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Abstract: Due to global ecological restrictions, cities, particularly urban transportation, must choose
ecological solutions. Sustainable bike-sharing systems (BSS) have become an important element in the
worldwide transportation infrastructure as an alternative to fossil-fuel-powered cars in metropolitan
areas. Nevertheless, the placement of docks, which are the parking areas for bikes, depends on
accessibility to bike paths, population density, difficulty in bike mobility, commuting cost, the spread
of docks, and route imbalance. The purpose of this study is to compare the performance of various
time series and machine learning algorithms for predicting bike demand using a two-year historical
log from the Capital Bikeshare system in Washington, DC, USA. Specifically, the algorithms tested
are LSTM, GRU, RF, ARIMA, and SARIMA, and their performance is then measured using the
MSE, MAE, and RMSE metrics. The study found GRU performed the best, with RF also producing
reasonably accurate predictions. ARIMA and SARIMA models produced less accurate predictions,
likely due to their assumptions of linearity and stationarity in the data. In summary, this research
offers significant insights into the efficacy of diverse algorithms in forecasting bike demand, thereby
contributing to future research in the field.

Keywords: bike-sharing systems; docks; ARIMA; SARIMA; LSTM; GRU; performance metrics;
demand prediction

1. Introduction

Over the past few decades, shared bikes have gained significant attention as a sustain-
able urban transportation option [1]. Bike-sharing systems (BSS) offer a green alternative
for short-distance travel, reducing carbon emissions and improving last-mile connectivity
to public transit [2]. Notably, during the COVID-19 pandemic, BSS emerged as a resilient
mode, addressing concerns about overcrowding in public transit. The integration of BSS
into intelligent urban traffic systems has several benefits [3]. For instance, it enhances
the efficiency of public transportation, reducing road traffic congestion [4]. However, one
significant challenge in BSS is the imbalanced distribution of bikes, affecting users’ riding
experience. Research has shown that urban centers have a higher bike concentration than
rural areas, and the demand for bikes experiences periodic peaks during work commute
times [5]. The demand patterns in BSS are influenced by both spatial and temporal de-
pendencies. Spatial aspects involve the varying demand across different areas and the
geographic distribution of bike stations. Temporal dependencies refer to fluctuations in
demand throughout the day, week, or year. Understanding these dependencies is crucial
for operators to identify high-demand areas and optimize resource allocation, such as
redistributing bikes or expanding stations. To tackle the spatial and temporal dispari-
ties, methods for bike redistribution have been formulated. These approaches involve
the utilization of trucks or trailers to reposition bicycles within the urban area [6,7]. To
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enhance service effectiveness and minimize the expenses associated with redistribution,
researchers have harnessed historical bike usage information to precisely forecast upcom-
ing demand [8,9]. The accurate prediction of bike demand is fundamental to effective
redistribution and overall BSS performance.

The development of BSSs insists on the significant role played by technological ad-
vancements. Also, the success of these systems is dependent on the solution to three issues:
(a) the number of stations and where they are located; (b) the capacity of the stations; and
(c) the distribution of bikes. Estimating the demand placed on the system is necessary
in order to find a solution to these issues. An in-depth analysis of bike-sharing research
published between 2010 and 2018 reveals that demand estimation is one of the most swiftly
developing trends in the field of bike-sharing research worldwide [10]. Considering the
significance of BSS in urban transportation, precise demand forecasting plays a vital role in
ensuring efficient bike rebalancing during daily operations. Both traditional and machine
learning methods have been the subject of numerous research efforts to develop frame-
works that can accurately anticipate citywide bike demand. The precise prediction of bike
demand enables operators to optimize bike allocation and resource management, leading
to enhanced customer satisfaction and reduced operational expenses.

