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Abstract: With the development of education informatization and the accumulation of massive
educational resources and teaching data in urban environments, educational knowledge graphs that
provide good conditions for developing data-driven intelligent education have been proposed. Based
on such educational knowledge graphs, the question-answering method can provide students with
immediate coaching and significantly increase their learning interest and productivity. However,
there is little research on knowledge graph question-answering focused on the educational field.
Students tend to consult complex questions that require reasoning; however, the existing QA system
cannot satisfy their complex information needs. To help improve sustainable learning efficiency,
we propose a novel intelligent question-answering model applied in smart cities, which can reason
over the educational knowledge graph to locate the answers to given questions. Our approach
uses a highly expressive bilinear graph neural network technology to perform forward reasoning,
utilizing the contextual information between graph nodes to improve reasoning ability. On this
basis, we propose two-teacher knowledge distillation. We construct two distinct teacher networks
by combining forward and backward reasoning, then incorporate the intermediate supervision
signals from the two networks to guide the reasoning process, thereby mitigating the phenomenon of
spurious path reasoning. Extensive experiments on the MOOC Q&A dataset prove the effectiveness of
our approach.

Keywords: sustainable learning; intelligent question answering; educational knowledge graph; bilinear
graph neural network; smart cities

1. Introduction

In recent years, the rapid development of information technology has led data to grow
exponentially, and the types of data have become more diverse. Obtaining accurate and
valuable information is particularly urgent in a large-scale data environment. It has always
been a wish of people to be able to quickly and accurately obtain helpful information. The
emergence of intelligent question-answering makes up for this shortcoming and provides
convenience for sustainable urban living, as user intentions can be understood and analyzed
the through the user’s natural language questions to provide the most direct answer.
Question-answering over knowledge graphs (KGQA) is one of the essential branches of
intelligent question-answering systems. It aims to seek answers to given questions from
the knowledge graph.

The knowledge graph (KG) uses resource description framework (RDF) triples to
store a substantial amount of entities and the deep semantic relationships that connect
them. According to the rules of RDF, each piece of knowledge in a knowledge graph is
expressed in the form of (h, r, t) triples, where h, r, and t represent the head entity, relation,
and tail entity, respectively. This method offers a useful method of organizing enormous
amounts of information, and as a result is gaining increasing attention. As education

Sustainability 2023, 15, 1139. https://doi.org/10.3390/su15021139 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15021139
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-5500-6838
https://orcid.org/0000-0003-1401-713X
https://doi.org/10.3390/su15021139
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15021139?type=check_update&version=3


Sustainability 2023, 15, 1139 2 of 18

develops, a wide variety of teaching materials and educational resources are created [1].
Educational knowledge graphs can compile dispersed and disorganized educational data
into structured knowledge that is simple to retrieve, modify, and preserve, lowering users’
usage costs and promoting quick cognitive improvement [2] in urban environments. For
instance, Yu et al. from Tsinghua University [3] proposed MOOCCube, a massive open
online course (MOOC) knowledge graph that includes entities such as concepts, courses,
teacher and student behaviors, and information about their interactions to support the
teaching and research requirements of numerous scenarios. Xu and Guo [4] proposed a
knowledge graph of knowledge points applicable to K-12 education, in which the nodes
mainly contain knowledge points, schools, teachers, etc. The results of their experiments
demonstrated that employing this knowledge graph can significantly increase the accuracy
of recommendations for educational resources.

The development of educational knowledge graphs serves as the foundation for intelli-
gent question-answering. However, there are few studies on educational knowledge graph
question-answering, which makes it impossible to meet the demands of developing edu-
cational platforms [5]. For instance, the WebQuestionsSP [6] dataset based on Freebase [7]
comprises 513 relations, while the MOOC Q&A based on MOOCCube [3] only contains ten
relation types. On the other hand, students prefer to consult complex questions that require
multi-hop reasoning in the knowledge graph, and the existing QA system cannot satisfy
their complex information needs. For example, the question from the MOOC Q&A [3]
dataset shown in Figure 1 (“What concepts are covered in the Operating Systems course
taught by Prof. Haiying Yu?”) relies on (Prof. Haiying Yu, teacher_course, <Operating
Systems>) and (<Operating Systems>, course_concept, Logical Address). Therefore, this
paper aims to propose an intelligent question-answering model that can answer complex
multi-hop problems in educational contexts.

Prof.Haiying Yu

Operating Systems
Logical 
Address

Computer Structure

 Tsinghua University

school_course

Expected path
Spurious path

Question：What concepts are covered in the Operating Systems course taught by Prof.Haiying Yu?
Answer ：Logical Address

Ming Li

SISD

course_concept

Figure 1. An example of multi-hop question answering from the MOOC Q&A dataset and MOOC-
Cube knowledge graph. For the sake of simplicity, we only display the part of the subgraph that is
relevant to the question.

However, there are limitations to the existing KGQA techniques. Because Graph
Convolutional Networks (GCN) [8] have a remarkable ability to capture graph structure
information, several studies [9,10] have used improved GCN to generate entity repre-
sentations to predict answers. However, the traditional Graph Neural Network (GNN)
models only utilize the feature information obtained by simple Linear Aggregation (LA)
of neighboring nodes, which ignores the possible interactions between graph nodes. To
find the correct answers to various complex questions that require multi-hop reasoning on
large knowledge graphs, it is necessary that the KGQA model can both effectively utilize
the context information between each node and its neighbors and effectively utilize the
context information between neighbors. Additionally, when using deep learning models
for training, models only have access to weakly supervised signals (i.e., questions and
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answers), as labeling the entire reasoning path is an expensive process. Because the inter-
mediate reasoning paths are absent, the resulting models may be susceptible to spurious
path reasoning. Figure 1 shows an example of this; while the final answer is correct, it may
have been obtained based on spurious path reasoning (indicated by the blue lines). Existing
research [11] has combined bidirectional reasoning to create teacher networks that offer
supervision signals (i.e., intermediate entity distributions) to lead the reasoning process
to address this problem. Essentially, this is the application of knowledge distillation [12].
By distilling the supervision signals generated by the teacher network and then transmit-
ting them to the student network, the student network can achieve good performance.
However, more than one teacher may be required to provide comprehensive supervision
signals. In reality, a student does not learn everything from one teacher. Instead, they may
receive advice on understanding a concept from many professors during class, after class,
or even online.

