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Abstract: This article measures the green total factor productivity of 30 provinces (cities) in China
from 2008 to 2018 based on the DEA superefficient nonexpected output model, utilizes the carbon
emissions trading pilot policy as a quasi-natural experiment, and uses the multiperiod double-
difference model and spatial econometric approach to test the effectiveness of carbon emissions
trading policy. The results found that carbon emissions trading policies can significantly improve
the GTFP of the pilot regions through three main approaches: adjusting the energy mix, improving
resource misallocation, and promoting green technological innovation. The market mechanism
measured by carbon price and the government administrative intervention measured by fiscal
dependence will increase regional GTFP. The spatial and temporal evolution pattern analysis and
DSDM show a “pollution refuge” effect in the initial stage of carbon emissions trading; however,
the carbon trading pilot can form a demonstration effect in neighbouring areas and promote the
improvement of GTFP in neighbouring areas afterwards. The study will help enrich the performance
evaluation framework of carbon emission trading policies and further improve the institutional
construction of the national carbon market.

Keywords: carbon trading policy; green economic development; dynamic spatial Durbin; synergistic effects

1. Introduction

The Chinese economy has transitioned from a rapid growth phase to a high-quality
development phase, and the national strategy of “ecological priority and green develop-
ment” has been steadily implemented, becoming the primary way and driving force for
high-quality development [1]. For both economic development and ecological construction
concerning, enhancing green total factor productivity (GTFP) is a vital acting point for
comprehensively promoting green development. Under these circumstances, China is ac-
tively encouraging the growth of a low-carbon economy. In 2011, China publicly proposed
the formation of the carbon market over time. Seven cities—Beijing, Shanghai, Tianjin,
Chongqing, Hubei, Guangdong, and Shenzhen—have implemented experimental carbon
emission trading markets since 2013. The government’s work report of 2021 stresses the
importance of performing a solid job of carbon peaking and carbon-neutral work, one of
which is accelerating the construction of carbon markets [2]. As of the end of 2020, the
pilot carbon market had traded 445 million tons of allowances, with a turnover of CNY
10.431 billion. The carbon market had been developing in China for nearly ten years, from
2011, when the carbon market construction plan was proposed, to July 2021, when online
trading in the national carbon market was launched. During this period, has the carbon
market effectively and genuinely contributed to a green economy? Meanwhile, compared to
developed Western countries, China’s carbon market was built late, and there are problems
such as lagging legislation and weak market mechanisms. Therefore, through what chan-
nels does the carbon market urge the emission control subjects to comply? Has it worked
mainly through market initiative or government control? Are there spatial spillovers?

The structure of this article is as follows. Section 2 provides the relevant literature
review. Section 3 expounds the theoretical analysis and hypotheses. Section 4 details
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the empirical model and variables. Section 5 conducts benchmark regression analysis,
mechanism analysis, and government–market synergies. In Section 6, robustness tests
are conducted, including dynamic analysis, placebo test, PSM-DID, and replacing the
explanatory variables. In Section 7, the spatial spillover effect analysis of the carbon
emission pilot areas was conducted, and further divided into static and dynamic, direct
effect, and indirect effect. Section 8 concludes and proposes policy suggestions.

2. Literature Review

The existing studies broadly divide research on carbon emissions trading policies into
three areas.

2.1. Research on Effectiveness of Market-Based Environmental Regulations

Fu et al. [3] used double-difference empirical evidence to conclude that China’s de-
ployment of the sulphur dioxide trading mechanism can boost green development, but has
a slight effect. Blackman et al. [4] investigated the influence of environmental legislation on
green business technology innovation and pollutant emissions using environmental data
from Mexico. He et al. [5] discovered that a carbon trading scheme may greatly increase the
overall factor pollution control effectiveness of steel businesses in the pilot region, resulting
in a green development effect. Chen et al. [6] used the frequency of phrases relating to
environmental protection in the government work report to reflect the strength of the
government’s environmental control, and the pollution reduction and economic growth
effects of government ecological regulation were investigated. The results showed that gov-
ernment environmental regulation could achieve pollution reduction and green economic
growth simultaneously. Tian et al. [7] utilized the double-difference approach to discover
that the carbon emissions intensity of pilot regions is apparently reduced. Hu et al. [8] used
a triple-difference test to find that carbon trading policies significantly negatively impacted
green total factor productivity (GTFP) and firm total factor productivity (TFP).

2.2. Research on the Mechanism of Environmental Regulations

From the existing studies, many scholars have focused on the “Porter hypothesis”,
which examines whether environmental law can bring environmental preservation and
economic growth together through technological innovation [9]. In terms of research
conclusions, there are conflicting conclusions in the previous empirical literature. Conrad
and Wastl [10] and Greenstone et al. [11] argued that environmental regulation can inhibit
technological innovation by increasing firms’ costs. Popp [12] and Tao Feng et al. [13]
argued the opposite, i.e., reasonable environmental law can promote green technological
innovation. Wan et al. [14] used the first enhancement of cleaner production standards in
China in 2003 as a policy shock and found that environmental technology regulations affect
China’s manufacturing industry’s green transformation mainly by improving the efficiency
of energy and resource use and optimizing the energy use structure. Based on microdata
from industrial enterprises, Zhu et al. [15] showed that tightening environmental rules helps
to resolve factor mismatches and enhance TFP in the industrial sector, more through the
impact of binding regulations on the correction of capital factor mismatches. Deng et al. [16]
extended the resource mismatch model based on the price distortion effect and found that
the average annual contribution of land resource mismatch to GTFP loss in Chinese urban
industries was 10.05%. Chen et al. [17]. revealed that through technological impacts, low-
carbon pilot towns continue to profit greatly in terms of GTFP. Furthermore, based on the
synergy between market mechanisms and administrative interventions, Wu et al. [2] found
that carbon markets have significant carbon emission reduction effects; however, market
mechanisms, as measured by carbon prices and market liquidity, do not have significant
carbon emission reduction effects.
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2.3. Research on Spatial Spillover Effects of Environmental Regulations