Time series modeling and regression analysis are two common approaches to bike
demand forecasting. Time series models are used to model and forecast data that changes
over time, such as hourly or daily bike demand. Time series models can capture patterns
such as trends, seasonality, and cyclicality in the data and use them to make predictions.
Regression analysis, on the other hand, is used to model the relationship between one or
more predictor variables and a response variable. In the context of bike demand forecasting,
regression analysis can be used to model the relationship between bike demand and various
factors such as weather, time of day, day of the week, and holidays. Regression models
can capture the effects of these factors on bike demand and use them to make predictions.
Both time series modeling and regression analysis have their strengths and weaknesses,
and the choice of approach depends on the specifics of the problem at hand. Time series
models are useful when the focus is on forecasting future bike demand based on historical
patterns, while regression analysis is useful when the focus is on understanding the factors
that affect bike demand and how they can be leveraged to improve forecasting accuracy. In
this work, we use both types of algorithms to predict the demand for bikes during the next
day and next month.

The present research focuses on addressing the following questions:

1. How can historical bike usage data be effectively utilized to predict future demand in
a BSS, and which time series forecasting and regression algorithms are most suitable
for predicting bike demand in a BSS? Can we generalize the models for different BSSs?

The challenge involves utilizing historical bike usage data to accurately forecast the
future bike demand within a BSS. This encompasses understanding the patterns, trends, and
potential influencing factors that drive bike demand fluctuations over time and generalize
the models.

2. How can the integration of temporal factors, such as day of the week, time of day, and
seasonality, improve the accuracy of bike demand predictions using time series and
regression algorithms?

With a focus on harnessing temporal dynamics, such as day of the week, time of
day, and seasonal influences, this article aims to uncover novel insights that optimize the
predictive accuracy of time series and regression algorithms.

To address these questions, we use the dataset that represents a two-year historical log
from the Capital Bikeshare system, Washington, DC, USA [11]. To predict the demands
for the bike, we propose to use regression models such as Random Forest and time series
models such as ARIMA, SARIMA, LSTM, and GRU. In addition, we test the generalizability
of the developed models using another dataset. This work not only seeks to advance
the field of urban mobility and sustainable transportation but also promises practical
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implications for optimizing bike allocation, ensuring user satisfaction, facilitating more
efficient urban planning strategies, and so on.

The main contributions of the proposed work include:

1. Conduct an exploratory analysis of trends, patterns, outliers, and unsettled points in
bike prediction

2. Analyze the fine-grained temporal factors, such as the day of the week, time of day,
and seasonality, which play a crucial role in shaping bike demand patterns in urban
environments and utilize AI techniques to capture and leverage these patterns for
better forecasting.

3. Develop AI-driven forecasting models tailored for bike demand prediction using time
series and regression algorithms and evaluate their performance using MAE, RMSE,
and MSE.

4. Validate the developed models against a new dataset: the London Bike Sharing System.

The rest of the article is orchestrated as follows: Section 2 provides a comprehensive
review of the existing works related to the BSS. In Section 3, a description of the dataset and
an exploratory data analysis are presented. A brief review of the time series and regression
models used in the present work is also given in Section 3. In Section 4, we detail the
experimental settings we used and the results of the developed models. A discussion on
the performance of the proposed models is presented in Section 5. Finally, we provide a
conclusion and scope for further extension of our work in Section 6.

2. Literature Review

Various empirical studies have employed diverse predictive models to forecast bike-
sharing demand. These models typically incorporate historical data and multiple external
factors, such as weather conditions, temporal details, and spatial information. A classi-
fication system for predicting BSS [12] is introduced based on the specific data formats
obtained from both docked and dockless BSS. In this section, we provide a comprehensive
overview of different models utilized for predicting BSS.

In the study conducted by Sathishkumar et al. [13], a predictive model for bike-sharing
demand was developed using a machine learning approach. Data from a BSS in Bangalore,
India, was used, and the most significant predictors of bike demand were found to be
temperature and humidity. The effectiveness of a machine learning approach for predicting
bike-sharing demand was demonstrated, and the importance of considering external factors
such as weather and holidays was highlighted. The findings can inform decision-making
for bike-sharing operators, urban planners, and policymakers to develop more effective
and sustainable transportation systems. In the study by Brownlee et al. [14], the authors
have explored common data normalization techniques used in machine learning. The
benefits and drawbacks of each technique were also discussed, along with guidance on
when to use each based on the dataset characteristics. The study by Box et al. [15] aimed
to develop a framework for time series analysis known as the Box–Jenkins methodology,
and the methodology consists of three stages: model identification, parameter estimation,
and model checking. The authors demonstrated the effectiveness of the approach through
various case studies, including modeling the demand for a particular brand of beer and
predicting the number of airline passengers. The study contributed significantly to the
development of time series analysis and provided a useful resource for practitioners and
researchers in the field.

