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Abstract: The “last-mile problem” of public transportation is one of the main obstacles affecting
travelers who choose to utilize public transport. Although autonomous vehicles (AVs) have made
much progress, they have not been officially put into commercial use. This paper adopts stated
preference experiments to explore the impact of shared AVs on the last-mile travel behavior of metro
users and takes Wuhan as an example for case analysis. First of all, this paper establishes a structural
equation model (SEM) based on the theory of planned behavior to explore latent psychological
variables, including travelers’ attitudes (ATTs), subjective norms (SNs), perceived behavior control
(PBC), and behavioral intention of use (BIU) toward AVs. These latent psychological variables are
incorporated into the latent class (LC) logit model to establish a hybrid model with which to study the
factors and degree of influence on the travel mode choices of travelers for the last mile of their metro
trips. The results show that travelers have preference heterogeneity for the travel mode choices for the
last mile of metro trips. Through the analysis of LCs, education, career, and income significantly
impact the classification of LCs. The latent psychological variables towards AVs have a significant
impact on the travel behavior of respondents, but the impacts vary among different segments. Elastic
analysis results illustrate that a 1% increase in the travel cost for shared AVs in segment 1 leads
to a 7.598% decrease in the choice probability of using a shared AV. Respondents from different
segments vary significantly in their willingness to pay for their usage, and the value of travel time
for high-income groups is relatively higher.

Keywords: autonomous vehicles; last-mile transport; preference heterogeneity; theory of planned
behavior; latent class logit model

1. Introduction

With the rapid and excessive development of motorization, most cities worldwide
are confronted with traffic congestion, air deterioration, noise pollution, fossil fuel con-
sumption, and carbon emissions [1]. Public transport, especially the metro, has excellent
advantages in alleviating traffic congestion, reducing fossil energy consumption, improv-
ing transportation efficiency, and reducing carbon emissions [2]. However, unlike private
cars, the metro provides a “station-to-station” service rather than a “door-to-door” ser-
vice. Therefore, the last-mile problem has become one of the main obstacles for travelers
choosing public transport [3,4]. The most common last-mile travel modes include walking,
shared bicycles, and buses. However, each mode has its advantages and disadvantages. For
example, walking provides excellent flexibility, economy, and environmental friendliness
and it benefits the physical and mental health of the traveler [5,6]. However, walking is
only suitable for travel within 10 min [7], and its use is restricted in bad weather (e.g., rain
and snow). Shared bicycles solve the problems of access and parking, but are likely to
cause traffic accidents and traffic congestion [1]. Similar to walking, shared bicycles are also
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restricted in bad weather. Taking a bus presents the advantages of short travel time and low
travel cost, but the walking and waiting times are relatively long, and the attractiveness of
taking the bus is not high enough.

Autonomous vehicles rely on artificial intelligence, visual computing, radar, surveil-
lance devices, and global positioning systems working in tandem to allow computers
to automatically and safely operate motorized vehicles without human initiative. Au-
tonomous vehicle (AV) technology has made great progress in the past few years. The
application of AVs would reduce traffic accidents [8–10], alleviate traffic congestion [11,12],
improve fuel economy [13–15], and reduce carbon emissions [16,17]. It would also improve
the mobility of the elderly and the disabled [18], reduce the travel pressure on drivers [19],
and improve the efficiency of multi-task work [20]. Therefore, shared AVs have the po-
tential to solve the problem of deciding on a transportation method for the last mile of
metro trips.

Although there is much in the literature regarding the impact of shared AVs on travel
behavior, most studies mainly focus on the impacts of vehicle travel mileage [21–24], travel
mode choice [25–28], and vehicle travel time [29,30]. Few studies have explored the use of
shared AVs to solve the last-mile problem. In addition, most of the studies in the literature
detail the influence of an individual’s attitude and perception towards AVs and other latent
psychological variables on the behavioral intention of choosing AVs. However, a mature
theoretical framework that combines behavior with attitude [31], such as a combination of
the technology acceptance model and the theory of planned behavior, has not been adopted.

In order to fill these gaps, we studied the latent psychological variables of travelers to-
ward AVs in this paper, based on the mature theory of planned behavior, including attitudes
(ATTs), subjective norms (SNs), perceived behavior control (PBC), and behavioral intention
of use (BIU). Then, these variables were incorporated into the discrete choice model to
establish a hybrid model, with Wuhan as an example, to conduct an empirical analysis
of the influencing factors and degrees of influence of the last-mile travel mode choice
behavior of travelers taking metro trips (beginning and ending in the city). The results of
this paper are expected to improve the service level of the metro and provide insights for
transportation planning within 1.5 km of subway stations. The main contributions of this
paper are listed as follows:

(1) There was significant heterogeneity for travelers in their travel mode choices for
the last mile of metro trips. (2) Respondents’ latent psychological variables towards AVs
had significant impacts on their travel behavior, but the impacts varied among differ-
ent segments. (3) Demographic characteristics, such as education, career, and monthly
household income, had a significant impact on the membership of each latent class (LC).
(4) The willingness to pay for walking and waiting times, as well as in-vehicle time, varied
significantly among travelers in different segments. (5) Elastic analysis results illustrated
that a 1% increase in the travel cost for shared AVs in segment 1 led to a 7.598% decrease in
the probability of choosing shared AVs.