In light of the above challenges and in an effort to improve sustainable learning effi-
ciency, we propose BGNN-TT, an intelligent question-answering model utilizing a bilinear
graph neural network and two-teacher knowledge distillation. The main contributions of
our paper are as follows:

1. We combine the highly expressive Bilinear Graph Neural Network [13] technology
to perform multi-hop reasoning. More precisely, we introduce Linear Aggregation
(LA) and Bilinear Aggregation (BA) in the reasoning process, which can reflect the
contextual information between graph nodes and obtain comprehensive representation,
leading to an overall improvement in reasoning ability.

2. Inspired by multi-view learning [14], we propose a two-teacher knowledge distilla-
tion approach to mitigate spurious path reasoning in educational knowledge graph
question-answering. Based on bilinear neural network technology, we build two
different teacher networks then incorporate the intermediate supervision signals
(i.e., intermediate entity distributions) from the two teacher networks to direct the
reasoning process, which can overcome the limitation of a single teacher and provide
stronger supervision signals.

3. We apply our approach to the real MOOC Q&A [3] dataset and the large educational
knowledge graph MOOCCube [3]. The results indicate that our proposed method
outperforms other baseline models, verifying the efficacy of the method.

2. Related Works
2.1. Question-Answering over Knowledge Graph

Question-Answering over Knowledge Graph (KGQA) is a crucial technology that
promotes urban sustainability. It is capable of understanding the user’s purpose and
returning the right response. Due to KGQA’s rapid expansion, it is widely used in education,
medical care, tourism, finance, and other fields of sustainable urban life. Until now, there
have been two mainstream branches of KGQA: semantic parsing-based methods and
retrieval-based methods. Traditional semantic parsing methods [15–17] use logical forms
for querying. Recent studies [18–21] have used query graphs to reflect the question’s
semantic structure to improve performance. These SP-based algorithms achieve competitive
performance at the expense of manually created features, patterns, language engineering,
and data annotations, making it difficult for them to be extended to new domains.

Instead of constructing a structured representation, retrieval-based methods [22,23]
retrieve the answer directly from KG according to the information conveyed in the question.
Recently, multi-hop based KGQA has drawn the attention of researchers. A typical model in
reasoning methods based on embedding representation knowledge graphs is the TransE
model proposed by Bordes et al. [24], which predicts missing entities or relationships by
performing translation operations on vectors in low-dimensional spaces. Because of TransE’s
strong generalization ability, it is widely used in KGQA. Hang et al. [25] proposed the KEQA
model, using used TransE [24] to encode questions and entities to predict answers. Although
the accuracy is increased in this way, the model cannot respond to questions involving multi-
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hopping. Saxena et al. [26] proposed EmbedKGQA, which builds the KGQA model using
ComplEx [27] for multi-hop questions.

As deep learning technology advances, neural networks are attracting much attention,
and have been used to create better distributed representations of questions and entities.
Miller et al. [28] proposed a Key-Value Memory Network. Because GCN [8] has a powerful
ability to describe graph structure information, it is the basis for complex graph neural
networks used for multi-hop reasoning methods. Sun et al. [9] proposed a GraftNet approach
based on improved GCN. Based on the topic entity, it creates a subgraph targeted to the
question, adds additional text to create a heterogeneous graph, iteratively updates the nodes
of the heterogeneous graph using the enhanced GCN, and then reasons the answer to the
question. However, GraftNet’s method of extracting sub-graphs is heuristic-based, which
introduces many irrelevant entities. Sun et al. [10] proposed the PullNet method, which
improves on GraftNet’s graph construction method. Meanwhile, a variety of graph neural
networks have been developed, such as the Gated Graph Sequence Neural Networks [29],
Graph Attention Network [30], and Bilinear Graph Neural Network [13]. To encode multiple
graphs, Schlichtkrull et al. [31] proposed a Relation Graph Convolution Network (RGCN)
and used it in the knowledge graph link prediction task. Cai et al. [32] proposed a Deep
Cognitive Reasoning Network (DCRN) consisting of two phases, namely, the unconscious
and conscious phases. He et al. [11] created a complex methodology based on the teacher–
student framework. Shi et al. [33] suggested a multi-hop QA approach that supports both
label and text relations within a single transparent framework.

2.2. Educational Knowledge Graphs and QA Systems

Various online education platforms have emerged in sustainable urban living in recent
years. For example, to assist students in overcoming academic challenges, the authors of [34]
created a series of interactive robot-assisted teaching activities for classroom settings. Based
on the attention mechanism and Long Short-Term Memory (LSTM) networks, the authors
of [35] suggested a deep course recommendation model with multimodal feature extraction.
Furthermore, with a variety of teaching materials and educational resources having been
created in urban living, useful educational KGs have been launched to better organize
this information. For example, Yu et al. from Tsinghua University [3] have proposed
MOOCCube, a massive open online course (MOOC) knowledge graph that includes entities
such as concepts, courses, teacher and student behaviors, and information about their
interactions to support the teaching and research requirements of numerous scenarios. Xu
and Guo [4] proposed a knowledge graph of knowledge points applicable to K-12 education
in which the nodes mainly contain knowledge points, schools, teachers, etc. The results
of their experiments demonstrated that employing this knowledge graph can significantly
increase the accuracy of recommendations for educational resources. Lin et al. [36] used
interactive data generated by university faculty in their research and teaching activities to
build a university faculty knowledge graph containing faculty, research directions, research
outcomes, and social adjuncts, which in turn provided qualitative and quantitative data
support for faculty evaluation. Based on public KGs, a number of KGQA methods have
been developed. Lin et al. [37] proposed a question-answering method over educational
knowledge graph based on question-aware GCN. Yang et al. [38] designed an intelligent
question-answering system based on a high school course knowledge graph. Based on the
BiLSTM-CRF, Zhao et al. [39] created a question-answering system for ideological and
political education. Even though these QA techniques were created for the educational
domain, they fall short of offering the best results for the various questions that users ask.

