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Abstract: The lithium battery energy storage system (LBESS) has been rapidly developed and applied
in engineering in recent years. Maritime transportation has the advantages of large volume, low cost,
and less energy consumption, which is the main transportation mode for importing and exporting
LBESS; nevertheless, a fire accident is the leading accident type in the transportation process of LBESS.
This paper applied fault tree analysis and Bayesian network methods to evaluate the fire accident
risk of LBESS in the process of maritime transportation. The Bayesian network was constructed via
GeNIe 2.3 software, and the probability of LBESS fire accidents during maritime transportation was
calculated based on the probability of basic events occurring. The results showed that an unsuitable
firefighting system for putting out lithium battery fires, high humidity, and monitoring equipment
without a real-time alarm function have the most significant influence on the occurrence of LBESS
fire accidents during maritime transportation. The research work of this paper provides a theoretical
basis for the risk assessment of LBESS during maritime transportation.

Keywords: risk assessment; Bayesian network; lithium battery energy storage system; maritime
transportation; fire accident

1. Introduction

In order to reduce global greenhouse gas emissions, the use of renewable energy has
received more and more attention. Wind and solar power generation are the main ways
of renewable energy utilization, and according to statistics, the power generation of both
accounted for 10% of the total global power generation in 2021 [1]. Solar and wind power
generation have inherent defects of intermittent power generation. Therefore, it is necessary
to use energy storage systems with sufficient capacity to solve the above problems [2,3].

With the continuous progress of battery technology and its cost reduction, the electro-
chemical energy storage systems mainly based on lithium-ion batteries have been rapidly
developed and applied in recent years [4]. As the application demand for lithium battery
energy storage systems increases significantly, the transportation demand for lithium bat-
tery energy storage systems also rises. Maritime transportation has the advantages of large
volume, low cost, and less energy consumption. Therefore, it is the main transportation
mode for the import and export of LBESS. A lithium-ion battery energy storage system
(LBESS) is usually composed of a low boiling point and a flammable organic electrolyte.
High temperature, vibration, and other external environmental factors may trigger the
thermal runaway of LBESS, leading to fire accidents [5]. A fire accident is the main type of
accident during transportation of LBESS. Maritime transportation is characterized by high
vibration, high temperature, high humidity, and possible collision, which may cause fire
accidents. Therefore, it is necessary to evaluate the fire risk during the transportation of
lithium battery energy storage systems.
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At present, there is little research on the fire accident assessment of LBESS during
maritime transportation. This paper summarizes the research on the fire risk assessment of
lithium batteries and the risk of accidents in maritime transportation. I. Cho et al. used
the interquartile range filter method to monitor the fire risk during the operation of a
battery pack in real-time. The proposed method was verified via experiment and used
to monitor the fire risk of battery packs used for railway vehicles [6]. A local outlier
factor method was proposed to detect the abuse conditions of batteries to prevent thermal
runaway. The proposed method was verified by detecting faulty cells at different short-
circuit conditions [7]. Fire dynamics software was used to simulate different fire conditions
of lithium batteries stored in a warehouse. Based on simulation results, measures to
prevent lithium fire accidents were proposed, including an optimal battery state of charge,
spacing, and arrangement of fire extinguishing equipment [8]. The thermal runaway risk of
lithium-ion batteries was evaluated systematically and quantitatively using a fuzzy analytic
hierarchy process. Multi factors were evaluated and ranked using this method [9].

The Bayesian network was employed to estimate the system risk of a smart ship; based
on risk assessment, the system theoretic process analysis was used to analyze hazards and
identify risk control options. The results indicated that the risk control options, including
sensor heat monitoring and software testing, should be prioritized to reduce the risk [10].
M. Kaptan used the fuzzy bow-tie method to analyze risk in anchor handling operations.
Measures to prevent potential accidents during anchor handling were proposed based
on the findings of the study [11]. The analytic hierarchy process and expert evaluation
table were used to evaluate the navigational risk in the waters of offshore wind farms. The
weights of influence factors were determined using this method [12]. A fuzzy logic-based
modeling method was proposed for regional multi-ship collision risk assessment. The
ship crossing angle and navigational environment were considered in the constructed
model. The findings of this study provided an important basis for maritime collision risk
monitoring [13]. An evidence-based fuzzy Bayesian network approach was used to evaluate
the occurrence probabilities of marine accidents. The results showed that maintenance
failure was the main influence factor for high-consequence marine accidents [14]. The
Bayesian network was used to evaluate human factors causing maritime accidents. The
results showed that the most influential human factors were information communication,
clear order, and safety culture [15]. The Bayesian network method was used to assess risks
during the stowage of vehicles in roll-on/roll-off vessels. The probabilities of contributing
causes were identified via the Bayesian network, and uncertainties in risk assessment were
evaluated via a fuzzy logic method. [16] The fault tree and Bayesian network analysis
were combined to conduct a probabilistic risk analysis of collision incidents in ship-to-ship
tanker maneuvering operations. The results showed that the most contributing factors to
the ship-to-ship collision accidents were “mooring line breakdown”, “main engine failure”,
and “steering system failure” [17].