Li et al. [18] discovered that obligatory environmental legislation had a large beneficial
influence on carbon production in the region. However, there is a negative spillover
effect on carbon productivity in the neighbouring regions, showing the characteristic
of “proximity transfer under strict pollution control”. The direct effect of market-based
environmental regulation on carbon productivity in the region is significantly positive,
and there is a positive spillover effect on carbon productivity in neighbouring regions,
showing the characteristic of “those who are close to the vermilion are red, and those who
are close to the ink are black”. Zhang et al. [19] showed a positive spatial spillover effect
of low-carbon pilot cities on TFP of neighbouring cities. Tian et al. [20] concluded that
low-carbon pilot cities significantly stimulated green innovation activities of enterprises in
fellow cities, and this spillover effect was more significant than the effect of the policy on
pilot cities. Dong et al. [21] found that market-based carbon trading policies are functional
and have a cross-border emission reduction impact, i.e., carbon trading policies can lower
local carbon emissions, and pilot cities can reduce carbon emission of neighbouring areas.

In summary, most of the existing literature focuses on the role of carbon trading in
reducing emissions in the pilot regions. There is controversy over whether carbon trading
has promoted green economic development in the pilot regions. In terms of mechanisms,
most of them focus on energy structure and industrial transformation, etc. The effect of
technological innovation is inconclusive, and the impact on resource mismatch is more
neglected. In addition, studies have focused on the pollution reduction effects in the places
where the policies are implemented, often ignoring the spatial correlation of pollution
emissions in neighbouring regions, resulting in biased policy assessments. Therefore,
the existing literature related to spatial effects of carbon emissions trading policies only
involves the point estimation of spatial panel data; it lacks in-depth research on its partial
differential results, i.e., decomposition into direct, indirect, and total effects for analysis.
Given this, this paper first verifies the effectiveness of carbon emissions trading through
multiperiod DID, then examines the synergistic effects of carbon market mechanisms
and government intervention mechanisms, and investigates the transmission mechanisms
of the three paths of improving resource mismatch, reducing energy consumption, and
promoting green technology innovation through a mediating effects model. Finally, the
article conducts static and dynamic spatial Durbin regressions on GTFP and decomposes
the effects to analyse its spatial spillover effects. Compared with existing studies, the
marginal contributions of this paper may lie in (1) exploring the role mechanism of carbon
emission trade affecting urban GTFP from the perspective of green technology innovation
and the degree of capital mismatch providing a new research idea to explore the function
of carbon market; (2) research on the synergy between the market and the government in
carbon emissions trading, showing that China’s current carbon market still needs to be
vigorously controlled by the government; (3) conducting a more in-depth analysis of the
spatial spillover effect in the carbon pilot areas, which is not the result of the static SDM
model shown in most existing literature, i.e., only a single promotion or inhibition effect on
GTFP in neighbouring areas. In fact, it first forms a “pollution refuge” effect in the initial
stage of carbon emissions trading, but the carbon trading pilot can form a demonstration of
neighbouring with the national implementation of carbon trading.

3. Theoretical Foundations and Research Hypotheses
3.1. Effectiveness of Carbon Trading

The essence of carbon trading is an institutional arrangement adopted by the govern-
ment to minimize the cost of emission reduction and maximize the economic benefits to
society. Carbon emissions are a public good and have externalities; therefore, achieving
emission reduction goals only via the voluntary activities of businesses and individuals
is challenging. According to Coase’s theorem, the breakdown of property rights is the
primary contributor to market failure. The precise description of property rights can help
internalize external costs, and the carbon trading system treats carbon emissions as a
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nonpublic product [7]. The federal government divides up the whole quantity of carbon
emissions among businesses through a calculation method and allows trading among
them. When the carbon price is higher than the marginal cost of emission reduction for
market participants, emission-controlling enterprises will choose to improve their tradi-
tional production processes and adopt cleaner production technologies to meet their own
emission needs and government emission standards, and in the process, they may also
acquire surplus carbon emission allowances and gain additional revenue by selling excess
carbon emission allowances; conversely, emission control companies can minimize their
production costs by buying up surplus allowances from other players rather than improv-
ing their production processes. Therefore, under the market mechanism, carbon trading can
mobilize all participating parties to reduce emissions and bring them a win–win economic
outcome while reducing the carbon emissions of the whole society [22], thus promoting a
pilot regional GTFP.

Therefore,

Hypothesis 1: Carbon trading helps to promote GTFP in the pilot areas.

3.2. Market and Government Synergies

When the carbon market mechanism is not yet fully established, local governments
are incentivized to strengthen nonmarket mechanisms, such as traditional administrative
intervention tools, to promote carbon reduction under the pressure of carbon reduction.
Some scholars have confirmed that government intervention has a deterrent effect on
green development, manifesting itself as a “government failure” [1]. Others argue that
appropriate government intervention in areas such as encouraging innovation, environ-
mental protection, public services, and infrastructure development can promote GTFP.
Specifically, under the constraints of the carbon market, local governments may promote
carbon emission reduction through two mechanisms: firstly, a market mechanism with
carbon trading at its core (hereinafter referred to as “market mechanism”), which regulates
carbon emissions through carbon trading; and secondly, administrative intervention, which
induces compliance by emission-control entities through control [2].

Therefore,

Hypothesis 2: The effectiveness of carbon trading policies stems from the synergy between the
market and the government.

3.3. The Transmission Mechanism of Carbon Emissions Trading

Drawing on existing studies, the transmission mechanism is studied in three pathways.
The first is the transformation of energy structure. At present, China’s energy consumption
is dominated by fossil fuels such as coal; coal combustion and derivative energy production
are the dominant source of carbon dioxide emissions, so priority is given to the possible
optimization effect of carbon emission trading policies on energy structure. The second is
to stimulate corporate technological innovation. If companies reduce their CO2 emissions
through green technological advances, they can sell their carbon allowances through trading
to obtain carbon revenues so that carbon trading policies may achieve emission reductions
in the form of technological improvements or green technological innovations [21]. Thirdly,
it improves factor mismatch. The essence of carbon emissions trading is to achieve a
rational allocation of resources among participating parties through free trade and market
circulation based on the attribution of carbon emission rights to commodities [22]. Does the
pilot implementation of carbon emissions trading promote and accelerate the correction of
factor substitution and factor mismatch? As a “justified” external intervention, does the
restriction of pollution emissions create further distortion of factor inputs and “allocation
inaccessibility” through cost shocks [23], or does the “environmental quid pro quo” based
on factor prices optimize allocation efficiency, and thus achieve a win–win situation for
both environmental protection and economic growth?