In the study conducted by Hyndman et al. [16] a new approach to forecasting time
series known as the “forecast” package was introduced. The package provides a range
of functions for forecasting, including ARIMA models, exponential smoothing models,
and seasonal decomposition methods. The authors also examined methods for evaluating
and selecting models for use with various kinds of time series data. The effectiveness of
the approach was demonstrated through a range of case studies, including forecasting
tourism demand, electricity demand, and stock prices. The authors of [17,18] examined
automatic forecasting methods for handling a considerable volume of univariate time series,
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commonly required in business and other fields. Gao et al. [8] developed four distinct
machine-learning models to predict consumer demand for bike sharing in Seoul. The
researchers went beyond weather-related features and incorporated additional variables,
such as air pollution, traffic information, COVID-19 cases, and socio-economic factors, to
enhance the accuracy of their predictions. The dataset used in the study was obtained
from the Seoul Public Data Park website, encompassing the counts of public bike rentals in
Seoul, South Korea, throughout the year 2020. Among the 29 features categorized into six
groups, the weather, pollution, and the COVID-19 outbreak features proved to be the most
influential in the model’s prediction performance.

Schuijbroek et al. [7] delved into BSSs that have gained widespread popularity, with
installations in numerous cities worldwide. The study highlighted that the primary opera-
tional cost driver for these systems is the bike rebalancing process, aiming to maintain a
suitable number of available bikes and open docks for users. To address this challenge, the
researchers proposed a new heuristic approach, prioritizing clustering first and routing
second. This method addresses a clustering challenge of polynomial size, taking into
account both the feasibility of service levels and the approximate routing costs concurrently.
Conversely, Philipp Probst et al. [19] constructed a model using the RF algorithm. This
model encompasses numerous user-adjustable hyperparameters, including the count of
randomly drawn observations per tree (with or without replacement), the number of ran-
domly selected variables for each split, the criteria for splitting, the minimum necessary
samples within a node, and the overall count of trees forming the forest. Zhou [20] exam-
ined Chicago’s spatiotemporal riding pattern using huge BSS data from July to December
2013 and 2014 and used the fast greedy algorithm to find biking flow spatial communities
using a bike flow similarity graph. This work found weekday and weekend travel patterns
and customer and subscriber travel trends in the noisy large data. Using the hierarchical
clustering method, the authors also looked at the temporal demands for bikes and docks.

In a study by [21], researchers introduced a stacking model to predict variations in
public bicycle traffic flow using real-world data. XGBoost was employed to train the
models and identify factors influencing public bicycle traffic flow. The features utilized
in this study include time, space, history, and weather information. To further enhance
the analysis, the authors utilized the K-Medoids algorithm to group bike stations. This
was accomplished by creating a novel station correlation matrix that relies on the dis-
tance between the stations. Another study conducted by Zhao et al. [5] proposed a novel
hyper-clustering approach to enhance a spatiotemporal deep neural network for traffic
prediction in BSSs. This innovative approach captured mobility trends among individuals
and clusters, resulting in improved accuracy in predicting the number of available bikes.
The experimental findings showed that the spatiotemporal deep neural network model,
with hyper-clustering, surpassed previous approaches in accurately predicting bike de-
mand. Dastjerdi and Morency [22] researched short-term forecasting, specifically predicting
shared bike demand in Montreal 15 min ahead, using a deep learning approach. The study
started by identifying six communities within the bike-sharing network using the Louvain
algorithm based on a set of bike trips. To forecast pickup demand in each community,
LSTM-based architectures were utilized. As a benchmark, a univariate ARIMA model was
also employed for comparison. In a work by Lee and Ku [23], an RNN model was proposed,
incorporating a dual attention mechanism to extract both spatial and temporal features. The
attention mechanism effectively determines and weights all location features in the time
series data, facilitating the learning of mutual correlations. Additionally, a random walk
mechanism was incorporated during the preprocessing stage to maintain local relationships
between bike stations, making the model more adaptable to local location changes across
different stations.