3. Task Definition

In this section, we discuss the logic behind the answers to questions in natural language
that are derived from the knowledge graph subgraphs that correspond to the queries.
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Knowledge Graph (KG). A knowledge graph is denoted as K = (E ,R, T ), where E
andR denote an entity set and relation set, respectively; moreover, T = {(h, r, t) | h ∈ E , r ∈
R, t ∈ E} denotes the triple set and G is a subgraph related to question q, where G ∈ K.

Question-Answering over Knowledge Graph (KGQA). Given a natural language
question q and subgraph G associated with a question, the task of KGQA is to determine
the answer entities denoted by the set A, where A is a subset of the set of entities E .

4. Methodology

This study’s research problems can be summarized as follows: (1) how to build an
intelligent question-answering model over educational knowledge graph for sustainable
urban living; (2) how to improve its multi-hop reasoning ability over the educational
knowledge graph; and (3) how to mitigate the phenomenon of spurious path reasoning. To
address the above problems, we propose an intelligent question-answering model using
a bilinear graph neural network and two-teacher knowledge distillation (BGNN-TT). It is
based on the following two hypotheses: (1) bilinear aggregation operation of the bilinear
graph neural network can reflect the context information of the graph nodes, thereby
improving the reasoning ability of the model; (2) integrating the supervision signals of
different teachers can facilitate supervisory reasoning and alleviate spurious path reasoning.

This section outlines the suggested model (BGNN-TT). As shown in Figure 2, the
BGNN-TT consists of four main parts: the Question Embedding Module, the Bilinear Graph
Neural Network Reasoning Module, the Answer Prediction Module, and the Two-teacher
Knowledge Distillation Module. The question-embedding module uses a class of BiLSTM of
Recurrent Neural Network to encode natural language questions and obtain the question
representation. Then, the question representation and the knowledge graph are fed into the
bilinear graph neural network. For each node, the bilinear graph neural network is used
to obtain the context information between these nodes and update entity representation
and distribution. At the same time, the two-teacher knowledge distillation module is used
to incorporate the intermediate supervision signals (i.e., intermediate entity distributions)
provided by several teacher networks to direct intermediate reasoning. Finally, we the
sigmoid function [40] is applied to the last layer’s entity representation to predict answers.

L layers

Bilinear Graph Neural Network Reasoning 
Module

Answer Prediction ModuleQuestion Embedding Module

...

Two-teacher Knowledge Distillation Module

Attention MechanismGloVe+BiLSTM

Teacher Network 1 Teacher Network 2

Supervision Signals

...

Logical Address:

SISD:

Prof.Haiying Yu:

Ming Li:

Tsinghua University:

...

Operating 
Systems

Logical 
AddressProf.Hai

ying Yu
Computer 
Structure

Ming Li
SISDTsinghua 

University

school_course

q’

Knowledge Graph

What concepts are covered in the 
Operating Systems course taught 

by [Prof.Haiying Yu]?

Question:

Answer: Logical Address

Figure 2. An overview of the proposed approach. Blue, light blue, and deep blue denote the
topic entity, intermediate entities, and answer entity, respectively; longer rectangles denote a higher
probability of being the correct answer.

4.1. Question Embedding Module

First, we utilize GloVe [41] and BiLSTM to embed the question and obtain the hidden
state vector qj for each word, where qj ∈ Rd and j = 1, 2, . . . , k. The last hidden state is
considered to be the question representation, i.e., q = qk. To further enhance the semantic
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information of the question, we apply the attention mechanism to the question vector q to
obtain a new question representation q′:

αi = softmax(Wα(q� qi) + bα) (1)

v =
k

∑
i=1

αj · qj (2)

q′ = Wq[q‖v] + bq (3)

where Wα ∈ Rd×d, Wq ∈ Rd×2d, bα ∈ Rd, and bq ∈ Rd are parameters to be learned, �
denotes the multiplication of the elements in the matrix, and “‖” indicates the concatena-
tion operation. The newly introduced question representation includes both interactive
information between the words and contextual information specific to a single question.

4.2. Bilinear Graph Neural Network Reasoning Module

GCN [8] is the foundation for complicated graph neural networks used in multi-hop
reasoning techniques, and has a remarkable capacity to describe a graph’s structure. A GCN
generally follows a message-passing mechanism to update node representations, and the
representation of layer l is usually obtained by graph convolution operations based on the
representation of layer (l − 1):

hl
v = φ

hl−1
v , ∑

v′∈Nr(v)
hl−1

v′

 (4)

where Nr(v) denotes the neighboring node sets of node v and φ is a neural network layer.
However, the traditional Graph Neural Network (GNN) models only utilize the feature

information obtained by simple Linear Aggregation (LA) of neighboring nodes, which
ignores the possible interactions between them. In our approach, we adopt the Bilinear
Graph Neural Network approach [13] to perform forward reasoning, which can utilize
context information between a pair of neighboring nodes. It introduces bilinear aggregation
as well as allows bidirectional feature propagation between each entity node and one of its
neighboring nodes on a knowledge graph. By using both Linear Aggregation and Bilinear
Aggregation, it is possible to improve multi-hop reasoning ability based on comprehensive
entity representation.

According to their different calculation methods, Bilinear Aggregation can be divided
into two categories: bilinear aggregation over all nodes (BA-A), and bilinear aggregation
of the target node and neighboring nodes (BA-T), as shown in Figure 3. BA-A is a way to
determine the structure information using the dot-product of the target node, each of its
neighboring nodes, and two of their neighboring nodes. The equation is defined as follows:

(BA− A)l(v) = FFN(
1
2 ∑

v′
∑
v′′
(h(l−1)

v′ � h(l−1)
v′′ ) + ∑

v′
(h(l−1)

v � h(l−1)
v′ )),

(v′, v′′ ∈ N(v), v′ 6= v′′)
(5)

where N(v) denotes the neighbours of v, v′ denotes the neighboring nodes that enter the
node v, and v′′ denotes the neighboring nodes that exit it.