Therefore, the following hypotheses are proposed.
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Hypothesis 3: Carbon trading improves GTFP by driving a transformation in the energy mix.

Hypothesis 4: Carbon trading increases GTFP by promoting green technology innovation.

Hypothesis 5: Carbon trading increases GTFP by improving resource misallocation.

3.4. Spatial Spillover Effects of Carbon Emissions Trading

The current theories on environmental regulation and pollution spillover are the op-
posing “pollution sanctuary effect” and “pollution halo effect”. In 1979, Walter et al. [24]
proposed the “pollution sanctuary” hypothesis, arguing that developed countries or re-
gions have stricter and better environmental regulation standards, while less developed
countries or regions do not pay enough attention to environmental issues, leading to the
transfer of polluting industries from developed to less developed regions, making the
latter a “pollution sanctuary”. The “pollution halo effect” argues that environmental rules
raise the barriers to entry for foreign investment (FDI), especially for highly polluting
and energy-intensive enterprises, and that the additional environmental costs can avoid
polluting FDI and encourage clean FDI to enter, thus changing the direction and size of
its technological spillover effects, promoting industrial eco-efficiency and bringing into
play the pollution halo effect [25]. In contrast, under China’s unified environmental policy,
local government discretionary space leads to disparities in regulatory intensity between
areas [26], geographical spillovers are common across regions, and the spatial impacts of
environmental regulation on high-quality development are mostly the result of competing
regulatory policies.

Therefore,

Hypothesis 6: There is a positive spatial spillover effect of carbon trading policies, which can
increase GTFP in neighbouring regions.

4. Study Design and Data Selection
4.1. Model Construction

Due to the inconsistent timing of the launch of carbon markets in the seven pilot
regions, this article utilizes the multiperiod double-difference approach to estimate the
effect of carbon markets on regional GTFP, modelled as follows.

GFTPit = β0 + β1DIDit + β2controlit + ηi + γt + δrt + εit (1)

GFTPit represents regional green total factor productivity. The multiperiod double-
difference variable DIDit = treat ∗ postit., treat represents whether it is a treatment group,
and postit represents the time of policy implementation. Controlit denotes control variables.
ηi denotes urban fixed effects, γt denotes the time effect, and δrt denotes the interaction
effect between region (East, Northeast, Central, and West regions) and year. εit denotes
the error term. The rules for taking the values of treat are as follows: when i represents
Beijing, Tianjin, Shanghai, Chongqing, Guangdong, and Hubei, treat = 1; when i represents
other regions, treat = 0. The rules for taking the value of postit : i represents Beijing,
Tianjin, Shanghai, and Guangdong and t ≥ 2013, or i represents Chongqing and Hubei
and t ≥2014,postit = 1; otherwise, postit = 0.

4.2. Description of Variables
4.2.1. Explained and Core Explanatory Variables

The explanatory variable is whether it is a carbon emissions trading pilot city, and the
explained variable is green total factor productivity (GTFP). Based on the superefficient non-
expectation DEA-SBM model, employment, total electricity consumption, and capital stock
are used as inputs; GDP is the expected output; and industrial smoke emissions, wastewater
emissions, and sulphur dioxide emissions are calculated as nonexpected outputs.

Drawing on the algorithm of Shan Haojie [27], the capital stock is obtained by the
perpetual inventory method of stocking the total actual fixed asset investment in each
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year; g is the rate of GDP growth; δ is the fixed capital depreciation rate (the depreciation
rate is measured separately from provincial data, using the arithmetic mean of the fixed
asset growth rate from 2008–2018), to determine the 2008 base period fixed asset stock K0;
and Ii

t/Pi
t is the actual amount of fixed asset investment after excluding price factors.

Ki
t = Ki

t−1(1− δ) +
Ii
t

Pi
t

(2)

K0 =
I0

(g + δ)
(3)

Tone Kaoru [28] considers the problems of nonexpectation and slackness of variables
based on this CCR model of DEA and improves the traditional model by proposing a
nonradial and nonangular measurement model. This SBM model can take into account
the bad outputs that accompany the useful outputs, i.e., the nonexpectation outputs,
effectively addressing the shortcomings of DEA models in the field of environmental
pollution assessment. The SBM-DEA model that takes into account nondesired variables
included is

minρ =
1− 1

ρ ∑
p
i=1

s−i
xik

1 + 1
q1+q2

(
∑

q1
V=1

s+r
yrk

+ ∑
q2
i=1

sb−
t
brk

) (4)

Xk = Xλ + s−

yk = Yλ + s+

bk = Bλ + sb−

λ, s−, s+ ≥ 0

yrk, brk, s−i , s+r , sb−
t represent the input variables, desired output variables, nondesired

output variables, and slack variables of the DMU, respectively.

4.2.2. Control Variables

To accurately screen the effectiveness of the policy, the econometric model introduces
industrial structure, economic growth, factor endowment, environmental protection ex-
penditure, and science and technology input as control variables. Industrial structure is
calculated by dividing the yearly gross output value of secondary industry by the total
regional economic production in each province (city) table. In contrast, a more industri-
alized industrial structure indicates a higher level of emissions. Economic growth, using
the per capita GDP of each province and city, is usually accompanied by increased en-
ergy consumption, leading to more pollution emissions, while economic development can
also promote technological upgrading, thereby reducing regional pollution emissions [29].
Factor endowments (capital stock to employment) and new structural economics place
particular emphasis on the role and differences in endowment structure, and the optimal
development path for an economy depends on the factor endowment structure of the
region [30]. Environmental expenditures are emphasized over GDP. Science and technology
inputs use science and technology expenditures over general budget expenditures.