The fire accident risk of LBESS is affected by the meteorological environment, human
factors, ship factors, cargo factors, and management factors in the process of maritime
transportation. Each risk factor is dynamic and changing, which makes the traditional
ship accident risk assessment model difficult to apply in the complex and changeable
navigational environment. With the extensive application of Bayesian networks in maritime
traffic accident risk assessment, this paper developed a pioneering study on the application
of Bayesian networks in fire accident risk assessment of LBESS in the process of maritime
transportation. The research of this paper will provide a theoretical basis for safe maritime
transportation of LBESS.

2. Materials and Methods
2.1. Fault Tree Analysis

Fault tree analysis (FTA) is an important method to analyze system reliability and
security [18]. It is recognized as a simple and effective reliability analysis and fault diagnosis
method and a powerful tool to guide system optimization design, weak link analysis, and
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operation and maintenance [19]. FTA is a graphic technique that uses mathematical logic
symbols to organically link various causes of failure according to their internal laws.
Various possible combinations and probabilities of system failure causes can be determined
according to the logic diagram. Failure probability prediction and failure diagnosis can be
made via FTA [20].

2.2. The Bayesian Network

The Bayesian network (Bayesian network), also known as the reliability network,
derives its theoretical basis from probability theory. For the problem of expression and
inference analysis of uncertain knowledge, the Bayesian network has innate advantages
and is also one of the most effective theoretical models to deal with such problems [21,22].

The Bayesian network mainly consists of Bayesian network topology (directed acyclic
graph) and Bayesian network parameters (conditional probability table) [23]. In the topol-
ogy of the Bayesian network structure, the relationship between each factor and the degree
of mutual influence is illustrated via a directed acyclic graph. The typical Bayesian network
structure is shown in Figure 1, where A means root node, B means intermediate node, and
C means leaf node [24]. In the network structure, each node represents different variables,
and each node’s state also corresponds to each node’s probability change. Arrow arcs are
used to illustrate the relationship between variables. The conditional probability table
(CPT) of the Bayesian network is used to describe the relationship between the root node
(arc front) and its leaf node (arc tail) [25,26].
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Figure 1. Typical Bayesian network structure.

2.3. Integration of FT into BN

The topology of fault tree analysis is consistent with that of the Bayesian network.
Therefore, fault trees can be transformed into Bayesian networks [27]. The Bayesian network
analysis method can improve reliability analysis compared with the fault tree analysis
method [28]. The transformation rule from the fault tree into Bayesian networks is as
follows [21,28,29].

â The nodes in the Bayesian network correspond to the events in the accident tree;
â The relationship between nodes in the Bayesian network topology is also derived

from the fault tree structure;
â The prior probability of the node in the Bayesian network corresponds to the basic

event probability in the accident tree analysis;
â The conditional probability table of Bayesian networks is derived from the logic

gates of the fault tree. The “1” or “0” of the conditional probability table in the BN
correspond to the “and” and “or” logic gates in the FT [28].

The process of converting the fault tree analysis graph into a Bayesian network is
shown in Figure 2.
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2.4. Failure Probability (FP) of a Basic Event (BE)

The fuzzy set theory was created by L.A. Zadeh in 1965 to resolve uncertainties that
could not be adequately expressed in probability theory [30]. The linguistic judgments of
experts can be converted into fuzzy numbers using the fuzzy set theory [31]. The most
commonly used fuzzy numbers are triangular and trapezoidal fuzzy numbers. Three and
four real numbers are used to represent triangular and trapezoidal fuzzy numbers [32].
Trapezoidal membership functions are easier conceptually and practically and are widely
used [33]. Therefore, the membership function shown in Equation (1) was used in this study.

