary to evaluate the trace element concentration levels of the contaminated sites. The
analysis of this study has been carried out using a promising tool for the quantitative detec-
tion of elements [76]: inductively coupled plasma optical emission spectrometry (ICP-OES).
This technique stands out due to its versatility and detection capacity [77].

The contaminated sites must be treated with the best available techniques to recover
the ecosystem’s functions. The efficiency of the remediation of a contaminated site de-
pends on the characteristics of the site, such as the degraded physical structure and poor
nutritional status, a high concentration of trace elements and low pH, contaminant type
as a consequence of the pyrite oxidation, and acid drainage, physicochemical interactions
among the contaminants that might create new and unexpected problems and site-specific
conditions, such as soil type and the depth of groundwater table from the surface, costs,
and the final destination use of the soil [7,78].

Removing heavy metals from contaminated environments can be carried out through
different treatment methods such as acid leaching, soil washing, physical or chemical
separation of the contaminants, electrochemical treatment, electrokinetics, chemical treat-
ment, thermal or pyrometallurgical separation, biochemical processes [79–83], treatments
by activated carbon adsorption, microbes’ usage, air stripping [84,85] and the biosorption
treatment [80]. Most techniques used to remediate the sites contaminated with heavy
metals are effective, but they require high costs [79], are laborious and complicated [85],
have limited applicability to soil remediation [4,86], do not allow the natural recovery of
soil and are time-consuming [87,88].

The aim of this paper is to characterize the studied area by the determination of heavy
metal concentrations from the affected site in order to determine if it requires remediation.

2. Materials and Methods
2.1. Baia Mare Area

The studied site is located in the Baia Mare area in Romania, Maramures County.
The types of soils present in the South-Eastern part of the Baia Mare area affected by
the metallurgical industry are eutricambosol, typical luvosol, stagnic, gleyic luvosol, and
aluviosols [89,90].

The Metalogenetic district of Baia Mare is spatially and genetically associated with the
volcanoes of the Gutâi Mountains due to their predominantly polymetallic character [91,92].
The southern side of Gutâi and T, ibles, Neogene eruptive is composed of volcanic rocks with
gold ores and non-ferrous metals [93–95] such as lead, zinc, copper, etc. The characteristic
activities of the mining industry that were taking place in Baia Mare caused historic
pollution with a significant impact on the quality of the environment, affecting long-term
environmental factors through the presence of heavy metals [96–98]. So, there is a pressing
need for sample analysis of the lands contaminated with heavy metals in order to determine
the boundaries of polluted areas, control pollution, and remediate the areas affected by
heavy metals [99].
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2.2. Site Location and Sample Collection

The sampling site (47◦65′15.4′′ N, 23◦61′66.5′′ E) is the emplacement of a former sterile
dump located in the industrial area of the Baia Mare municipality, very close to the Central
Flotation of Baia Mare. In order to characterize the material from the studied emplacement,
a total of 27 sterile samples (Figure 1) and 1 soil sample was collected. The collection of the
sterile material samples was performed from 9 sampling points noted from 1 to 9 and from
a total depth of 0 to 60 cm (A: 0–15 cm, B: 15–30 cm, and C: 30–60 cm). Because the sterile
site is plated with limestone, taking samples deeper than 60 cm is not possible; these points
were located after numerous excavations, where perforations were found in the limestone.
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The sampling was carried out according to the methodological norms stipulated in
STAS 7184/1-75 [100].

The sterile material that was situated in the dump (Figures 2 and 3) consisted of
gold pyrite mining concentrate that could not be exploited in Romania due to the lack
of technology, folded with European environmental requirements. This concentrate was
sold abroad between the years 2013 and 2016, where the non-ferrous precious metals were
extracted by cyanide or frying.
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2.3. Sample Preparation and Analysis

Prior to the determination of the physico-chemical parameters, the samples were dried
at room temperature for about 2 weeks in the laboratory of Procedures and Remediation
Equipment for Soil at the Technical University of Cluj Napoca (Romania).

The texture of the samples was determined by the experimental separation of the
granulometric fractions using the sieving method, which consists of separating the granules
according to their size (in granular fractions) by sieving with screeners and sieves of the
non-cohesive soils. The methods for determining the granulometry are standardized in
Romanian legislation according to STAS 1913/5-85 [101]. For each sample, the granulometry
was determined using a Retsch AS 200 sieving machine with 5 sieves (250 µm, 500 µm,
1 mm, 2 mm, 4 mm).