4.2.3. Proxy Variables for Market Mechanisms and Administrative Intervention
1©Market mechanism: two types of indicators are introduced to measure the carbon

trading status, namely carbon price (price) and relative market trading size (percent). The
carbon price is the daily closing price’s yearly average, and the relative market trading size
is the total annual trading share of all carbon emissions in the region. 2© Administrative
intervention: this paper equates government control with administrative intervention. The
percentage of industrial businesses’ primary business income (income) owned by China
and its holding enterprises was selected to be measured. In addition, considering that the
higher the government’s share in the primary distribution of the national economy, the
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closer the government’s relationship with market players and the stronger the control it
can exercise over them; the fiscal dependency (finance) is selected for robustness tests [2].

4.2.4. Intermediate Variables
1© Energy consumption, using total energy consumption over GDP. 2© Green technol-

ogy innovation, indicated by the ratio of green invention and utility patent applications
to the overall invention patent applications in each province and city [21]. 3© Resource
mismatch: τit, measured by the method of Chen et al. [31]

γit =
1

1 + τit
(5)

γit is the absolute price distortion coefficient of labour, which is often used as a proxy
for the relative price distortion coefficient of labour since it cannot be directly observed:

γ̂it =

(
Lit
Lt

)
/
(

sitβi
βt

)
(6)

sit = pityit/Yt denotes the output share of area i at the moment t, βt = ΣN
i=1sitβi

denotes the output-weighted labour contribution. Lit/Lt denotes the actually used labour
share of region i at moment t, and sitβi/βt denotes the theoretically optimal allocation of
labour share of the region i at moment t. γ̂it reflects the extent to which the actual labour
allocation deviates from the optimal allocation.

4.2.5. Substitution of Variables
1© Total factor productivity (TFP): the DEA–Malmquist productivity index was used

to measure the rate of change in input–output efficiency by calculating the ratio of the
production frontier distance function. Based on the DEA-BCC model, the Malmquist
productivity index model was used to reflect the interperiod dynamics of total factor
productivity in each province and city from 2008 to 2018. The model can be described as

MIt+1 =

[
Di

t
(
xi

t+1, yi
t+1
)

Di
t
(
xi

t, yi
t
) ×

Di
t+1
(
xi

t+1, yi
t+1
)

Di
t+1
(
xi

t, yi
t
) ] 1

2

(7)

Dt and Dt+1 denote, respectively, t and t + 1, the distance functions based on variable
returns to scale in the period; and Dt(xt+1, yt+1) denotes t + 1, the distance between the
decision-making unit (DMU) in the period and the distance between the production frontier
surface in the period. The output variable selected for this study is GDP, and the input
variables are the number of employees and the capital stock [32].

2© Carbon emissions: carbon dioxide emissions by region are calculated based on
the consumption of different types of energy and the carbon emission factors of different
energy sources, which are calculated as

CO2 = Σk
44
12
× energyitk + τk + φk (8)

Where 44/12 is the proportion of CO2 molecules with carbon content in them, energyitk
represents consumption of energy k in time t and area i, τk and φk represents the factor
of standard coal for energy source and the carbon emission factor of energy source for
energy k [21].

4.3. Data Sources

This article uses panel data from 2008–2018 for 30 provinces in China. Data on carbon
emissions were obtained from CEADs, and data on carbon price and trading scale were
obtained from CSMAR and EPS databases; other data were obtained from the statistical
yearbooks of each province in previous years.
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5. Empirical Results
5.1. Baseline Regression

Table 1 presents the results of the baseline regressions; the regression coefficient
of the carbon trading policy on GTFP is significantly positive, demonstrating that the
implementation of China’s carbon trading mechanism significantly contributed to the pilot
regions’ green economic development, and neither the significance of the core explanatory
variables nor the sign of the coefficients changes fundamentally when control variables are
added. In addition, the decidable coefficients became larger during the process, indicating
that the model’s estimation results are relatively robust. Hypothesis 1 was tested.

Table 1. Baseline regression.

GTFP GTFP

x 0.229 *** 0.210 ***
(3.60) (4.14)

Controls NO YES
Time fixed effects YES YES

Individual fixed effects YES YES
Provincial and regional interaction effects YES YES

N 341 341
R2 0.780 0.801
F 12.94 12.27

Notes: The significance level for the symbol *** is 1%. The parentheses report robust standard errors.

5.2. Market and Government Synergies

The green economy-boosting effect of the carbon market in the pilot regions may not
necessarily come from carbon trading, given that China’s carbon market is not yet fully
developed and there may be a functional shortfall in the market mechanism. If the carbon
market in the pilot areas can also contribute to the green economy through command-and-
control environmental regulation, such as the central environmental protection inspection
policy, then the effectiveness of the government’s administrative intervention in the market
should be closely correlated with this channel. The following is how the model [33] is built
to test the aforementioned hypothesis:

GTFPit = β0 + β1DIDit + θDIDit ×markit + β2controlit + ηi + γt + δrt + εit (9)

marketit is the relevant indicator measuring the market mechanism, specifically the
carbon price and the relative market transaction size; the coefficient β1 captures the carbon
market effect in the absence of a market mechanism (e.g., a zero carbon price); the coefficient
θ captures the heterogeneous green economy promotion effect caused by carbon trading;
and the other symbols have the same meaning as above.

GTFPit = β0 + β1DIDit + θDIDit× govit + β2controlit + βggovit + ηi + γt + δrt+ εit (10)

govit measures government administrative intervention, specifically the share of
state-owned enterprises and fiscal dependence; and βg is the corresponding coefficient.
DIDit ×govit is the interaction term between the DID variable and the intensity of adminis-
trative intervention [2].