BA-T only performs element-by-element multiplication of the target node and each of
its neighboring nodes to find the structure information, as shown in Equation (6):

(BA− T)l(v) = FFN

(
∑
v′

(
h(l−1)

v � h(l−1)
v′

))
(6)

In our approach, we use BA-T to exploit the structure information between the target
node and neighboring nodes. We will compare the reasoning ability of the model using



Sustainability 2023, 15, 1139 7 of 18

BA-A and the model using BA-T in Section 5.4. As shown in Equation (7), the node
representation hl

v can be updated by combining LA and BA operations:

hl
v = (1− β) ∗ LAl(v) + β ∗ BAl(v) (7)

The value of β determines the applicable ratio of Linear Aggregation (LA) and Bilinear
Aggregation (BA). LA can be calculated by

LAl(v) = FFN
([

h(l−1)
v ‖q′‖h(l−1)

N

])
(8)

where h(l−1)
N denotes the the information generated by neighboring nodes. During the reason-

ing process, the feature information entering the target node is considered as the information
corresponding to the reasoning path; conversely, the feature information leaving the target
node is considered as information unrelated to the path. Consequently, while calculating the
information of adjacent nodes generated by linear aggregation, information about neighbor-
ing nodes entering the target node should be added, while information about neighboring
nodes leaving the target node should be subtracted:

h(l−1)
N = FFN

∑
r

∑
v′∈N′r(v)

h(l−1)
v′

− FFN

∑
r

∑
v′′∈N′′r (v)

h(l−1)
v′′

 (9)

where N′r denotes the set of neighboring nodes entering the target node and N′′r denotes
the set of neighboring nodes leaving the target node.

⊙ ⊙ ⊙ ⊙ 

⊕ 

...

...

l
vh

1h l
v

1
1h l 1

2
lh 1l

nh

⊙ ⊙ ⊙ 

⊕ 

...

...

l
vh

1h l
v

1
1h l 1

2
lh 1l

nh

：target node

：neighboring node

BA-A BA-T

Figure 3. The different structure of BA-A and BA-T bilinear aggregation: � represents the dot-product
operation of two nodes; ⊕ indicates aggregation of the information of neighboring nodes to update
the information of the target node v.

Experimentally, performing Bilinear Aggregation only on the target node and each of its
neighboring nodes shows better performance compared to performing Bilinear Aggregation
on all neighboring nodes. Consequently, in our method, BA-T is used to calculate BA:

BAl(v) = FFN


 h(l−1)

v ‖
q′‖

FFN
(

∑v′
(

h(l−1)
v � h(l−1)

v′

))

 (10)
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where h(l−1)
v′ is calculated by matching the question representation q′ and its relation r:

h(l−1)
v′ = ∑

r
∑

v′∈Nr(v)
σ
(
W Rr� q′

)
pl

v′ (11)

where WR ∈ Rd×d are the parameters to be learned, σ denotes the sigmoid function, FFN(·)
is a feed-forward layer, Nr(v) denotes the neighboring node set of node v, and pl

v′ is the
assigned probability of neighboring node v′ at step l, which is calculated by Equation (12).

The formula below can be used to compute the probability distribution over the
intermediate entities obtained in step l:

pl
v = σ

(
W Thl

v + b
)

(12)

4.3. Answer Prediction Module

After propagating through L layers, each node’s information is transmitted through L
nodes. This allows the node to reason L steps and receive the related path information in L
steps. As a result, we obtain the entity representation of the last layer, hL

v , which contains
the relation path information from the topic entity to the target entity. We use this entity
representation to update the entity distribution:

pL
v = σ

(
W ThL

v + b
)

(13)

The entity with the greatest score is ultimately chosen as the answer.

4.4. Two-Teacher Knowledge Distillation Module

The phenomenon of spurious path reasoning exists in the existing intelligent question-
answering model, as shown in Figure 1. Therefore, we propose two-teacher knowledge
distillation to improve further the intelligent question-answering model’s accuracy and
sustainable learning efficiency. This component can alleviate the phenomenon of spurious
path reasoning to a certain extent, and can provide a guarantee for data-driven smart
education in sustainable urban living.

Knowledge distillation is a common method of model compression [12]. It distills the
“knowledge” learned in a complex high-performance teacher network and transmits it to a
lightweight student network. More precisely, the teacher model’s predictions are treated as
“soft labels” and used to train the student models. Although knowledge distillation was
first suggested for model compression, recent research [11] has discovered that using soft
labels as the training objective might improve student network performance. However,
using only a single teacher network may not provide comprehensive knowledge, and
the supervision signals (i.e., intermediate entity distributions) may be limited. Inspired
by multi-view learning [14], we propose a two-teacher knowledge distillation approach
that incorporates the supervision signals of two different teacher networks to guide the
reasoning process. As a result, different teacher networks can compensate for the limitations
of a single teacher network, allowing the model to learn more effectively. Figure 4 depicts
its structure. In this section, we first describe how the teacher network was built before
reviewing the two-teacher distillation process.

We combine the Bilinear Graph Neural Network technology proposed in the previous
section and build two teacher networks. Teacher Network 1 uses parallel reasoning, with
forward reasoning and backward reasoning being isolated. We take correspondence restric-
tions into account in the intermediary entity distributions between them. Figure 5a depicts
the architecture of Teacher Network 1.
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layer1 layer2 L...
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1
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Intermediate Entity Distribution
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Figure 4. Framework of two-teacher knowledge distillation.

11 , ff ph 22 , ff ph L
f

L
f ph ,

L
b

L
b ph , 11,  L

b
L
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11, bb ph

…

…

0
fh

0
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f

L
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L
b

L
b ph , 11,  L

b
L
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…

…

0
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(a) Teacher Network 1 (b) Teacher Network 2

Figure 5. The architecture of the different teacher networks. For forward reasoning and backward
reasoning we employ the subscripts f and b, respectively. The dotted arrows indicate that the distribution
of intermediate entities in the forward and backward reasoning processes should be consistent.