The paper is structured as follows: Section 2 presents the literature review. In Section 3,
the structural equation models (SEMs) and LC choice models are briefly discussed. Section 4
presents the survey design, data collection process, and descriptive statistics. Section 5
shows and discusses the results of the final estimated model. Finally, conclusions and
recommendations for further research are presented in Section 6. An AV, in this paper,
refers to a fully self-driving vehicle.

2. Literature Review

Travel time and travel costs are considered the most critical factors affecting travel
behavior. Ortúzar [32] investigated travel mode choice in the Garforth Corridor in West
Yorkshire, England, and found that in-vehicle time, out-of-vehicle time, and travel costs
were significant factors affecting travelers’ travel mode choices. Stern [33] asserted that
travel cost was related to travel mode choice for elderly and disabled people in rural
Virginia. Ewing et al. [34] confirmed that travel time significantly influenced the school
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travel mode choices of students in Gainesville, Florida. Frank et al. [35] explored factors
affecting the travel mode choices and trip-chaining patterns of residents in the Central
Puget Sound (Seattle) region and ascertained that travel time and cost significantly affected
travel behavior. Wang et al. [36] believed that travel cost determines the use of shared
travel modes in Beijing.

Sociodemographic factors also have a substantial impact on travel behavior. Schwanen
et al. [37] confirmed that the contributory factors of travel mode choices for senior citizens
taking leisure trips included age, gender, car ownership, possession of a driver’s license,
and educational attainment. Zhang [38] analyzed the travel mode choices of travelers in
Metropolitan Boston and Hong Kong and found that their choices were affected by socioe-
conomic characteristics, such as age, job, homeownership, children, and car availability.
Verplanken et al. [39] believed that the travel mode choices of university employees were
related to age and gender. Tilahun et al. [40] explored the travel mode choices of com-
muters in the northeastern Illinois area and demonstrated that their choices were effected
by gender, age, vehicle/household size, income, and vehicle availability.

Besides travel time, travel costs, and socioeconomic characteristics, the latent psy-
chological variables, such as values, norms, ATTs, perceptions, and desire, play a pivotal
role in an individual’s travel mode choice [39,41,42]. Numerous studies have delved into
individuals’ attitudes and perceptions regarding autonomous vehicles (AVs). For instance,
Sanbonmatsu et al. [43] found that an individual with a higher awareness of AVs has a
stronger intention to use them. Panagiotopoulos et al. [44] asserted that latent variables
such as perceived usefulness, perceived ease to use, perceived trust, and social influence,
significantly impact respondents’ behavioral intentions towards AV usage. Choi et al. [45]
and Kaur et al. [46] concluded that perceived trust positively affects the adoption of AVs.
Haboucha et al. [47] stated that pro-AV sentiments, environmental concern, and technol-
ogy interest are related to users’ preferences regarding AVs. Lavieri et al. [48] suggested
that privacy sensitivity is related to individuals’ willingness to share trips with strangers.
Nevertheless, most studies have not adopted a mature theoretical framework that com-
bines behavior with attitude [31], such as the technology acceptance model and theory of
planned behavior.

Discrete choice models have been widely used to study individual travel behavior.
The multinomial logit (MNL) model is the most common in practical applications due to
fewer sample requirements, mature technology, and easy implementation [49]. However,
the MNL model is not without limitations. Specifically, it assumes uniform preferences
across individuals and upholds the principle of independence of irrelevant alternatives
(IIA). When alternatives are inherently independent, the IIA assumptions may not align
with real-world scenarios, leading to issues exemplified by the “red bus or blue bus”
problem [50,51]. The nested logit (NL) model came into being in response to the flaw of IIA.
The NL model establishes a tree structure based on the correlation between the alternatives:
the alternatives are dependent on the same nest but independent among different nests,
which overcomes the IIA problem to a certain extent [32]. The significant challenge in
employing the NL model is to determine the tree structure reasonably [52]. Unlike the fixed
coefficients in the MNL model, the mixed logit (ML) model assumes that the coefficients of
the explanatory variables are random and obey a specific probability distribution. Therefore,
the ML model can solve the preference heterogeneity problem [53,54]. The ML model
can also be called the random parameter logit (RPL) model. The ML model needs to
determine the distribution type that the model coefficients obey in advance, and then the
corresponding parameter values can be estimated [55]. Typical parameter values are the
mean and standard deviation. The former reflects the average preference, while the latter is
the magnitude of the preference difference. Like the ML model, the latent class (LC) model
handles the problem of random preference heterogeneity by dividing the respondents into
several classes and applying different coefficients, respectively [56]. Although both LC and
ML models serve as primary instruments for navigating preference heterogeneity, empirical
studies often indicate a slight superiority of the LC model over the ML in aspects such as
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goodness of fit, theoretical foundation, and information depth [57,58]. Based on the above
discussion, this study aims to analyze the effects of travel time, travel cost, socioeconomic
characteristics, and psychological latent variables on autonomous vehicles to solve the
last-mile problem of metro trips.