Table 2 shows the results of the correlation regressions: (i) When the market mechanism
is measured by the carbon price, the coefficient θ has a substantial positive association at the
1% level. (ii) The interaction term between the DID variable and the share of main business
income of SOEs is notably positive, which indicates that the stronger the government’s
ability to exercise control over the market, the more significant the promotion effect of
the carbon market in pilot regions. Replacing the carbon price with the relative market
size, the regression coefficient of the interaction term remains positive after replacing
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the government dependency with the share of state-owned enterprises, and the findings
remain unchanged.

Table 2. Synergy regression.

(1) (2) (3) (4)

Variables GTFP GTFP GTFP GTFP

X 0.130 0.167 *** −0.096 −0.003
(1.64) (3.53) (−0.63) (−0.02)

c.x#c.price 0.003 **
(2.14)

c.x#c.percent 0.728 **
(2.15)

c.x#c.finance 2.248 **
(2.50)

finance −1.120
(−1.27)

c.x#c.income 0.979 *
(1.78)

income −0.172
(−0.25)

Control variables YES YES YES YES
Time fixed effects YES YES YES YES

Individual fixed effects YES YES YES YES
Provincial and regional interaction effects YES YES YES YES

N 341 341 341 341
R2 0.803 0.791 0.804 0.803
F 21.63 17.06 25.85 12.55

Notes: The significance levels for the symbols ***, **, and * are 1%, 5%, and 10%, respectively. The parentheses
report robust standard errors.

5.3. Analysis of Conduction Mechanisms

The results of the above empirical analysis suggest that carbon trading policies are
effective in increasing GTFP in the pilot regions and that their effects increase gradually
over time. What effect does the introduction of carbon pricing programs have on GTFP?
Based on the preceding analysis, this section constructs a mediating effects regression
model [21] to investigate the mechanism of the effect of carbon emissions trading policies
on GTFP:

GFTPit = β0 + β1DIDit + β2controlit + ηi + γt + δrt + εit (11)

Middleit = β0 + ∂1DIDit + ∂2controlit + ηi + γt + δrt + εit (12)

GFTPit = β0 + λ1DIDit + λ2controlit + λ2Middleit + ηi + γt + δrt + εit (13)

Middleit represents mediating variables, including energy consumption intensity,
green technology innovation, and degree of resource mismatch; the stepwise regression
method was used to test for mediating effects.

In Table 3, the regression coefficient of the carbon trading policy on energy structure
in column (2) is notably negative, demonstrating that the program’s energy structure
adjustment impact is clear. Column (3) indicates that increasing the proportion of regional
coal consumption decreases GTFP considerably, whereas the carbon trading regression
coefficient on GTFP remains significant, demonstrating that the carbon trading policy can
enhance GTFP by promoting the transformation of the energy mix, and Hypothesis 3
is verified. Column (4) and column (5) verify the mediating effect of green technology
innovation, but the regression coefficient is weakly significant. This may be due to the fact
that given that technological innovation itself requires a certain amount of technological
accumulation, has a long payback period, and is subject to large uncertainty, and that
the empirical sample in this paper has only four years of post-doc observation, even
if manufacturing firms increase their innovation investment, it may be difficult for this
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innovation input to be effectively and fully transformed into output [14], Hypothesis 4
is verified. Column (5) shows a positive effect of green technology innovation on GTFP,
suggesting that carbon trading policies can increase GTFP by improving labour mismatch
in the pilot areas. The regression coefficient of carbon trading policies on labour mismatch
in column (6) is notably negative; column (7) further dedicates that labour mismatch
significantly reduces GTFP in the pilot areas, which indicates that carbon trading policies
can increase GTFP by reducing regional factor mismatch. Thus, Hypothesis 5 is tested.

Table 3. Intermediary effects.

Variables GTFP lneg Score z1 Score le Score

x 0.210 *** −0.168 *** 0.170 *** 0.980 ** 0.197 *** −0.178 *** 0.166 ***
(4.14) (−2.99) (3.14) (2.12) (3.97) (−3.73) (2.97)

lneg −0.233 **
(−2.47)

z1 0.012 *
(1.72)

le −0.245 *
(−1.99)

Control variables YES YES YES YES YES YES YES
Time fixed effects YES YES YES YES YES YES YES

Individual fixed effects YES YES YES YES YES YES YES
Provincial and regional

interaction effects YES YES YES YES YES YES YES

R2 0.801 0.967 0.806 0.692 0.802 0.965 0.803
F 12.27 3.438 14.25 2.091 12.29 3.965 11.23

Notes: The significance levels for the symbols ***, **, and * are 1%, 5%, and 10%, respectively. The parentheses
report robust standard errors.

6. Robustness Analysis
6.1. Parallel Trends and Analysis of Dynamic Effects

An important assumption for the use of DID is that the outcome variable satisfies
the parallel trend assumption between the treatment and control groups. Therefore, this
paper applies the event study approach to the parallel trend hypothesis and dynamic
effects analysis. Specifically, using the 3 years prior to the start of the carbon market as the
comparison benchmark, the cross-product term between the year dummy variable and
the corresponding policy dummy variable is constructed for the 3 years prior to the start
of the carbon market, the start year, and the 5 years after the start; the model used [2] is
as follows.

GTFPit = β0 +
3

∑
s=1

βpre−sDpre−s + βcurrentDcurrent +
5

∑
s=1

βpost−sDpost−s + β2controlit + ηi + γt + δvt + εit (14)

In Equation (9), Dpre−s, Dcurrent, and Dpost−s reflect the cross-multiplication of the
dummy variables with the appropriate policy dummy variables for the years preceding,
during, and after the pilot region’s carbon market launch, respectively. βpre−s, βcurrent,
and βpost−s are the corresponding coefficients, and other symbols have the same meaning
as in Equation (1). According to regression results in Table 4, βpre−s denote that the
corresponding coefficients for the 2 years before the launch of the carbon market fail the
significance test, which proves that the hypothesis of parallel trend holds, and the dynamic
test results show that βcurrent and βpost−s are both significantly positive at the 1–5% level,
and the regression coefficients become larger as the number of years increases after the
implementation of the policy, indicating that the promotion effect of carbon emissions
trading on GTFP in the pilot regions increases year by year.
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Table 4. Dynamic analysis.