µA′(x) =



0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
x−a4
a3−a4

, a3 ≤ x ≤ a4

0, x < a4

(1)

In order to evaluate the failure probability of root events in a Bayesian network, it is
usually necessary to convert the linguistic judgement of experts into fuzzy numbers and
aggregate the converted fuzzy numbers into one using aggregation methods [34–36]. Hsu
and Chen proposed SAM (similarity agreement method) formulas in 1996 [37]. It is one
of the most widely used expert judgment aggregation methods. The steps for SAM are
described as follows [17].

Calculation of degree of similarity: The degree of similarity can be calculated via
Equation (2):

S
(

Ã, B̃
)
= 1− 1

4

4

∑
i=1
|ai − bi| (2)

Calculation of average agreement (AA) degree AA(Eu) of experts: Equation (3) was
used to calculate the average agreement between each expert’s opinion. “M” means the
number of experts.

AA(Eu) =
1

M− 1

M

∑
v = 1
u 6= v

S
(

R̃u, R̃v

)
(3)

Calculation of experts’ relative agreement (RA) degree, RA(Eu) of the experts.
Equation (4) was used to calculate the degree of conformity between different experts’
judgments.

Eu(u = 1, 2, · · · , M) as RA(Eu) =
AA(Eu)

M
∑

u=1
AA(Eu)

(4)
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Equation (5) was used to calculate the consensus coefficient of an expert.

CC(Eu) = βw(Eu) + (1− β)RA(Eu) (5)

The consensus coefficient measures the agreement degree of expert opinions. β is the
optimism coefficient and indicates the importance of w(Eu) over RA(Eu). Its value varies
between 0 and 1. The “0” means a homogeneous expert group is selected. The “1” means
an expert opinion’s degree of consensus is the same as its weight.

Expert judgment assembly R̃AG was calculated via Equation (6).

R̃AG = CC(E1)× R̃1 + CC(E2)× R̃2 + · · ·+ CC(EM)× R̃M (6)

The center of area (COA) method is used to transform the trapezoidal fuzzy number
into a crisp number. It is formulated by Equation (7).

de f uzz(′A) :
∫

x·u(x)dx∫
u(x)dx =

∫ a2
a1

(
x−a1

a2−a1

)
xdx+

∫ a3
a2

xdx+
∫ a4

a3

(
a4−x

a4−a3

)
xdx∫ a2

a1

(
x−a1

a2−a1

)
dx+

∫ a3
a2

dx+
∫ a4

a3

(
a4−x

a4−a3

)
dx

=
−a1a2−a3a4+

1
3 (a4−a3)

2− 1
3 (a2−a1)

2

−a1−a2+a3+a4

(7)

In the final step, Equation (8), proposed by Onisawa, was used to calculate the fuzzy
failure probabilities of root events in the Bayesian network. “FPr” means fuzzy failure
probabilities, “FPs” means fuzzy failure possibilities, and “K” is a constant coefficient [38].

FPr =

{
1/10K, FPs 6= 0
0, FPs = 0

, K =

(
1− FPs

FPs

) 1
3
× 2.301 (8)

3. Fire Accident Modeling of LBESS Maritime Transportation
3.1. Fault Tree Modelling

Due to the short history of LBESS maritime transportation, the research literature
on the causes of LBESS maritime transportation fire accidents is limited and insufficient.
Therefore, the cause of the accident is determined by referring to expert opinion, accident
reports, and trade publications.

When creating the fire fault tree model of the lithium battery energy storage system,
the fire mechanism of the lithium battery was first analyzed. Then, combined with the
special external conditions in the process of marine transportation, the basic events and
intermediate events that led to the fire accident of the lithium battery energy storage system
in the process of marine transportation were formed.