3. Methodology

In this section, we delineate the construction of the structural equation model (SEM)
and latent class choice model (LCCM).

3.1. Structural Equation Models

Structural equation modeling (SEM) is a statistical data method used to explore the
relationship between latent and observable variables and the internal relationship between
latent variables. An SEM is developed to analyze the respondent’s behavioral intentions to
use AVs, and then the latent variables are incorporated into the LCCM to build a hybrid
logit model.

The SEM contains a measurement equation and a structural equation. The mea-
surement equation is established to describe the relationship between latent variables and
observed variables expressed in a Likert scale. The structural equation is applied to describe
the internal relationship between latent variables.

The expression of the measurement model and structural model is presented as follows:

X = ΛXξ + δX (1)

where X is a vector of exogenous observed variables, ξ is a vector of exogenous latent
variables, ΛX is a factor loading matrix of X in ξ, and δX is an error vector.

Y = ΛYη+ δY (2)

where Y is a vector of endogenous variables, η is a vector of endogenous latent variables,
ΛY is a factor loading matrix of Y in η, and δY is an error vector.

η = Bη+ Γζ + δη (3)

where B is a coefficient matrix that describes the interaction between the endogenous latent
variables, Γ is a coefficient matrix that describes the effects of exogenous latent variables on
the endogenous latent variables, and δη is a residual vector of the structural model.

Four latent variables are extracted to explore the respondents’ acceptance towards
AVs based on the theory of planned behavior. The latent variables, corresponding observed
variables, and source of constructs are illustrated in Table 1.

Table 1. Latent variables, corresponding observed variables, and source of constructs.

Latent Variable Observed Variable Literature

Attitudes (ATTs)
ATT 1: For me, adopting an AV is unfavorable/favorable.

[59,60]ATT 2: For me, adopting an AV is negative/positive.
ATT 3: For me, adopting an AV is undesirable/desirable.

Subjective norms
(SNs)

SN1: Most people who are important to me would support that I take the KMRT to commute
[59–61]SN2: People who are important to me expect that I should use an AV in the future.

SN3: If people around me use AVs, I will also use AVs.

Perceived behavioral
control (PBC)

PBC1: Whether or not I use an AV when traveling is completely up to me.
[59,62]PBC2: I have enough resources (money) to use an AV when traveling.

PBC3: I have enough opportunities to use an AV when traveling.

Behavioral intention
to use (BIU)

BIU1: I intend to use FAD vehicles in the future.
[45,63]BIU2: I intend to buy FAD vehicles in the future.

BIU3: I will recommend family members and friends to ride in FAD vehicles.
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3.2. Latent Class Choice Model

The LC choice model calibrates the sample into C LCs/segments. Each class has a
specific parameter vector, capturing and accommodating preference heterogeneity across
individuals [56]. In this paper, we assumed an MNL model to estimate the choice probabili-
ties within the class. The choice probability of individual i choosing alternative j among
alternatives J in choice situation t within class c is shown in Equation (4).

Pij|c = P(yit = j|class = c) =
exp

(
βcxijt

)
∑J

j=1 exp
(

βcxijt
) , c = 1, 2, · · · , C (4)

where xijt is the characteristic vector of alternative j among alternatives J in choice situation
t, and βc is the coefficient vector of xijt within the class c.

The class assignment membership is measured by the prior membership probability
of individual i belonging to class c, which can be calculated by the function below:

Prob(class = c) = Hic =
exp(θczi)

∑C
c=1 exp(θczi)

(5)

where zi is an optional set of invariant characteristics such as demographic characteris-
tics, which can be incorporated into a class membership probability function to analyze
individual preference heterogeneity. θc is an unknown coefficient vector.

In the LC choice model, the LC c is unknown and needs to be assumed in advance.
Usually, we set the number of LCs c to 2, and then increase the value of c sequentially until
the optimal goodness of fit is reached. The optimal number of classes c can be estimated
by the Bayesian information criterion (BIC) and consistent Akaike information criterion
(CAIC) [64,65], as illustrated in Equations (6) and (7).

BIC = −2 ln L + m ln N (6)

CAIC = −2 ln L + m(1 + ln N) (7)

where lnL is the maximized log-likelihood at the convergence, m is the number of estimated
parameters, and N is the sample size. The value of C is selected when AIC and BIC
are minimized.