The loss of Teacher Network 1 includes the forward reasoning loss, backward reason-
ing loss, and consistency loss:

Lt1 = DKL

(
pL

f 1, p∗f 1

)
+ λbDKL

(
pL

b1, p∗b1

)
+ λc

L−1

∑
l=1

DJS

(
pl

f 1, pL−l
b1

)
(14)

where pL
f 1
(

pL
b1
)

denotes the final entity distribution for the forward (backward) reasoning
process, p∗f 1

(
p∗b1
)

denotes the ground truth entity distribution, DKL(·, ·) is the Kullback–
Leibler divergence [42], DJS(·, ·) is the Jensen–Shannon divergence [43], and λb ∈ (0, 1), λc ∈
(0, 1) are adjustable parameters. The last item of Equation (14) is the consistency loss, which
can be calculated by summing up the losses of each intermediate step; pl

f 1 denotes the

entity distribution in step l, which corresponds to the distribution pL−l
b1 in step (L− l).

Teacher Network 2 utilizes hybrid reasoning. Unlike Teacher Network 1, Teacher
Network 2 inputs the entity distribution and entity representation obtained in the last
step of forward reasoning as initial values for backward reasoning. Figure 5b depicts the
architecture of Teacher Network 2.
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Similar to Teacher Network 1, the loss of Teacher Network 2 can be calculated as follows:

Lt2 = DKL

(
pL

f 2, p∗f 2

)
+ λbDKL

(
pL

b2, p∗b2

)
+ λc

L−1

∑
l=1

DJS

(
pl

f 2, pL−l
b2

)
(15)

After training the two teacher networks to converge, we can obtain the distribution
of intermediate entities in the bidirectional reasoning process of the two teacher networks.
Similar to He et al. [11], we take the average of the two distributions as the supervision signals:

pl
t1 =

1
2

(
pl

f 1 + pL−l
b1

)
, l = 1, . . . , L− 1 (16)

pl
t2 =

1
2

(
pl

f 2 + pL−l
b2

)
, l = 1, . . . , L− 1 (17)

where pl
t1 and pl

t2 are the intermediate supervision signals generated by Teacher Networks

1 and 2, respectively, and pl
f 1

(
pL−1

b1

)
and pl

f 2

(
pL−1

b2

)
denote the entity distributions for

forward (backword) processes. Because BGNN-TT is forward-reasoning, the loss of BGNN-
TT contains two parts, namely, the loss of forward reasoning and the loss of intermediate
supervision signals in the two-teacher network.

The loss of forward reasoning can be calculated as

L1 = DKL

(
pL

s , p∗f
)

(18)

The loss of intermediate supervision signals in the two-teacher network can be calcu-
lated as

L2 =
L−1

∑
l=1

DKL

(
pl

s, pl
t

)
(19)

where pl
s and pl

t denote the entity distribution for forward reasoning and the teacher
network in step l, respectively. The supervision signal pl

t can be obtained by combining the
supervision signals of the two teacher networks:

pl
t = αpl

t1 + (1− α)pl
t2 (20)

where α ∈ (0, 1) is a parameter which controls the impact of the different teacher networks
on the model.

Combining the above two losses, the total loss of the BGNN-TT model is defined as

Ls = L1 + λL2 (21)

where λ ∈ (0, 1) is a parameter to be learned.
The full process is shown below in Algorithm 1.
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Algorithm 1: Pseudo-code for two-teacher knowledge distillation process.
Input: Training Dataset MOOC Q&A, parameters λc,λb,β,α,λ
Output: BGNN-TT model

1 for t = 1, 2 do
2 Create the teacher model ti and initialize the parameters λc,λb,β.;
3 Training until model ti converges;
4 Generate soft labels pl

t(l = 1, . . . , L− 1) for the training data set MOOC Q&A;
5 end
6 repeat
7 Create the KGQA model BGNN-TT;
8 Initialize the parameters α,λ;
9 Obtain the soft labels pl

t using a weighted average calculation in Equation (20);
10 Utilize the loss function described in Equation (21) to optimize the model

BGNN-TT;
11 until the model BGNN-TT converges;

5. Experiment

This section primarily describes the experimental setup, including the datasets, pa-
rameter settings, comparison model, and evaluation metrics. Subsequently, we present the
experimental findings and ablation study.

5.1. Data Set and Parameter Settings

We use the real MOOC Q&A [3] dataset to evaluate our approach. The answers to
the questions are taken from MOOCCube [3], a sizable online educational knowledge
graph created by Tsinghua University. Table 1 provides an example of the content of the
dataset. The knowledge graph has a total of 52,195 triples, which are made up of ten types
of relations such as concept_domain, course_video, and prerequisite_dependency, as well
as seven types of entities, including 4723 users, 700 concepts, and 706 real online courses.
Table 2 provides detailed information about MOOCCube. There are two different kinds
of questions, one-hop questions and multi-hop questions, in the MOOC Q&A dataset.
One-hop questions only include one head entity and one relation in the knowledge graph,
whereas multi-hop questions might involve several entities and call for reasoning over
several knowledge graph facts. The dataset contains 13,637 multi-hop questions and 5504
one-hop questions. When conducting the experiments, the training set, validation set, and
test set were divided according to the ratios of 80%, 10%, and 10%, respectively. Table 3
displays the precise parameter settings for the BGNN-TT.

Table 1. Examples of one-hop and multi-hop questions in the MOOC Q&A dataset.

One-hop Content

Question What are the papers related to instant messaging?
Topic Entity instant messaging

Answer Entity
Session Initiation Protocol Extension for Instant Messaging
Teenage Communication in the Instant Messaging Era
A model for Presence and Instant Messaging

Multi-hop Content

Question Which video from the 5G and AI course illustrates the digital
communication system?

Topic Entity 5G and AI
Answer Entity 5G and AI, Chapter 3, Section 4
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Table 2. Statistics of entities and relations in the MOOCCube knowledge graph.