The lithium battery fire accident was caused by the thermal runaway of a battery cell.
Some key factors leading to the fire or explosion risk are impact, internal and external short
circuits, and high ambient temperature. Impact damage may result in battery damage and
the thermal runaway of the cells. During maritime transportation, bad weather conditions,
improper storage, improper ballast, high ship speed, defect of binding equipment, a contact
accident of the ship, and a collision accident of the ship may lead to the impact damage of
a LBESS. Direct sunlight, stowage adjacent to the engine and oil tank, and high ambient
temperature may lead to the high temperature of LBESS. Cargo hold flooding, lack of a
short-circuit-prevention device, overcharge, over-discharge, and a battery cell defect may
lead to the short circuit of a LBESS. These basic events may result in a fire accident of the
LBESS. Meanwhile, insufficient fire monitoring devices and firefighting capacity can also
lead to fire accidents of the LBESS. There were 31 basic events and 16 intermediate events.
The fault tree model of the LBESS fire is shown in Figure 3.

x1: bad weather condition; x2: improper storage; x3: improper ballast; x4: high ship
speed; x5: defect of binding equipment; x6: improper maintenance of binding equipment;
x7: improper binding; x8: contact accident; x9: collision accident; x10: direct sunlight; x11:
stowage adjacent to engine room; x12: stowage adjacent to oil tank; x13: high ambient
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temperature; x14: cargo hold flooding; x15: no installation of short-circuit-prevention
device; x16: high humidity; x17: lack of insulation; x18: overcharge; x19: over discharge;
x20: defect of separate; x21: burrs on the electrode surface; x22: no installation of monitoring
devices; x23: monitoring equipment cannot cover all goods; x24: damage of monitoring
equipment; x25: the monitoring equipment does not have a real-time alarm function; x26:
the crew does not patrol according to regulations; x27: insufficient firefighting equipment;
x28: failure of firefighting equipment; x29: firefighting equipment is not suitable for putting
out lithium battery fires; x30: crew members are not trained in lithium battery firefighting;
x31: the crew did not know the correct way to put out the lithium battery fire.
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3.2. Basic Event Probabilities Calculation

In a LBESS fire accident risk assessment, due to insufficient information, the calcula-
tion of node failure is probably based on the opinion of experts who use linguistic variables
to assess the probability of failure of the basic event [36]. Different numbers of language
variables can be used when determining language variables. In this study, seven linguistic
variables were used to estimate the probability of root cause [39]. The numerical approxi-
mation method proposed by Chen and Hwang was used to convert language variables into
their corresponding fuzzy numbers [40]. The corresponding relationship between language
variables and fuzzy sets is shown in Table 1.

Table 1. Relationship between linguistic variables and fuzzy sets.

Linguistic Variables Fuzzy Sets

Very Low (VL) (0.0, 0.1, 0.1, 0.2)
Low (L) (0.1, 0.2, 0.2, 0.3)

Fairly Low (FL) (0.2, 0.3, 0.4, 0.5)
Medium (M) (0.4, 0.5, 0.5, 0.6)

Fairly High (FH) (0.5, 0.6, 0.7, 0.8)
High (H) (0.7, 0.8, 0.8, 0.9)

Very High (VH) (0.8, 0.9, 1.0, 1.0)

Based on the consideration of all the experts involved in LBESS maritime transport,
three experts were selected to judge the basic events. The marine experts’ judgments were
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aggregated via the SAM method, as shown in Equations (2)–(8). The outcomes of all basic
events after aggregation calculation are shown in Table 2.

Table 2. Basic events probabilities calculation based on experts’ judgment.

Code and Description of
Root Events

Expert
Judgment Aggregated Fuzzy Numbers K (FPs) Failure

Possibilities
(FPr) Failure
Probabilities1 2 3

x1: Bad weather condition M L L 0.194 0.294 0.294 0.394 3.083 0.294 0.0008
x2: Improper storage M M H 0.494 0.594 0.594 0.694 2.028 0.594 0.0094
x3: Improper ballast L M L 0.194 0.294 0.294 0.394 3.083 0.294 0.0008
x4: High ship speed M L L 0.194 0.294 0.294 0.394 3.083 0.294 0.0008
x5: Defect of binding
equipment M H M 0.494 0.594 0.594 0.694 2.028 0.594 0.0094

x6: Improper maintenance of
binding equipment L FL L 0.132 0.232 0.265 0.365 3.327 0.249 0.0005