4. Data
4.1. Survey Design

We conducted a survey to study the influence of shared AVs on metro trips’ last-
mile travel behavior, including three parts. The first part focuses on the socioeconomic
characteristics of respondents, including gender, age, education level, household income
level, career, household size, car ownership, and license.

The second part concentrates on respondents’ ATTs based on the theory of planned
behavior, which can influence individuals’ preferences for AVs. Each respondent answered
12 statements to indicate their level of agreement with a five-point Likert scale ranging from
strongly agree to strongly disagree. The statements explored respondents’ psychological
latent variables towards AVs, such as ATTs, SNs, PBC, and BIU. Three statements were
provided for each latent variable to gain insight into the respondents’ ATTs.

The third part consists in a series of stated preference questions. Every respondent
was asked their intention to use four travel mode options, including walk, shared bike,
bus, and shared AVs. Three scenarios with a last-mile travel distance of 500, 1000, and
1500 m were considered. The attributes of the alternatives considered in the SP experiments
included in-vehicle time, walking and waiting time, and travel cost. All attributes and
attribute levels for each alternative are shown in Table 2. We constructed a fractional
factorial experimental design to generate choice sets for respondents rather than a full
factorial design, which would cause a massive number of choice sets. The software package
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JMP13 was applied to conduct efficient designs based on the D-efficiency criterion [66].
The D-efficient design aims to reduce the variance of the coefficients. The efficient designs
generated four questionnaires, and each questionnaire contains six scenarios. Every respon-
dent answered a questionnaire randomly and anonymously. An example of an SP choice
scenario is presented in Figure 1 [66].

Table 2. Attributes and attribute levels for travel modes.

Travel Modes Attributes Attribute Levels

Walk Travel time (min) −30%; −10%; +20% of the calculated trip time (speed: 4 km/h)

Shared bike
Trip cost (CNY) −30%; −10%; +20% of the estimated cost for the trip (CNY 1.5, less than

30 min; CNY 3, 31–60 min)
In-vehicle time (min) −30%; −10%; +20% of the calculated trip time (speed: 15 km/h)

Bus
Trip cost (CNY) −30%; −10%; +20% of the trip cost (CNY 1,2)

In-vehicle time (min) −30%; −10%; +20% of the calculated trip time (speed: 18 km/h)
Walking and waiting time (min) 4–7–10

Autonomous
vehicle

Trip cost (CNY) −30%; −10%; +20% of the estimated cost for the trip (CNY 2/500 m)
In-vehicle time (min) −30%; −10%; +20% of the calculated trip time (speed: 40 km/h)

Walking and waiting time (min) 2–5–8
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4.2. Data Collection and Descriptive Statistics

The survey consisted of a pre-test and formal investigation. The pre-test questionnaire
in the first stage was conducted offline. The questionnaire was randomly distributed to
50 passers-by and then corrected based on the feedback and suggestions. In the second
phase of the formal investigation, data collection was conducted in Wuhan using online
and offline methods. The questionnaire was distributed from March to May 2021 and lasted
for two months. A total of 676 valid samples were recovered in this survey, and 51 ques-
tionnaires were eliminated due to missing information. The demographic characteristics of
the sample are shown in Table 3.

Table 3 shows that among all the respondents, 50.15% were female and 49.85% were
male. Respondents aged 31–45 years accounted for 42.16%, followed by those aged
18–30 years, accounting for 38.31%. Respondents with bachelor’s degrees were the most
common, accounting for 44.38%. Enterprise employees had the highest proportion, ac-
counting for 31.51%. Monthly household income of less than CNY 5000 accounted for
33.58%, CNY 5001 to 10,000 accounted for 32.40%, CNY 10,001 to 20,000 accounted for 18.93,
and more than CNY 20,001 accounted for 15.09%. Furthermore, 50.15% of respondents
had school-age children, 66.57% of respondents’ families owned at least one car, 55.47%
of respondents possessed driver licenses, and 84.62% of the respondents’ families had at
least three residents. Of 4056 scenarios, 37.01% chose walking, 37.99% chose shared bikes,
11.91% chose shared AVs, and 13.09% chose the bus.
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Table 3. Demographic characteristics of the sample.

Category Variable Frequency Percentage (%)

Gender
Male 337 49.85%

Female 339 50.15%

Age (years)

18–30 259 38.31%
31–45 285 42.16%
46–55 109 16.12%

More than 55 24 3.55%

Education

Secondary school and below 143 21.15%
Associate’s degree 179 26.48%
Bachelor’s degree 300 44.38%

Master’s degree and above 53 7.84%

Career

Public servant/Public institution 169 25.00%
Enterprise employees 213 31.51%

Self-employed/Freelance 192 28.40%
Other 102 15.09%

Monthly household
income (CNY)