The pH of the samples was determined using a multiparameter, Multiline IDS-3430,
an aqueous solution of sterile, and the respective soil, with a mass:soil to water ratio of 1:10.
The pH was determined according to STAS 7184/13-88 [102] and ISO 10390:2021 [103,104].
Thus, the following methodology was used for the pH determination of the samples: 10 g
from each sample was weighed on the balance to the accuracy of 0.1 g and placed in 100 mL
glasses, to which 100 mL of distilled water was added. After this, the suspensions were
homogenized by stirring for 5 min; then, they were left to equilibrate with CO2 in the
atmosphere for approximately 2 h. After each measurement, the electrode was washed
with distilled water.

The structure of the samples was determined using the Sekera method, which refers to
the determination of the hydrostability of the soil macrostructure. The aggregates condition
was examined and compared by providing marks from 1 to 6 according to a support board
using the Sekera method [105]. The assessment of the stability of soil aggregates subject to
water action was standardized at an international level in ISO 10930:2012 [106].

https://www.google.ro/maps
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The physical and chemical properties of the samples were determined in the laboratory
of Procedures and Remediation Equipment for Soil at the Technical University of Cluj
Napoca from Romania. The heavy metal concentrations contents were determined in
the laboratory of the Institute of Research for Analytical Instrumentation in Cluj Napoca
(Romania), using the ICP-OES technology. Each analyzed sample was prepared according
to the SR ISO 11464:2006 standard [107] regarding soil extractions of trace elements in
aqua regia, as follows: the fraction of less than 2 mm was subsampled by quartering,
grounded, and passed through a 150 µm sieve. Then, 3 g of each sample was weighed to
the accuracy of 0.001 g and placed in 100 mL Berzelius glasses and moistened with 0.5 to
1.0 mL of distilled water. A total of 21 mL of concentrated hydrochloric acid (HCl) were
then added with stirring and then by dripping 7 mL of concentrated nitric acid (HNO3).
The glasses were covered with a watch glass and left in the niche for mineralization. After
the disaggregation on the sand bath, the samples were cooled and passed through filter
paper into 100 mL volumetric flasks, washing the filter paper until homogenized.

The concentrations of nine heavy metals were determined in the samples using an
inductively coupled plasma optical emission spectrometer (ICP-OES) according to ISO
22036:2008 standards [108]. Each sample was measured 3 times, and the paper shows the
average data of these measurements.

3. Results and Discussions
3.1. Physical and Chemical Properties of Samples

Depending on the size of the particles, the granularity of a material can be determined
using direct measurements, sieving, sedimentation, or a combined method (sieving and
sedimentation) [109]. The experimental granulometry determinations using the particle
separation by sieving showed that the texture of the sterile samples was mostly made of
sand (80.73%) mixed with dust (19.27%), and the soil sample was made of 95.53% sand
mixed with 4.47% dust. The results in the sterile samples are presented as the arithmetic
means for the coarse sand (>0.2 mm) and fine sand (0.2–0.02 mm) in each of the sampling
points from the total depth of 0 to 60 cm (Figure 4).
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In the east of Baia Mare, where the sterile from the Central Flotation plant was stored,
the pH in the groundwater samples near the pond ranged between 4.0 and 7.9 [110]. Our
experimental analyses showed that the average pH in the sterile samples from each point
of the total depth of 0 to 60 cm (A: 0–15 cm, B: 15–30 cm, and C: 30–60 cm) (Figure 5) was
predominantly extremely acidic (≤3.5) and the soil pH was strongly acidic (4.5).
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Figure 5. Values of pH in the collected samples.

The analysis of the structural condition of the aggregates using the Sekera method
showed that the samples collected from the site of the former sterile dump were poorly
structured and the soil sample was well structured.

3.2. Trace Elements

The values of the concentrations for the elements analyzed with ICP-OES in the sterile
samples are presented in Table 1.

Table 1. The results of the ICP-OES determinations of the heavy metal concentrations from samples
collected from the Baia Mare mining area.

Sample Metal Concentration [mg kg−1]