x7: Improper binding L VL L 0.067 0.167 0.167 0.267 3.929 0.167 0.0001
x8: Contact accident FH M FH 0.468 0.568 0.635 0.735 2.006 0.601 0.0099
x9: Collision accident L FL M 0.233 0.333 0.367 0.467 2.828 0.350 0.0015
x10: Direct sunlight FH M H 0.533 0.633 0.667 0.767 1.872 0.650 0.0134
x11: Stowage adjacent to
engine room H M M 0.494 0.594 0.594 0.694 2.028 0.594 0.0094

x12: Stowage adjacent to oil
tank FH M M 0.432 0.532 0.565 0.665 2.156 0.549 0.0070

x13: High ambient
temperature H H FH 0.635 0.735 0.768 0.868 1.591 0.751 0.0256

x14: Cargo hold flooding FL L L 0.132 0.232 0.265 0.365 3.327 0.249 0.0005
x15: No installation of
short-circuit prevention
device

VL VL VL 0.000 0.100 0.100 0.200 4.786 0.100 0.0000

x16: High humidity H VH H 0.733 0.833 0.865 0.933 1.328 0.839 0.0470
x17: Lack of insulation FL L FL 0.168 0.268 0.335 0.435 3.045 0.301 0.0009
x18: Overcharge VL VL VL 0.000 0.100 0.100 0.200 4.786 0.100 0.0000
x19: Over discharge VL L VL 0.033 0.133 0.133 0.233 4.302 0.133 0.0001
x20: Defect of separate L L VL 0.067 0.167 0.167 0.267 3.929 0.167 0.0001
x21: Burrs on the electrode
surface L L FL 0.132 0.232 0.265 0.365 3.327 0.249 0.0005

x22: No installation of
monitoring devices VL M VL 0.121 0.221 0.221 0.321 3.500 0.221 0.0003

x23: Monitoring equipment
cannot cover all goods VH M M 0.520 0.620 0.650 0.720 1.938 0.626 0.0115

x24: Damage of monitoring
equipment L L VL 0.067 0.167 0.167 0.267 3.929 0.167 0.0001

x25: The monitoring
equipment does not have
real-time alarm function

H VH H 0.733 0.833 0.865 0.933 1.328 0.839 0.0470

x26: The crew does not patrol
according to regulations L L FL 0.132 0.232 0.265 0.365 3.327 0.249 0.0005

x27: Insufficient firefighting
equipment M H M 0.494 0.594 0.594 0.694 2.028 0.594 0.0094

x28: Failure of firefighting
equipment L FL L 0.132 0.232 0.265 0.365 3.327 0.249 0.0005

x29: Firefighting equipment is
not suitable for putting out
lithium battery fires

VH VH VH 0.767 0.867 0.935 0.967 1.179 0.881 0.0663

x30: Crew members are not
trained in lithium battery
firefighting

H FH H 0.635 0.735 0.768 0.868 1.591 0.751 0.0256

x31: The crew did not know
the correct way to put out the
lithium battery fire

H M H 0.606 0.706 0.706 0.806 1.718 0.706 0.0192
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4. Quantitative Assessment of a LBESS Fire Accident via Bayesian Network

The Bayesian network was used to analyze the probability relation of nodes that cause
LBESS fire accidents in the process of maritime transportation.

4.1. The Bayesian Network Structure Transformed from a Fault Tree Model

The Bayesian network structure can be constructed from the fault tree topology as
described in Section 2.3. Nodes in the Bayesian network structure correspond to the events
in the fault tree model. The conditional probabilities in the Bayesian network were based
on the logical gates of the fault tree model.

The GeNIe program was used to generate the Bayesian network structure, as shown
in Figure 4. The prior probability of the nodes in Table 2 and the corresponding conditional
probabilities were introduced into the Bayesian network model to calculate the occurrence
probability of a LBESS fire accident. The LBESS fire accident probability calculated in this
model is 2%.
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4.2. Probability Updating

Compared with the fault tree analysis method, the main advantage of the Bayesian
network is to modify prior probabilities based on newly acquired information. The revised
probability is called posterior probability [41]. The probabilistic update of the Bayesian
network structure is completed via backward analysis. The most influential factors of
the accident can be obtained via this method. The posterior probabilities of the Bayesian
network nodes can then be obtained by setting the occurrence probability of the target node
as 100%. The most influential factors leading to the LBESS fire accident can be found by
analyzing the difference between the prior probability and posterior probability. This paper
takes the top event (fire accident) as evidence to determine the posterior probability of the
basic event. Table 3 shows the posterior probability modified using backward analysis,
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assuming that the top event occurred. A higher impact on the occurrence of top events can
be suggested via the rapid growth between the prior probability and posterior probability.