Less than 5000 227 33.58%
5001–10,000 219 32.40%

10,001–20,000 128 18.93%
More than 20,001 102 15.09%

School children
Yes 339 50.15%
No 337 49.85%

Car ownership Yes 450 66.57%
No 226 33.43%

License
Yes 375 55.47%
No 301 44.53%

Physical or electronic
IC card

Yes 459 67.90%
No 217 32.10%

Household size

One 26 3.85%
Two 78 11.54%

Three 238 35.21%
Four 189 27.96%

More than five 145 21.45%

5. Results
5.1. Results of Latent Variable Model

Stata 15.0 was used to test the latent variable model in the study. A confirmatory factor
analysis (CFA) was conducted to ascertain the influence of variables on the adoption of AVs.
The data needed to be evaluated for reliability and validity before performing CFA. Table 4
provides details of the reliability and convergent validity of constructs. Standardized factor
loadings are a measure of the strength of the relationship between an observed variable
and a latent variable, which indicates the degree of linear relationship that exists between
an observed variable and the factor to which it belongs. The standardized factor loadings
of 12 observed variables ranged from 0.851 to 0.961, exceeding the standard of 0.5 [67].
Cronbach’s alpha is a measure of the reliability of a scale or test. All Cronbach’s alpha
values of four latent variables were above the acceptable level of 0.70 [68]. The composite
reliability (CR) of a latent variable is the combination of the reliabilities of all its observed
variables, and this indicator is used to analyze the consistency among the observed variables
of the latent variable. The minimum CR value was 0.921, and all values were higher than
the minimum threshold of 0.7 [69]. The average variance extracted (AVE) calculates the
variance explanatory power of the latent variable, i.e., it directly shows how much of the
variance explained by the latent variable is from measurement error. The AVE values of
all constructs were between 0.797 and 0.893, indicating that the measurement model has
a good structural reliability and convergence validity [69]. Table 5 presents the results
from the discriminant validity examination. All square values of AVE are higher than
the inter-construct correlations, demonstrating that the latent variables have acceptable
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discriminant validity. The measurement model has been validated and used for structural
model analysis.

Table 4. Reliability and convergent validity of constructs.

Latent
Variable

Observed
Variable Means SD Standardized Factor

Loading Cronbach’s α CR AVE

Attitudes
(ATTs)

ATT1 3.571 1.076 0.947
0.940 0.962 0.893ATT2 3.572 1.052 0.949

ATT3 3.641 1.086 0.939

Subjective
norms (SNs)

SN1 3.478 1.093 0.940
0.929 0.955 0.876SN2 3.507 1.078 0.943

SN3 3.550 1.079 0.924
Perceived
behavioral

control (PBC)

PBC1 3.695 1.083 0.851
0.872 0.921 0.797PBC2 3.456 1.114 0.920

PBC3 3.410 1.13 0.905
Behavioral
intention to

use (BIU)

BIU1 3.513 1.052 0.941
0.941 0.962 0.893BIU2 3.510 1.041 0.961

BIU3 3.425 1.087 0.933

Table 5. Results of discriminant validity test.

Latent Variable ATTs SNs PBC BIU

ATTs 0.945
SNs 0.737 0.936
PBC 0.668 0.688 0.893
BIU 0.693 0.69 0.659 0.945

Note: Values along diagonal (in bold) are the square values of the constructs. Values below diagonal are the
correlations between two constructs.

The estimation results of latent variable measurement and SEMs indicated that the
model fits the data well based on fit indices such as chi-square/degree of freedom (χ2/d f ),
the root mean squared error of approximation (RMSEA), the comparative fit index (CFI),
the Tucker–Lewis index (TLI), and standardized root mean square residual (SRMR). The
chi-square/degree of freedom is a hypothesis testing method used in data analysis to
detect the relationship between two categorical variables. The root mean squared error of
approximation is an index that evaluates the model’s lack of fit; if it is close to 0 it indicates
a good fit, and conversely, the further away from 0 the worse the fit. The comparative
fit index is obtained when comparing a hypothetical model with an independent model.
Its value ranges from 0 to 1, with a value closer to 0 indicating a worse fit and closer to 1
indicating a better fit. The Tucker–Lewis index is a comparative fit index that takes values
between 0 and 1, with a value closer to 0 indicating a worse fit and closer to 1 indicating
a better fit. The standardized root mean square residual is an absolute goodness-of-fit
index, which is used to assess the average size of the difference between the observed and
expected correlation matrices. χ2/d f = 3.775 (critical value is between 1 and 5 when the
sample size exceeds 500 according to [60]), RMSEA = 0.064 (less than the critical value of
0.08 based on [70]), CFI = 0.983 (more than the critical value of 0.90 on the basis of [71]), TLI
= 0.977 (more than the critical value of 0.90 in accordance with [68]), SRMR = 0.024 (less
than the critical value of 0.08 on the basis of [72]).