(1)

Variables GTFP

pre3 −0.067 *
(−1.97)

pre2 −0.018
(−0.35)

pre1 0.062
(1.06)

current 0.105 **
(2.21)

post1 0.136 **
(2.11)

post2 0.192 ***
(3.13)

post3 0.237 ***
(2.93)

post4 0.324 ***
(3.05)

post5 0.456 **
(2.51)

Controls YES
Time fixed effects YES

Individual fixed effects YES
Provincial and regional interaction effects YES

N 341
R2 0.810
F 9.402

Notes: The significance levels for the symbols ***, **, and * are 1%, 5%, and 10%, respectively. The parentheses
report robust standard errors.

6.2. Placebo Test

When using multiyear data for empirical analysis of double differences, serial correla-
tion may produce difficulties with standard error bias. For this reason, a placebo test was
conducted using a nonreference substitution test [2]. This process was repeated 500 times
to obtain DID regression coefficients for the 500 dummy treatment groups and the dummy
policy time interactions. The estimated DID coefficient (0.210) in column (2) of Table 1
would be in the low tail of the distribution of the nonreference substitution test coeffi-
cients, the regression results are shown in Figure 1, so the robustness of base regression
is identified.

6.3. PSM-DID Test

The double-difference method assumes homogeneity between the experimental and
control groups and further continues with the nearest-neighbour matching method for
robustness testing [7]. Considering that the pilot policy effect had already appeared in 2013
and that the pilot policy might change the changes of relevant economic variables in the
pilot areas, in this article, only the samples before the impact of the policy (i.e., 2008–2012)
were matched with year-by-year propensity scores. According to the regression results, the
multiperiod double-difference variable DID’s coefficient is considerably positive at the 5%
level. Therefore, the baseline regression results of this paper are robust.
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6.4. Changing the Window Period Test

Considering the issue of pre- and postpolicy timeliness, this section sets the sample
to a more balanced interval of 2011–2016 for robustness regression again. The findings
demonstrate that the primary regression findings of this research are resilient, since all of
the key explanatory variable coefficients are significant at the 1% level.

6.5. Substitution of Explanatory Variables

In this paper, total factor (TFP) and carbon emissions are used in place of the GTFP
indicator to test the sensitivity of the regression findings to the measurement indicators.
Carbon trading regimes considerably cut carbon emissions and boost total factor produc-
tivity, according to the regression results, in Table 5, which are consistent with those of
the benchmark regression. In addition, the result also illustrates that carbon emissions
trading can achieve a win–win situation for both the economy and the environment in the
pilot regions.

Table 5. Substitution of explanatory variables.

Variables tfp tfp CO2 CO2

x 0.070 *** 0.100 *** −0.167 ** −0.120 **
(2.82) (3.04) (−2.26) (−2.34)

Control variables NO YES NO YES
Time fixed effects YES YES YES YES

Individual fixed effects YES YES YES YES
Provincial and regional

interaction effects YES YES YES YES

R2 0.596 0.612 0.988 0.988
F 7.957 3.579 5.097 2.469

Notes: The significance levels for the symbols ***, ** are 1%, 5%, respectively. The parentheses report robust
standard errors.

7. Spatial Spillover Effects
7.1. Analysis of Spatial and Temporal Patterns

In Figure 2, three cross-sectional visualizations were selected to show the GTFP evolu-
tion in 2008, 2013, and 2018, and the Jenks natural breakpoint method was used to show the
GTFP evolution and reveal the GTFP spatial pattern [1]. (1) In terms of temporal evolution,
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the GTFP increased in most provinces from 2008 to 2018 compared to the base period. (ii) In
terms of spatial pattern, the GTFP pattern is misaligned with the economic growth map,
and the regions with higher GTFP are not the regions with higher economic development
in the traditional sense, as shown by the fact that regions with strong economic growth,
such as the Yangtze River Delta and the Pearl River Delta, are not as efficient under the
constraints of factor inputs and environmental pollution, although the scale of economic
output is very impressive. This means that simply increasing economic output is not a
sufficient condition for promoting the green development of regional economies.
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7.2. Spatial Panel Model
7.2.1. Model Construction

The theoretical analysis in this paper suggests that ignoring spatial factors in the study
of GTFP will cause model bias and thus affect the accuracy of the results, so a static spatial
Durbin model was constructed.

GTFPit = δ0 + ρ0WGTFPit + β1xit + βxXit + θXWXit + ui + εit (15)

In addition, the effect of environmental policy tools often takes time to play out,
and the effect of heterogeneous environmental regulation tools to mitigate environmental
pollution may change over time. In view of the dynamic inertia changes in the time
dimension of GTFP, in order to avoid endogeneity interference, and at the same time, to
test the static Durbin regression results of GTFP, the dynamic spatial Durbin model DSDM
was further constructed.

GTFPit = δ0 + ρ0WGTFPit + ρ1WGTFPi,t−1 + β1xit + βxXit + θXWXit + ui + εit (16)

W is the spatial weight matrix of the model, the coefficients of the lagged one-period
values of GTFP .ρ1 reflects the path-dependent characteristics of the GTFP [34]; the coef-
ficients of the spatial lag term ρ0 reflect the correlation between the levels of economic
volatility between regions.
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7.2.2. Selection of the Space Matrix
1© Adjacency matrix

wij =

{
1, There is an adjacent boundary between city i and city j
0, There is no adjacent boundary between city i and city j

(17)

2© Economic distance spatial weighting matrix.
This matrix assumes that cities that are more economically robust will have a more

substantial impact on surrounding cities, and economically weaker cities will have a weaker
impact on surrounding cities based on the consideration of spatial latitude and longitude
distances. The formula [1] is

Wij = W0 × diag

(
Y1

Y
,

Y2

Y
, · · · ,

Yn

Y

)
(18)

Yi =
1

t1 − t0 + 1 ∑t1
t=t0

Yit,
.