Category Types Quantity

Entity

concept 700
course 706
paper 5940
school 194
teacher 1933

user 4723
video 1405

Relation

concept_field 44
concept_paper 5927
course_concept 10,346
course_video 1591
school_course 703
school_teacher 2046
teacher_course 2349

user_course 24,933
video_cncept 4040

prerequisite_dependency 216

Table 3. Parameter settings of BGNN-TT.

Parameters Description Values

GloVe The embedding dimension of GloVe. 300
BiLSTM The embedding dimension of BiLSTM. 50
Drop out The drop out rate of our method. 0.2

Learning rate The learning rate of our method. 0.0005
α The parameter in Equation (20) 0.5
β The parameter in Equation (7) 0.3
λ The parameter in Equation (21) 0.3
λb The parameter in Equation (14) 0.1
λc The parameter in Equation (14) 0.01

5.2. Methods of Comparison and Evaluation Metrics

To validate the model, in this section we compare it with the mainstream benchmark
models, including GraftNet [9], EmbedKGQA [26], and NSM [11].

GraftNet [9] is a model proposed by EMNLP 2018 for the KGQA task. It constructs
a subgraph specific to the question based on the topic entity, introduces additional text
to form a heterogeneous graph, iteratively updates the nodes of the heterogeneous graph
using the improved GCN, and reasons the answer to the question.

NSM [11] is a model proposed by WSDM2021 for the KGQA task. It involves a
sophisticated system which uses one single teacher to direct the reasoning process.

EmbedKGQA [26] is a model proposed by ACL2020 for the KGQA task. It conducts
multi-hop reasoning through matching question embedding with pre-trained entity em-
bedding obtained from ComplEx. We employ ComplEx [27], RotatE [44], DistMult [45],
and ConvE [46] as score functions for answer prediction in our experiment.

We choose Hts@1, Hits@3, Hits@5, and mean reciprocal rank (MRR) as evaluation
metrics. MRR represents the average inverse ranking of the entities in the prediction list, and
Hits@K refers to the ratio of the actual answers when selecting the K highest scores in the
predicted answers. These metrics are computed using the following formulas:

Hits@K =
1
M ∑

q
I(p, ET) (22)

MRR =
1
M ∑

q

(
1
|ET | ∑

i∈Eτ

1
ri

)
(23)
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where M denotes the number of questions, ET denotes the actual answer set of question
q, p is the set of entities with the top K highest predicted score, the function I indicates
whether the element is in the set, with range {0, 1}, and ri denotes the ranking of entity i in
the list of predicted answers.

5.3. Main Results

Table 4 displays a comparison of our model’s performance with major methods on the
MOOC Q&A dataset. Overall, it is clear that our method obtains excellent performance
on both one-hop and multi-hop questions. Every statistic exceeds the comparison model
except for multi-hop MRR, which is marginally behind (0.012) NSM. The most significant
improvement is seen compared to RotatE, with the eight metrics improving by 0.124, 0.109,
0.104, 0.088, 0.228, 0.183, and 0.198, respectively. Similarly, in one-hop questions the Hits@1
and MRR improved by 0.004 and 0.019, respectively, compared to the optimal EmbedKGQA
using ComplEx. Compared to the optimal NSM in multi-hop questions, Hits@1, Hits@3,
and Hits@5 achieved improvements of 0.05, 0.052, and 0.043, respectively. After analysis,
we found that the NSM model only uses the supervision signals from one teacher to
guide the model, which is not comprehensive. However, by incorporating various teachers’
knowledge (i.e., supervision signals), our models can gain more comprehensive knowledge
and achieve better performance. Compared to GraftNet, for multi-hop questions the Hits@1,
Hits@3, Hits@5, and MRR were improved by 0.052, 0.067, 0.053, and 0.014, respectively.
After analysis, we found that the GraftNet model only utilizes Linear Aggregation to
capture the graph structure information, which cannot reflect the context information
between graph nodes, meaning that the effect is not good. However, by introducing
Bilinear Aggregation, our model allows bidirectional feature propagation between each
entity node and one of its neighboring nodes on a knowledge graph, which can obtain
comprehensive entity representation and improve the reasoning ability.

Table 4. Performance comparison of different approaches on the MOOC Q&A dataset.

Models Score Function
One-Hop Multi-Hop

Hits@1 Hits@3 Hits@5 MRR Hits@1 Hits@3 Hits@5 MRR

EmbedKGQA [26]

ComplEx 0.947 0.957 0.968 0.693 0.793 0.812 0.826 0.531
RotatE 0.832 0.854 0.869 0.624 0.623 0.639 0.689 0.413

DistMult 0.913 0.928 0.937 0.647 0.764 0.779 0.793 0.469
ConvE 0.929 0.937 0.941 0.651 0.773 0.782 0.796 0.481

GraftNet [9] - 0.911 0.926 0.938 0.663 0.799 0.802 0.819 0.597
NSM [11] - 0.938 0.949 0.958 0.688 0.801 0.817 0.829 0.623
BGNN-TT - 0.956 0.963 0.973 0.712 0.851 0.869 0.872 0.611

5.4. Ablation Study

We conducted relative ablation research to verify the viability of the two-teacher knowl-
edge distillation approach proposed in this paper. Table 5 displays the experimental outcomes.

Table 5. Experimental comparison results under different teacher guidance approaches.

Models
One-Hop Multi-Hop

Hits@1 Hits@3 Hits@5 MRR Hits@1 Hits@3 Hits@5 MRR

BGNN-TT (two-teacher) 0.956 0.963 0.973 0.712 0.851 0.869 0.872 0.611
BGNN-TT (only teacher 1) 0.949 0.957 0.963 0.701 0.842 0.857 0.876 0.614
BGNN-TT (only teacher 2) 0.938 0.949 0.958 0.691 0.826 0.839 0.847 0.609

BGNN-TT (without teacher) 0.912 0.924 0.938 0.674 0.814 0.825 0.841 0.593

It is clear that our model obtains better performance when directed by Teacher Net-
work 1, indicating that Teacher Network 1’s supervision signal is stronger than that of
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Teacher Network 2. When incorporating the two teacher network supervision signals to
direct the model, the best performance is obtained, demonstrating that two teachers can
overcome the limitation of one teacher and provide stronger supervision signals. Similarly,
compared to the model without teacher guidance, the eight metrics improved by 0.044,
0.039, 0.0.035, 0.038, 0.037, 0.031, and 0.018, respectively.