5.2. Results of Latent Class Choice Model

In principle, more classes mean better goodness of fit at the cost of decreasing parsi-
mony. The Bayesian information criterion (BIC) is a widely recognized statistical method
employed for choosing the most appropriate model from a defined set of candidates. It
computes the probability function and adds a penalty term for the number of parameters
in the model. The consistent Akaike information criterion (CAIC) is an adapted form of the
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classic Akaike information criterion, which was developed by modifying penalties. This
helps to avoid overfitting and provides a balanced approach to model selection. Both BIC
and CAIC were proposed to penalize the number of classes. Table 6 summarizes these
measures concerning the models with one to six classes. Among them, the four-segment
LC model has the lowest BIC and CAIC, and the rho-bar squared between 4 and 5 is 0.0009.
Four classes might be the optimal number of classes considering the objective of the study
and its simplicity. As shown in Table 7, all models with LCs outperform the single-segment
model (MNL model), confirming the heterogeneity of the preferences of the sample.

Table 6. Summary statistics of estimated models.

Number of
Segments

Number of
Parameters

Log-
Likelihood AIC CAIC BIC Rho-Bar

Squared

1 7 −4998.59 10,011.2 10,011.2 10,055.3 0.0181
2 23 −4182.18 8410.6 8410.4 8555.4 0.2548
3 39 −3615.08 7308.9 7308.2 7554.2 0.3550
4 55 −3360.26 6832.1 6830.5 7177.4 0.3997
5 71 −3350.60 6845.8 6843.2 7291.1 0.4006

Table 7. Estimation results of multinomial and four-segment latent class models.

Parameter
MNL Model

Four-Segment LC Model

Segment 1 Segment 2 Segment 3 Segment 4

Coefficient Z Value Coefficient Z Value Coefficient Z Value Coefficient Z Value Coefficient Z Value

Walking and waiting time (min) −0.143 *** −21.31 −0.462 *** −3.85 −0.028 *** −3.1 −3.002 *** −4.78 0.773 *** 3.54
In-vehicle time (min) −0.027 *** −6.13 0.016 0.52 −0.052 *** −6.3 −0.429 *** −8.07 −1.024 −0.77

Trip cost (CNY) −0.201 *** −9.69 −1.910 *** −7.92 −0.154 *** −5.05 −0.408 ** −2.18 −0.514 −0.67
ATT 0.407 *** 4.47 −4.252 *** −6.34 0.133 1.42 2.333 1.61 72.574 ** 2.18
SN 0.293 *** 3.25 2.263 * 1.89 −0.042 −0.47 −0.047 −0.04 −61.177 ** −1.99

PBC −0.039 −0.41 −0.056 −0.04 0.082 0.74 −4.828 *** −2.66 11.158 ** 2.09
BIU 0.232 *** 2.88 2.830 *** 2.94 −0.006 −0.06 3.724 ** 2.54 1.731 0.55

Model statistics
Segment size/membership 0.287 0.378 0.262 0.073

Number of respondents 676
Log-likelihood −4998.586 −3360.256

Rho-bar squared 0.018 0.400

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.

The chosen four-segment model exhibits a rho-bar squared value of 0.400. The class
probability model includes socioeconomic characteristics as explanatory variables, and the
parameters are shown in Table 8. Table 7 presents the model statistics of multinomial and
four-segment LC models. Notably, segment 4 comprises only 7.3% of the overall sample.
Within this segment, the coefficients for walking and waiting time are significantly positive,
whereas those for in-vehicle time and trip cost prove to be statistically inconsequential.
This indicates that respondents within this segment may not have fully grasped the essence
of the choice task presented to them.

Segment 1 comprises 28.7% of the total sample. The parameter estimates and corre-
sponding z values in segment 1 indicate that both walking and waiting time and trip cost
are statistically significant, suggesting that increasing walking and waiting time and travel
cost will reduce travelers’ willingness to use a certain travel mode. A significant majority
of respondents favored walking (93.9%), while a comparatively smaller portion preferred
shared bikes (4.8%). The results indicate that segment 1 is interested in walking. According
to the class member model, respondents who belonged to segment 1 are more likely to
possess bachelor’s degrees and upper middle income (CNY 10,001–20,000 monthly) and are
less likely to have education levels of secondary school and below. Furthermore, the latent
psychological variables such as ATT and BIU are related to the total utility for using AVs.
The ATT towards AVs has a strongly negative contribution (marginal value equals −4.251)
to the total utility of using AVs as last-mile transport. The results show that respondents
who are positive about adopting AVs are less willing to use AVs as egress mode. The latent
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psychological variable BIU contributes positively to the total utility, indicating that a higher
BIU decreases the disutility of using AVs for last-mile trips.

Table 8. Estimation results of the class probability model.