Cd Cr Zn Cu Mn Pb Fe Ni Co

1A 274 14.2 733 1126 53.0 492 7710 12.0 9.93
1B 339 12.4 743 1241 50.2 942 7887 36.6 11.6
1C 327 11.0 1273 1913 179 305 7593 17.7 15.9
2A 144 6.67 759 849 51.5 1073 7327 8.73 9.10
2B 128 16.7 615 543 95.7 1364 7067 10.8 6.13
2C 5.77 17.3 735 64.5 212 109 6733 14.3 13.5
3A 95.8 11.5 617 463 87.3 280 7637 9.70 7.23
3B 7.77 24.5 489 211 168 165 6483 12.9 5.07
3C 7.00 20.4 251 48.1 262 165 6837 10.4 5.70
4A 130 2.07 587 444.7 28.6 268 8090 9.77 10.9
4B 349 7.27 593 1036 37.5 200 7720 11.3 11.2
4C 353 12.7 973 1973 120 331 7650 16.1 16.2
5A 166 1.70 426 242 14.0 243 79,167 10.2 13.5
5B 429 19.6 572 335 21.2 267 76,307 17.2 11.9
5C 568 8.23 614 535 30.0 266 79,907 12.4 13.4
6A 165 18.1 644 479 43.2 185 78,407 11.9 8.07
6B 270 20.0 934 2228 178 275 74,700 13.4 12.1
6C 183 21.6 1365 2537 483 211 7406 17.5 14.8
7A 495 92.2 962 4203 38.5 362 7650 20.4 12.6
7B 438 51.8 846 4576 32.8 453 7740 18.1 12.6
7C 323 23.1 1106 4217 141 368 7907 18.9 14.9
8A 277 122.2 953 4683 51.8 95.5 7790 35.4 12.7
8B 465 139.3 1281 5067 63.7 76.4 7670 26.1 13.8
8C 146 49.7 1035 8883 148 2068 7076 27.7 11.7
9A 285 126.1 923 4540 53.5 586 7943 29.3 8.57
9B 309 154.4 1203 6883 81.8 269 7673 38.2 15.2
9C 86.8 79.1 1033 6700 233 1818 7393 29.2 10.4

SOIL 2.13 25.6 269 301 74.5 393 6437 10.2 3.40
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According to Order 756/1997 [111], the concentrations of the heavy metals in the
samples presented in Table 1 exceed the normal value for Cr, Ni, and Co; the normal value
and the alert threshold are exceeded for Zn; the normal value, the alert, and the intervention
thresholds are exceeded for Cd, Cu, and Pb.

Cadmium in all the samples exceeded the normal value (1 mg kg−1) and the alert
threshold of Order 756/1997 (5 mg kg−1), except for the soil sample. According to Order
756/1997, all samples also exceeded the intervention threshold (10 mg kg−1), except for
samples 2C, 3B, 3C, and the soil sample.

Chromium is below the alert threshold (300 mg kg−1) and the intervention threshold
(600 mg kg−1), but it is also found in concentrations that exceed the normal value (30 mg kg−1),
in samples 7A, 7B, and in sampling points eight and nine (highest Cr concentrations).

Zinc concentrations exceed the normal value specified in Order 756/1997 (100 mg kg−1)
in all the samples and also the alert threshold (700 mg kg−1), except for samples 2B, 4A, 4B,
6A, SOIL, and in sampling points three and five.

Copper was found in concentrations that exceeded the normal value (20 mg kg−1)
in all the samples and also the alert threshold (250 mg kg−1), except for samples 3B, 3C,
and 5A. The intervention threshold (500 mg kg−1) was exceeded in all samples except for
sampling point three and samples 2C, 4A, 5A, 5B, 6A, and SOIL.

Manganese concentrations in the samples were below the normal value (900 mg kg−1).
Lead had concentrations that exceeded the normal value (20 mg kg−1) in all the samples.
The alert threshold (250 mg kg−1) was exceeded in sampling points one, seven, and nine
and in samples 2A, 2B, 3A, 4A, 4C, 5B, 5C, 6B, 8C, and SOIL. The intervention threshold
(1000 mg kg−1) was exceeded in samples 2A, 2B, 8C, and 9C.

Nickel concentrations exceeded the normal value (20 mg kg−1) in samples 1B, 7A, and
point eight and nine. Cobalt was below the normal value (15 mg kg−1), except for samples
1C, 4C, and 9A.

The results for the elements analyzed with ICP-OES in all sterile samples (mean,
median, minimum, and maximum values) are presented in Table 2.

Table 2. Statistical ICP-OES data: mean, minimum, maximum, median, and standard deviation.
Values of concentration are expressed in mg kg−1.

Element Mean Minimum Maximum Median Standard
Deviation

Cd 250.65 5.77 568.33 274.10 154.31
Cr 40.13 1.70 154.37 19.57 46.04
Zn 824.76 250.90 1365 759.33 281.17
Cu 2445.32 48.07 8883.33 1241.00 2475.62
Mn 109.60 13.97 482.67 63.67 102.70
Pb 490.41 76.37 2067.67 275.17 516.98
Fe 7549.26 6483.33 8090.00 7650.00 401.21
Ni 13.78 8.73 38.20 16.07 8.94
Co 11.44 5.07 16.17 11.93 3.11

According to the Romanian legislation of the Ministry of Water, Forests, and Envi-
ronmental Protection (Ord. 756/1997) [112] regarding the assessment of environmental
pollution, the intervention thresholds for soils with less sensitive use are 10 mg kg−1 Cd,
600 mg kg−1 Cr, 1500 mg kg−1 Zn, 500 mg kg−1 Cu, 4000 mg kg−1 Mn, 1000 mg kg−1 Pb,
500 mg kg−1 Ni, and 250 mg kg−1 Co.