To analyze the effect of LA, BA-A, and BA-T on experimental performance, we com-
pared the performance when using only Linear Aggregation (LA), only Bilinear Aggre-
gation (BA-A or BA-T), and both. Table 6 shows that BGNN-TT with both BA-T and LA
performs best across the board and utilizing only LA performs better than using only BA.
When using both BA-T and LA, the eight metrics perform around 0.039, 0.039, 0.034, 0.035,
0.034, 0.045, 0.043, and 0.02 better, respectively, than when using only LA. Following this
investigation, we discovered that adding bilinear aggregation permits bidirectional feature
propagation between each entity node and one of its nearby nodes on a knowledge graph.
Thus, it is possible to enhance multi-hop reasoning ability based on comprehensive entity
representation by employing both Linear Aggregation and Bilinear Aggregation.

Table 6. Experimental comparison results using only BA, only LA, and both.

Models
One-Hop Multi-Hop

Hits@1 Hits@3 Hits@5 MRR Hits@1 Hits@3 Hits@5 MRR

BGNN-TT (both BA-T and LA) 0.956 0.963 0.973 0.712 0.851 0.869 0.872 0.611
BGNN-TT (both BA-A and LA) 0.939 0.947 0.957 0.703 0.837 0.841 0.859 0.607

BGNN-TT (only LA) 0.917 0.924 0.939 0.677 0.817 0.824 0.829 0.591
BGNN-TT (only BA-T) 0.609 0.924 0.938 0.674 0.574 0.597 0.601 0.447
BGNN-TT (only BA-A) 0.314 0.329 0.481 0.017 0.241 0.254 0.269 0.008

5.5. Impact of Different α and β Values

To examine the impact of various teacher network weights on the experimental per-
formance, i.e., the values of the parameters in Equation (14), we tuned α among {0.05, 0.1,
0.3, 0.5, 0.7, 1.0}. As shown in Figure 6a,b, α = 0.5 is optimal for Hits@1, α > 0.5 results
in a decline in Hits@1, and an increase in α somewhat enhance model performance when
α < 0.5. This phenomenon is seen with MRR as well. Therefore, α = 0.5 is a good choice
for our approach.

The ablation results shown in Table 6 show that the BGNN-TT model works best when
both LA and BA-T are used. To investigate the effect of different weights of LA and BA-T,
i.e., the values of the parameters in Equation (7), we tuned β among {0.1, 0.3, 0.5, 0.7, 0.9}.
As shown in Figure 6c,d, β = 0.3 is good for both one-hop and multi-hop questions; the
Hits@1 and MRR of both types of questions dramatically decline when β > 0.3. Overall,
β = 0.3 is a good choice for our approach.
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Figure 6. Impact of α and β on Hits@1 and MRR.

5.6. Case Study

In this section, we present a case study illustrating how the two teacher networks
contribute to the reasoning process.

Considering the question “What concepts are covered in the Computer Networks
course taught by Prof. Hong Wang?”, the correct reasoning path is “Prof. Hong Wang”
(teacher) → teacher_course → “Computer Networks” (course) → course_concept →
TCP (concept). Figure 7 contrasts how the model performs with and without guidance
from Teacher Network 1, Teacher Network 2, and both networks together.

course_concept

course_concept

Prof.Hong Wang

1.0

Computer Networks

Data Structure

TCP

 Linked List

0.51

0.45
0.18

0.15

Step 1 Step 2

course_concept

course_concept1.0

Computer Networks

Data Structure

TCP

 Linked List

0.51

0.39 0.36

0.61

Step 1 Step 2

course_concept

course_concept1.0

Computer Networks

Data Structure

TCP

 Linked List

0.87

0.17 0.11

0.87

Step 1 Step 2

course_concept

course_concept1.0

Computer Networks

Data Structure

TCP

 Linked List

0.98

<0.01 <0.01

0.98

Step 1 Step 2

(a)The model without teacher’s improvement (b)Improved by teacher network 1

(c)Improved by teacher network 2 (d)Improved by two-teacher network

Prof.Hong Wang

Prof.Hong WangProf.Hong Wang

Figure 7. Case study from the MOOC Q&A dataset. Blue, light blue, and deep blue denote the topic
entity, intermediate entities, and answer entity, respectively; the actual reasoning paths for various
approaches are indicated by red arrows. For the sake of simplicity, we display only those entities with
probabilities greater than or equal to 0.01. Bold numbers represent the highest probability of the entity
at step 2.

As can be seen in Figure 7a, the initial model chooses the incorrect path, which leads
to an irrelevant entity (Linked List). After improvement by Teacher Network 1 or 2, it
assigns a probability of 0.51(0.87) to the entity “Computer Networks”, and the model is
able to find the correct answer entity “TCP” with a probability of 0.61(0.87) (Figure 7b,c).
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In comparison, the two teacher networks together (Figure 7d) combine to enhance the
intermediate entity distributions. As can be seen, when incorporating supervision signals
from two teacher networks, the model assigns a very high probability of 0.98 to the entity
“Computer Networks” in the first step. Therefore, it accurately locates the answer entity
“TCP” with a high probability of 0.98 (Figure 7d).

This example demonstrates that incorporating the supervision signals from multiple
teachers does in fact offer extremely helpful supervision signals in intermediate steps to
improve the reasoning process.

6. Conclusions and Future Work

Recently, the exponential proliferation of online information has made it difficult for
users to obtain information quickly and precisely. The emergence of intelligent question-
answering makes up for this shortcoming and provides convenience for sustainable urban
living. Intelligent question-answering systems based on educational knowledge graphs can
offer students a satisfying interactive experience and precise and knowledgeable tutoring
services, improving sustainable learning efficiency.