Variables
Segment 1 Segment 2 Segment 3 Segment 4

Coefficient Z Value Coefficient Z Value Coefficient Z Value Coefficient Z Value

Intercept 1.275 *** 0.321 1.853 *** 0.307 1.049 *** 0.333 0
Secondary school and below −0.856 ** 0.423 −1.421 *** 0.435 −0.635 0.430 0

Associate’s degree −0.072 0.448 0.796 * 0.427 −0.572 0.491 0
Bachelor’s degree 0.830 *** 0.318 1.152 *** 0.325 0.689 ** 0.329 0

Public servant/Public institution 0.388 0.450 0.845 ** 0.427 −0.038 0.470 0
Enterprise employees −0.159 0.462 0.892 ** 0.426 0.040 0.477 0
Less than CNY 5000 0.201 0.382 0.687 * 0.384 0.148 0.385 0
CNY 10,001–20,000 1.068 * 0.549 1.279 ** 0.551 1.450 *** 0.550 0

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.

Segment 2 consists of 37.8% of the respondents. Within this segment, the transporta-
tion mode preferences are distributed as follows: walking (21.8%), shared bikes (33.5%),
shared AVs (16.2%), and buses (28.4%). Demographically, individuals in this segment
predominantly possess a bachelor’s degree and are employed as public servants, in public
institutions, or within enterprises. Their income levels tend to be median when compared
to other segments. The parameter estimates of travel characteristics are all statistically
significant. However, none of the latent psychological variables regarding AVs influence
travelers’ preference for AVs as egress mode in segment 2. This observation suggests that
respondents in segment 2 are not familiar with AVs.

Segment 3 includes 26.2% of the overall sample. A striking majority of these respon-
dents, 91.3%, favor shared bikes, indicating a dominant inclination towards this mode of
transportation for last-mile journeys within this group. In terms of socioeconomic charac-
teristics, individuals in this segment are more likely to possess a bachelor’s degree in the
upper-middle-income category, demonstrating that shared bikes are attractive for these
travelers in the last mile trip. The waiting and walking time, in-vehicle time, and travel
cost proved statistically significant. BIU has a significant positive influence, while PBC has
a significant negative effect on the utility function of choosing AVs for last-mile transport.

5.3. Elasticities

Table 9 presents both the direct and cross-elasticities related to the travel cost for each
of the travel modes, aiming to analyze the variation in preferences among the three latent
classes (LCs), excluding the residual segment 4. The elasticities illustrate the percentage
change in the choice probability of four travel modes due to a 1% change in the level of
travel cost. For example, a 1% increase in the travel cost for shared AVs leads to a 0.649%
decrease in the choice probability of shared AVs (i.e., direct elasticity), while it causes
a 0.105% increase in the probability of choosing walking, shared bikes, and buses (i.e.,
cross-elasticity) when considering the entire sample. The direct elasticities of travel cost for
all travel modes of the MNL model and class2 were bigger than negative 1, showing that
a 1% increase in the travel cost for all travel modes will decrease choice probabilities by
less than 1%. However, the direct elasticities of travel cost for all travel modes of class1 are
smaller than negative 1 and those in the MNL model, class2, and class3, which indicates
that respondents from class1 are more sensitive to travel cost than individuals from class2
and class3. In class1, a 1% increase in the travel cost for shared AVs leads to a 7.598%
decrease in the choice probability of shared AVs.
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Table 9. Elasticities and cross-elasticities of travel cost (CNY).

Model Transport Mode Walk Shared Bike Shared AV Bus

MNL model All sample

Walk 0 0 0 0
Shared bike 0.103 −0.186 0.103 0.103
Shared AV 0.105 0.105 −0.649 0.105

Bus 0.046 0.046 0.046 −0.320

Four-class LC
model

Segment 1

Walk 0 0 0 0
Shared bike 0.146 −2.795 0.146 0.146
Shared AV 0.070 0.070 −7.598 0.070

Bus 0.013 0.013 0.013 −3.650

Segment 2

Walk 0 0 0 0
Shared bike 0.119 −0.269 0.119 0.119
Shared AV 0.180 0.180 −0.808 0.180

Bus 0.132 0.132 0.132 −0.374

Segment 3

Walk 0 0 0 0
Shared bike 0.472 −0.045 0.472 0.472
Shared AV 0.005 0.005 −1.335 0.005

Bus 0.000 0.000 0.000 −0.644

5.4. Willingness to Pay

Although travelers from different segments have the same signs for preferences, there
are differences in sensitivities to walking and waiting time, in-vehicle time, and trip cost.
The travelers’ willingness to pay is calculated as a trade-off ratio between the estimated
time parameter and the estimated cost parameter. Table 10 shows travelers’ willingness
to pay values across distinct segments. Individuals from segment 1 who are sensitive to
travel costs were willing to pay CNY 14.5 to reduce a one-hour walking and waiting time.
In-vehicle time was found to have an insignificant influence on respondents’ last-mile
egress mode. Conversely, travelers in segment 3 were willing to pay up to CNY 441.3
and CNY 63.0 to decrease one-hour walking and waiting time and in-vehicle time. The
results are consistent with previous research. Seelhorst and Liu (2015) postulated that
price-sensitive travelers were willing to pay less to reduce travel time [73]. Wen and Lai
(2010) discovered that travelers with high incomes were willing to pay more to improve
service quality [74].