Thus, according to Order 756/1997, and by analyzing the mean concentrations in the
samples, it is clear that the heavy metal means concentrations for Cd and Cu in the sterile
samples were above the intervention thresholds for soils with less sensitive use, Zn and Pb
were above the alert threshold, and Cr was above the normal value. In addition, the heavy
metals concentrations varied from sample point to sample point and also with depth.

Tailing particles sizes are mostly without gravel (<2 mm) and clay (<3.9 µm), with
sand (625 µm to 2 mm) being more common than silt (3.9–625 µm) and with a bulk density
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of 1.8–1.9 t/m3 [112]. The texture of the sterile dumps influences the permeability of the
sterile material. A coarse texture allows heavy metals to migrate to greater depths than a
fine texture, and it allows an intensive flow of substances from the soil via water, leading to
the poor retention of the substances [71,72]. The sterile material collected from the site has
a clay-like texture.

The consequence of mining sterile deposits originating from the Central Flotation plant
of Baia Mare is the significant lead and copper pollution of the groundwater with contents
higher than the intervention threshold [110]. The degradation of natural components
and the high degree of the remnant landscape caused by anthropogenic intervention in
the studied area has negative consequences on aesthetic evaluations [113]. Usually, in
quantifying trace elements, high concentrations of As, Cu, Pb, and Zn are present in the
tailings, and if Zn is high due to the chemical similarity, Cd is also analyzed [54]. The
pollution status and probabilistic health risks of heavy metals in soils associated with Cu
mining sites worldwide show that arsenic is the main contributor to non-carcinogenic risk,
while Cu has the highest exceedance of carcinogenic risk [114].

The mean concentrations of heavy metals in the Baia Mare studied site is 1.9 times
higher for Zn and 19.28 times higher for Cd than the highest concentration measured in
samples collected from the sterile dump next to the closed Tarnit,a barite mine in Suceava,
Romania [115]. The mean concentration for Cd determined in this study was 15 times
higher than the highest concentration determined in the urban soils of Baia Mare [116].
Similar concentrations, determined by ICP-OES, were reported in the Aquisgrana (Spain)
sludge dam, with values of 544 mg kg−1 As, 987 mg kg−1 Mn, 8065 mg kg−1 Pb, and
5186 mg kg−1 Zn [117]. The mean ICP-OES heavy metal concentrations in the samples
collected from the studied site are 11.95 times higher for Cd, 33.56 times higher for Cu, and
25.26 times higher for Pb than the mean concentrations of heavy metals in the Wadi Jazan
area of southwestern Saudi Arabia affected by agriculture and industries [118].

The storage of the sterile from the Central Flotation plant has a very important impact
both on the environment and on human health, polluting the groundwater and surface
waters intensively with heavy metals and affecting the flora and fauna [110]. In differ-
ent countries, heavy metal pollution affects the quality of the water used for irrigation,
livestock, and drinking [8]; human health through a very high cancer risk caused by the
drinking of groundwater, vegetables, eggs, and meat consumption [119,120]; children
are more likely to be affected with a substantially higher risk of epistaxis, colic chronic,
dermatological changes, mood changes, the presence of white lines on the nails, and visual
field loss [121,122].

4. Conclusions

The issue of the remediation of the studied contaminated area caused by industrial and
mining operations is highlighted since it presents a risk to human health, ecosystems, and
environmental factors. The proactive isolation of tailings is a priority, as is the prevention
of their entry into groundwater, rivers, lakes, and wind to avoid the contamination of
food chains and drinking water. The texture of the studied site in the sterile samples
is made of 80.73% sand with 19.27% dust, and in the soil, 95.53% sand is mixed with
4.47% dust. The pH in the sterile material is predominantly extremely acidic (≤3.5), while
the soil is also strongly acidic (4.5). The sterile dump is poorly structured, and the soil
sample is well structured. Heavy metals are a danger to the soil, water, and humans.
Heavy metal contamination has serious effects on human health and is harmful because
of its toxicity, persistence, and bioaccumulation. The heavy metal determinations of the
collected samples were performed using the inductively coupled plasma optical emission
spectrometry technique (ICP-OES), which is versatile and accurate in heavy metal detection.
The use of the ICP-OES analytical method allows the formation of an overall report of
the characteristics of the studied location. The heavy metal concentration levels of the
sterile dump in the Baia Mare area were analyzed and determined. The results of the
heavy metals concentrations revealed that the sterile samples have high heavy metal
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levels, with mean concentrations of 250 mg kg−1 Cd and 2445.32 mg kg−1 Cu and that
most of the collected samples are severely contaminated and excessively polluted with
heavy metals with negative effect potentials on plants and the environment. Low-cost and
environmentally safe strategies are needed to remediate the affected area.
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Babeş-Bolyai Geol. 2010, 55, 5–8. [CrossRef]
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