Y =
1

n(t,−t0 + 1) ∑t1
t=t0 ∑n

i=1 Yit (19)

Wij represents the spatial weights between cities. W0 is the geospatial weight matrix.

diag
(

Y1
Y

, Y2
Y

, · · · , Yn
Y

)
is the diagonal matrix with the mean value of the share of GDP of

each city as the diagonal element. Yi denotes i, the mean value of real GDP for each year
for each city.

.
Y denotes the real GDP of all cities. t0 is the base period; t1 is the end period.

Yit is the real GDP.

7.2.3. Spatial Autocorrelation Test

The Moran index has the following form:

Moran
′
sI =

∑n
i=1 ∑n

j=1 Wij(yi − y)
(

y .
j
− y
)

s2 ∑n
i=1 ∑n

j=1 Wij
(20)

Wij is the spatial weight matrix and yi is the spatial weight matrix for the first obser-
vation of the first region; y = 1

n ∑n
i=1 yi, and s2 = 1

n ∑n
i=1(yi − y)2. The Moran index has a

range of values [−1.1] [1].
It can be found through Table 6 that the global Moran index largely passes the test

during the period 2008–2018. GTFP has a substantial positive geographical correlation,
indicating that the link between China’s carbon emission rights policy and green total factor
production may be studied using a spatial econometric model.

Table 6. Moran Index.

W1 W2

Moran’s I p Moran’s I p

2008 0.279 *** 0.005 0.231 *** 0.006
2009 0.269 *** 0.007 0.204 ** 0.012
2010 0.214 ** 0.022 0.276 *** 0.002
2011 0.182 ** 0.040 0.345 *** 0.000
2012 −0.047 0.460 0.269 *** 0.002
2013 0.054 0.238 0.318 *** 0.000
2014 0.131 * 0.089 0.304 *** 0.001
2015 0.022 0.324 0.143 ** 0.048
2016 0.089 0.159 0.182 * 0.021
2017 0.340 *** 0.001 0.395 *** 0.000
2018 0.294 *** 0.003 0.571 *** 0.000

Notes: The significance levels for the symbols ***, **, and * are 1%, 5%, and 10%, respectively. The parentheses
report robust standard errors.
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The Walds and LR tests both yielded significant findings at the 5% level in Table 7,
showing that the SDM model could not be reduced to an SAR and SEM model. The
Hausman test was positive under the W1 and W2 matrices, rejecting the assumption that
the random effects could be accepted, so a two-way fixed-effect spatial Durbin model
was employed.

Table 7. LR and Wald tests.

W1 W2

Type of Test Statistical Values p Statistical Values p

LR_spatial_lag 39.11 0.0000 12.58 0.0501
LR_spatial_error 42.63 0.0000 32.08 0.0000
Wald_spatial_lag 38.36 0.0000 11.10 0.0494
Wald_spatial_error 38.88 0.0000 23.31 0.0007

Hausman Test 35.37 0.0007 17.99 0.1578

7.3. Point Estimation Results

For all regressions in Table 8, the standard deviation squared, sigma2_e, of the random
error term is significant, signifying that the model findings are suitable for further investi-
gation. The spatial autoregressive coefficient is considerably positive, demonstrating that
carbon trading has a positive geographical spillover impact. Overall, the coefficient for the
inverse geographical distance weight matrix is 0.190, which is above the 0.01 significance
threshold, indicating that carbon credit policies can significantly contribute to local green
development. The inverse geographic-distance-squared weight matrix estimates similar
results, confirming the robustness of these results. The coefficient of w × x is insignificant
due to the existence of feedback effects on the policy, and therefore the spatially lagged
coefficients of the independent variables are not fully explanatory, and the following effect
decomposition is performed to further illustrate their spatial spillover effects. The dynamic
spatial Durbin regression results show that the one-period lagged coefficient of GTFP is
notably positive, meaning that technological innovation does have a dynamic cumulative
character in the time dimension; secondly, the spatial response coefficient of the explana-
tory variable is notably positive, demonstrating that the variable has a significant spatial
autocorrelation.

Table 8. Point estimates.

Static Doberman Dynamic Doberman

W1 W2 W1 W2

L.lnsco 0.346 *** 0.390 ***
(6.33) (7.12)

x 0.260 *** 0.164 ** 0.190 *** 0.136 *
(5.49) (2.28) (3.87) (1.85)

W×x −0.026 0.210 −0.044 0.102
(−0.30) (1.36) (−0.50) (0.66)

Controls YES YES YES YES
Time fixed effects YES YES YES YES

Individual fixed effects YES YES YES YES
ρ 0.275 *** 0.283 *** 0.229 *** 0.212 **

(4.01) (3.53) (3.16) (2.53)
sigma2_e 0.024 *** 0.026 *** 0.024 *** 0.025 ***

(12.74) (12.74) (13.42) (13.43)
Log-L −80.3019 −80.3019 69.9237 −80.3019

R2 0.2811 0.0313 0.4687 0.0243
Observations 330 330 330 330

Notes: The significance levels for the symbols ***, **, and * are 1%, 5%, and 10%, respectively. The parentheses
report robust standard errors.
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7.4. Decomposition of Partial Differential Effects

Lesage et al. argue that point estimates can lead to biased parameter estimates and
propose a partial differential approach to compensate for this by decomposing the es-
timates into direct, indirect, and total effects. Taking the SPDM as an example, this
can be transformed by shifting the term to (In − ρW)Y = lnu′0 + βX + θWX + ε and
let P(W) = (In − ρW)−1 and Qm(W) = P(W)× (Inβn + θnW), which translates into

Y = ∑k
m=1 Qm(W)Xm + P(W)mβ′0 + P(W)ε (21)

This is converted into matrix form as

Y1
Y2
Y3
...
...

Yn


= ∑k

m=1


Qm(W)11
Qm(W)21

Qm(W)12
Qm(W)22

. . .
· · ·

. . .
· · ·

Qm(W)1n
Qm(W)2n

...
...