Table 10. Willingness to pay (CNY/per hour) for each of the segments.

Variables
Four-Segment LC Model

Segment 1 Segment 2 Segment 3 Segment 4

Walking and waiting time 14.5 11.0 441.3 -
In-vehicle time - 20.4 63.0 -

6. Discussion
6.1. Summary of Results

This study positioned shared AVs in the public transport market and applied an
LC model to understand the unobserved preference heterogeneity across respondents.
Four distinct market segments concerning the preference were identified for the last-mile
travel mode choice of metro trips. By analyzing the preference heterogeneity and group
characteristics of these LCs, we can determine the target group for using shared AVs in
the last mile of metro trips. Travelers who choose shared AVs with the highest proportion
belong to segment 2. These people are more likely to possess a bachelor’s degree, work in
public servants/public institutions, and be enterprise employees with a middle income.
Different strategies should be used to increase the attractiveness of shared AVs in response
to the heterogeneity of choice preferences of travelers from different segments.
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Latent psychological variables exerted differential impacts across segments. The latent
psychological variables of attitude towards AVs have a significant negative impact on the
trips of travelers from segment 1 while they have positive effect on the travelers from
segment 4, indicating that travelers from segment 1 lack sufficient knowledge of AVs. In the
process of promoting and popularizing AVs, it is important to consider the psychological
attitudes of travelers towards AVs. The direct elasticity analysis shows that the travelers
from segment 1 are most sensitive to travel costs, and the direct elasticity value reaches
−7.598, which indicates that a 1% increase in the travel cost for shared AVs leads to a
7.598% decrease in the choice probability of shared AVs. The cross-elasticity analysis shows
that the cost of shared bicycles has the greatest impact on shared AVs. In segment 3, a
1% increase in the travel cost for shared bikes will cause a 0.472% increase in the choice
probability of shared AVs. This suggests that an astutely calibrated pricing strategy can
facilitate the promotion and adoption of shared AVs.

Travelers from different segments have different willingness to pay for walking and
waiting time and in-vehicle time. For travelers from segment 1, in-vehicle time does not
significantly influence their willingness to pay. Conversely, those from segment 2 are
willing to pay CNY 20.4 to reduce one-hour in-vehicle time, while for segment 3, this value
rises to CNY 60.3 per hour. Walking and waiting times significantly impact travelers from
all segments, but the magnitude of the impact varies greatly. Travelers from segment 2
are willing to pay CNY 11.0 to reduce one-hour walking and waiting time, while segment
3 travelers are willing to pay up to CNY 441.3 for the same reduction. The results show
that the value of travel time for high-income groups is relatively higher. Hence, the travel
experience of travelers can be improved by rationally designing the operation routes and
departure intervals of shared AVs to reduce the walking and waiting time.

6.2. Contributions and Comparison to Literature

The contribution of this paper mainly includes three aspects. From the perspective
of research objects, although Chinese AVs have made rapid progress, there is no research
on Chinese shared AVs to solve the problem of the last mile of metro trips. Although AVs
have been studied in the Netherlands, Atlanta area, Ann Arbor–Detroit Area, and other
areas [3,4,75], findings from these areas may not be applicable to other areas.

From the perspective of research methods, diverging from prevailing methodologies
that deploy cluster analysis to discern user groups [76], this paper is the first time that the
LC logit model has been used to study travelers’ preferences to choose shared AVs to solve
the last-mile problem of metro trips.

From the perspective of influencing factors, in addition to socioeconomic attributes
and travel characteristic variables that have an impact on travel behavior, travelers’ psy-
chological latent variables have a significant impact on travel mode choice. For example,
the perceived trust and perceived reliability of AVs affect travelers’ preference for AVs [3].
Nevertheless, few studies focused on mature theoretical frameworks that combine behavior
and attitude [31]. Addressing this gap, this paper adopts the theory of planned behavior
to study latent psychological variables, including ATTs, SNs, PBC, and BIU of travelers
towards AVs.

6.3. Limitations and Further Work

This area still needs to be further studied. Firstly, the results of this paper are mainly
specific to the research area. Research results in different countries and regions will vary.
Secondly, the COVID-19 pandemic has markedly reshaped travel behaviors worldwide.
Future research can consider the impact of COVID-19 on travelers’ preference for shared
AVs. Thirdly, this paper mainly studies the option of metro and transfer while ignoring
the option of private AVs throughout the journey. More options for travel indicate a
more complex system and greater uncertainty. Studying more modes of travel helps to
understand this uncertainty. Finally, this paper does not fully consider the influence of
distinct geographic and regional characteristics on travel behaviors. For instance, the
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impact of significant landmarks such as the Yangtze River on residents’ travel behaviors or
the discrepancies in travel mode choices between primary urban areas and their peripheral
counterparts warrants attention in future studies.
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