In this paper, based on the intelligent question-answering scene in the education field
in sustainable urban living, we propose a novel intelligent question-answering model over
educational knowledge graph. Our approach uses a highly expressive bilinear graph neural
network (BGNN) to capture graph structure information and perform forward reasoning.
This approach can achieve more comprehensive entity representation and improve multi-
hop reasoning ability using linear and bilinear aggregation in combination. In addition, to
mitigate the spurious path reasoning phenomenon, we propose two-teacher knowledge
distillation. We build two different teacher networks by combining forward and backward
reasoning, then incorporate the supervision signals generated by both to guide our model.
As a result, the teachers can compensate for a single teacher’s limitations, which helps the
model to acquire more comprehensive knowledge. Extensive experiments on the MOOC
Q&A dataset demonstrate the effectiveness of our approach.

With respect to limitations and future work, although our model achieves good per-
formance, it has flaws that need to be improved and perfected. It cannot handle questions
requiring temporal and numerical comparisons. For instance, when asked “What is the
newest literature on simulated annealing algorithm?”, the model can locate literature related
to the simulated annealing algorithm in the KG; however, it cannot determine the most
recent literature. Therefore, future work should consider further improving the method
for complex questions requiring temporal comparison capability by introducing a time-
aware mechanism. In addition, the professionalism and size of the knowledge graph itself
significantly impact the effectiveness of the graph neural network’s reasoning. The more
comprehensive the entity relationship contained in the knowledge graph, the better the
Q&A effect based on the graph neural network. In addition to paying attention to the
construction of relevant knowledge graphs, future intelligent education question-answering
should try to apply emerging methods in deep learning, such as multi-task learning strate-
gies and comparative learning. We believe that with the improvement of knowledge graph
question-answering technology, the quality of question-answering texts in urban living can
be effectively controlled, providing students with an intelligent instant tutoring service and
promoting sustainability in urban living.
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30. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
31. Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; Berg, R.v.d.; Titov, I.; Welling, M. Modeling relational data with graph convolutional

networks. In Proceedings of the European Semantic Web Conference, Monterey, CA, USA, 8–12 October 2018; pp. 593–607.
32. Cai, J.; Zhang, Z.; Wu, F.; Wang, J. Deep Cognitive Reasoning Network for Multi-hop Question Answering over Knowledge

Graphs. In Proceedings of the The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021), Bangkok, Thailand, 1–6 August
2021, pp. 219–229.

33. Shi, J.; Cao, S.; Hou, L.; Li, J.; Zhang, H. TransferNet: An effective and transparent framework for multi-hop question answering over
relation graph. arXiv 2021, arXiv:2104.07302.

34. Hsieh, Y.Z.; Lin, S.S.; Luo, Y.C.; Jeng, Y.L.; Tan, S.W.; Chen, C.R.; Chiang, P.Y. ARCS-assisted teaching robots based on anticipatory
computing and emotional big data for improving sustainable learning efficiency and motivation. Sustainability 2020, 12, 5605.
[CrossRef]

35. Ren, X.; Yang, W.; Jiang, X.; Jin, G.; Yu, Y. A Deep Learning Framework for Multimodal Course Recommendation Based on LSTM+
Attention. Sustainability 2022, 14, 2907. [CrossRef]

36. Lin, Q.K.; Zhu, Y.; Lu, H.; Shi, K.; Niu, Z. Improving university faculty evaluations via multi-view knowledge graph. Future Gen.
Comput. Syst. 2021, 117, 181–192. [CrossRef]

37. Lin, Q.; Zhang, L.; Liu, J.; Zhao, T. Question-aware Graph Convolutional Network for Educational Knowledge Base Question
Answering. J. Front. Comput. Sci. Technol. 2021, 15, 1880–1887.

38. Yang, Z.; Wang, Y.; Gan, J.; Li, H.; Lei, N. Design and research of intelligent question-answering (Q&A) system based on high
school course knowledge graph. Mobile Netw. Appl. 2021, 26, 1884–1890.

39. Zhao, W.; Liu, J. Application of Knowledge Map Based on BiLSTM-CRF Algorithm Model in Ideological and Political Education
Question Answering System. Mobile Inf. Syst. 2022, 2022, 4139323. [CrossRef]

40. Han, J.; Moraga, C. The influence of the sigmoid function parameters on the speed of backpropagation learning. In Proceedings
of the International Workshop on Artificial Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 195–201.

41. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 26–28 October 2014; pp. 1532–1543.

42. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
43. Fuglede, B.; Topsøe, F. Jensen-Shannon divergence and Hilbert space embedding. In Proceedings of the International Symposium

on Information Theory, Chicago, IL, USA, 27 June–2 July 2004.
44. Sun, Z.Q.; Deng, Z.H.; Nie, J.Y.; Tang, J. RotatE: Knowledge graph embedding by relational rotation in complex space. In

Proceedings of the 7th International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
45. Yang, B.; Yih, W.; He, X.D.; Gao, J.F.; Deng, L. Embedding entities and relations for learning and inference in knowledge bases. In

Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.
46. Dettmers, T.; Minervini, P.; Stenetorp, P.; Riedel, S. Convolutional 2d knowledge graph embeddings. In Proceedings of the AAAI

Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/su12145605
http://dx.doi.org/10.3390/su14052907
http://dx.doi.org/10.1016/j.future.2020.11.021
http://dx.doi.org/10.1155/2022/4139323
http://dx.doi.org/10.1214/aoms/1177729694

	Introduction
	Related Works
	Question-Answering over Knowledge Graph
	Educational Knowledge Graphs and QA Systems

	Task Definition
	Methodology
	 Question Embedding Module
	Bilinear Graph Neural Network Reasoning Module
	 Answer Prediction Module
	Two-Teacher Knowledge Distillation Module

	Experiment
	Data Set and Parameter Settings
	Methods of Comparison and Evaluation Metrics
	Main Results
	Ablation Study
	Impact of Different  and  Values
	Case Study

	Conclusions and Future Work
	References