...
Qm(W)(n−1)1

Qm(W)n1

Qm(W)(n−1)2
Qm(W)n2

. . .
· · ·

. . .
· · ·

Qm(W)(n−1)n
Qm(W)nn

 (22)

m denotes the mth explanatory variable, m = 1, 2 · · · k. The diagonal elements in the
right-hand matrix indicate the average effect of a change in a provincial or municipal Xik.
The diagonal element reflects the average effect of a variable change on the explanatory vari-
able of the city, i.e., the direct effect, direct = ∂Yi/∂Xim = Qm(W)ii. The nondiagonal line
components reflect the average influence of changes in Xik variables in one city on explana-
tory variables in surrounding cities, i.e., indirect effects, often known as spatial spillover
effects, indirect = ∂Yi/∂Xjm = Qm(W)ij. total (total effect) = Qm(W)ii + Qm(W)ij [1].

The total effect of carbon trading on GTFP was decomposed into direct and indirect
effects using the two types of spatial weight matrix, and the findings are displayed in
Table 9. The direct effect is predicted to be 0.265 and is significant at the 0.01 level, implying
that carbon trading can considerably contribute to the destination economy’s green growth.
(i) The indirect effect is estimated at 0.060 and is not significant. Further, in Table 10, the
negative short-term indirect effect indicates that there is a “pollution refuge” effect in the
initial stage of carbon trading implementation, where stronger environmental regulations
in the pilot region initially cause emission-controlled enterprises to shift their polluting
industries to neighbouring regions. The long-term indirect effect is positive, indicating that
with the implementation of carbon emissions trading, such as Sichuan and Fujian becoming
voluntary carbon pilots, the diffusion of policy effects has led to the strengthening of
environmental regulations in neighbouring regions, and the “race to the top” regulatory
competition strategy has contributed to the growth of GTFP in neighbouring regions.
Under the economic distance weight matrix W2, since carbon trading is predicted to have
a direct impact on the green technical efficiency of 0.183 and be significant at the 0.01
level, the fact can be identified that carbon trading may have a major impact on the green
growth of a destination economy. (ii) The indirect impact is assessed to be 0.345 and
significant, suggesting that carbon trading can increase GTFP in neighbouring regions and
demonstrating the validity of Hypothesis 6.
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Table 9. Static Durbin decomposition effects.

W1 W2

Direct
Effects

Indirect
Effects

Total
Effect

Direct
Effects

Indirect
Effects

Total
Effect

x 0.265 *** 0.060 0.325 ** 0.183 *** 0.345 * 0.528 ***
(5.34) (0.50) (2.33) (2.65) (1.81) (3.20)

lnk 0.141 * 0.051 * 0.192 ** 0.188 *** 0.205 0.393 *
(2.41) (1.91) (2.39) (3.16) (1.04) (1.82)

lns 0.767 *** 0.277 *** 1.044 *** 0.729 *** 0.292 ** 1.021 ***
(4.90) (2.65) (4.70) (4.55) (2.18) (3.92)

lne 0.187 *** −0.206 ** −0.020 0.098 * 0.038 0.136 *
(3.73) (−2.19) (−0.20) (1.85) (1.50) (1.82)

lnp 0.020 0.007 0.027 0.022 0.009 0.031
(1.40) (1.23) (1.39) (1.46) (1.17) (1.42)

lnt 0.087 * −0.396 *** −0.309 ** 0.088 * 0.035 0.123
(1.75) (−3.57) (−2.42) (1.66) (1.36) (1.63)

Notes: The significance levels for the symbols ***, **, and * are 1%, 5%, and 10%, respectively. The parentheses
report robust standard errors.

Table 10. Dynamic Durbin decomposition effects.

Short-Term Long-Term

Direct
Effects

Indirect
Effects

Total
Effect

Direct
Effects

Indirect
Effects

Total
Effect

W1 x 0.188 *** −0.005 0.183 0.291 *** 0.044 0.334
(3.90) (−0.05) (1.50) (3.87) (0.22) (1.46)

W2 x 0.139 ** 0.164 0.303 ** 0.239 ** 0.383 0.622 *
(2.06) (0.93) (2.07) (2.20) (1.06) (1.87)

Notes: The significance levels for the symbols ***, **, and * are 1%, 5%, and 10%, respectively. The parentheses
report robust standard errors.

8. Conclusions and Policy Implications
8.1. Research Conclusions

This paper adopts a multiperiod double-difference model and a spatial econometric
approach to test the effectiveness, government–market synergy, impact mechanism, and
spatial spillover of the carbon emissions trading policy in a quasi-natural experiment. The
main conclusions lie in the following. 1© Carbon trading policy can improve GTFP in
the pilot regions, and its promotion effect increases year by year. 2© The market mech-
anism, measured by both carbon price and relative size, can significantly contribute to
the green development of the pilot regions, and further research finds that the stronger
the administrative intervention of the government in the carbon market, the higher the
regional GTFP. 3© Carbon emissions trading policies promote regional GTFP by adjust-
ing energy structures motivating green technology innovation and improving resource
mismatches. 4© Carbon emissions trading has a “local-neighbourhood” cross-border trans-
mission effect and positive spatial spillover, thus promoting the improvement of GTFP in
neighbouring areas.

8.2. Recommendations

The formal launch of the national carbon trading market calls for increased market
incentive for carbon trading and the progressive establishment of market mechanisms as
the dominant force in the carbon market, as well as encouraging the innovation of carbon
financial products and strengthening the focus on carbon emission reduction investment
and financings, such as low-carbon economy-related stocks and the scale of related instru-
ments. Secondly, the government should give full play to the government’s regulatory
and supporting role. The effectiveness of administrative intervention does not mean that
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more administrative intervention is better. Specifically, in the process of maturing and
improving the carbon trading market, governments at all levels can reduce the transition
pressure on emission control entities through policies such as tax relief and market trading
subsidies. Finally, it is vital to incentivize enterprises to innovate green technologies and
change structural emission reduction to technological emission reduction. Therefore, to
encourage excitement for green technology innovation among social entities, local govern-
ments should provide the support and direction of financial subsidies, taxation, and other
economic incentives. Nevertheless, the demonstration effect created across areas should
not be disregarded when a national carbon trading market is being developed.
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