Table 3. Comparison between prior and posterior probabilities of nodes in the Bayesian network.

Symbol Description Prior
Probability

Posterior
Probability

x1 Dad weather condition 0.0008 0.0009
x2 Improper storage 0.0094 0.0094
x3 Improper ballast 0.0008 0.0008
x4 High ship speed 0.0008 0.0008
x5 Defect of binding equipment 0.0094 0.0784
x6 Improper maintenance of binding equipment 0.0005 0.0039
x7 Improper binding 0.0001 0.0010
x8 Contact accident 0.0099 0.0824
x9 Collision accident 0.0015 0.0124

x10 Direct sunlight 0.0134 0.1122
x11 Stowage adjacent to engine room 0.0094 0.0784
x12 Stowage adjacent to oil tank 0.0070 0.0583
x13 High ambient temperature 0.0256 0.2140
x14 Cargo hold flooding 0.0005 0.0039
x15 No installation of short-circuit-prevention device 0.0000 0.0001
x16 High humidity 0.0470 0.3926
x17 Lack of insulation 0.0009 0.0075
x18 Overcharge 0.0000 0.0001
x19 Over-discharge 0.0001 0.0004
x20 Defect of separate 0.0001 0.0010
x21 Burrs on the electrode surface 0.0005 0.0039
x22 No installation of monitoring devices 0.0003 0.0019
x23 Monitoring equipment cannot cover all goods 0.0115 0.0684
x24 Damage to monitoring equipment 0.0001 0.0007

x25 The monitoring equipment does not have
real-time alarm function 0.0470 0.2791

x26 The crew does not patrol according to regulations 0.0005 0.0028
x27 Insufficient firefighting equipment 0.0094 0.0557
x28 Failure of firefighting equipment 0.0005 0.0028

x29 Firefighting equipment is not suitable for putting
out lithium battery fires 0.0663 0.3935

x30 Crew members are not trained in lithium battery
firefighting 0.0256 0.1521

x31 The crew did not know the correct way to put out
the lithium battery fire 0.0192 0.1138

As shown in Table 3, it can be observed that the probabilities of some nodes change
more than others. This means that the model is sensitive to fire accidents and plays an
important role in the occurrence of fire accidents. According to Table 3, the most influential
nodes leading to a fire accident were firefighting equipment not suitable for putting out
lithium battery fires (x29), high humidity (x16), the monitoring equipment that does not
have a real-time alarm function (x25), high ambient temperature (x13), and crew members
that are not trained in lithium battery firefighting (x30). Ship monitoring equipment can
be modified according to the monitoring equipment operation and management mode
of automated container terminals [42], and the sensing data can be properly used via the
method mentioned in [43].

5. Conclusions

This paper proposes a risk assessment technique based on the Bayesian network,
which combines fault tree analysis with the fuzzy method. Firstly, the fault tree analysis
method was used to analyze the events leading to LBESS fire accidents during maritime
transportation. Then, expert opinion was used to assess the occurrence probability of basic
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events. Finally, the Bayesian network was used to assess the LBESS fire accident risks
within the entire maritime transportation process. The findings indicated that firefighting
equipment not suitable for putting out lithium battery fires (x29), high humidity (x16),
monitoring equipment without a real-time alarm function (x25), high ambient temperature
(x13), and crew members not trained in lithium battery firefighting (x30) are the most
influential factors leading to a LBESS fire accident. Therefore, the above-mentioned nodes
should be verified before the launch of LBESS maritime transportation. According to
the characteristics of lithium battery fires, CO2 firefighting systems cannot effectively
extinguish lithium battery fires. It is recommended that ships be equipped with water-
based firefighting systems, which should be able to fully cover lithium battery cargo. It is
recommended that ships be equipped with temperature monitoring and an alarm device
with a real-time transmission function. When the temperature of the lithium battery cargo
exceeds the set temperature, the device will automatically start an alarm and alert ship
personnel to promptly identify the cause and eliminate the fault.
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