To summarize, the literature survey revealed that this is an actively researched area,
with a range of models and techniques being used. Some studies have focused on using
traditional regression models, while others have explored the effectiveness of more complex
machine learning models and time series models. Features such as weather data, time
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of day, and day of the week are important predictors of bike demand. In addition, some
studies have highlighted the benefits of using ensemble models or hybrid approaches that
combine different types of models. From the survey, we understand that a few existing
studies focus on batch prediction, neglecting the potential of real-time demand forecasting
and dynamic optimization. Addressing the long-term trends and sustainability aspects of
bike-sharing demand is underexplored. Developing methodologies to provide probabilistic
forecasts could enhance the decision-making process for BSS operators and urban planners.
Further, bike demand exhibits complex temporal patterns and dynamics influenced by
factors like weather, time of day, day of the week, and seasonality. Investigating traditional
and contemporary time-series forecasting models capable of effectively capturing these
patterns could present a promising avenue for research. Through this research attempt, we
propose to develop forecasting methods that address long-term prediction. Also, we focus
on selecting appropriate features that can give better predictions. In contrast with other
works, we use a set of fine-grained temporal features for prediction. Overall, the literature
suggests that the performance may depend on the choice of model, and additional features,
such as weather and working day features, contribute more to the performance of the
model, and there is a scope for improvement in prediction.

3. Materials and Methods
3.1. Dataset Description

In this work, we use datasets that consist of the usage log from the Capital Bike
Sharing (CBS) system in Washington, DC, USA [24]. These datasets cover a two-year
timeframe and are considered suitable for our research goals due to the following reasons.
Firstly, they include at least two full life cycles of the BSS, allowing for the application of
supervised and semi-supervised learning methods. Secondly, there are additional sources
of data that provide historical information on environmental factors, such as weather
conditions, weekdays, and holidays, which can be extracted and incorporated into our
analysis. The datasets contain hourly and daily counts of rental bikes, along with the
corresponding weather and seasonal information. In this work, we use an hourly dataset
that has 17379 instances and 16 attributes such as date, season, year, month, and weather
information. Subsequently, we utilized data from the initial 22 months for training purposes,
reserving the final two months for testing. This helps to validate the long-term prediction
of the proposed models.

3.2. Exploring the Data and Outlier Analysis

Exploratory Data analysis involves utilizing statistical and visualization tools to depict
data to identify crucial aspects of the dataset for further examination. We examine the
dataset from multiple perspectives and present a few visualizations that offer a concise
overview. Since the objective of the proposed work is to predict the number of bikes that
will be rented shortly, the best way to begin is with the target variable to predict: “count”.
So, in this work, we stratify the “count” against different predicator variables, such as
seasons, months, weather conditions, etc., and show them in Figure 1.

Further, we have also performed outlier analysis to identify the presence of outliers
within a dataset. An outlier is a data point that significantly deviates from the normal
pattern or distribution of the data. These anomalies can have a significant impact on
statistical analysis and modeling results, leading to biased or misleading conclusions.
Outliers can disrupt the underlying patterns and trends in bike demand. By detecting and
understanding outliers, we can better assess the overall trend and identify whether they
are indicative of significant shifts in demand or just noise. This ensures that our predictions
are based on a more accurate representation of the underlying demand patterns. Hence,
we performed an outlier analysis on a few input variables and presented it in Figure 2.
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As seen in Figure 2, the number of bikes rented is between 0 to 1000. For instance,
when the weather is extreme, the number of rented bikes is less, and otherwise, its median
count increases. Also, the median value increases in the seasons such as summer and fall.
Since outliers often represent exceptional or anomalous events that may not reflect the
typical demand behavior, we can gain a clearer understanding of the normal patterns and
trends in bike demand by removing them. To remove the outliers, we used a common
approach called interquartile range (IQR). After removing outliers, we found the correlation
between the target and predictor variables. The correlation between different predicator
variables and the number of bikes rented is presented in Figure 3. Correlation analysis
provides insights into how the predictor variables are related to bike demand. Positive
correlations indicate that as the predictor variable increases, the bike demand tends to
increase as well. Negative correlations indicate an inverse relationship. Understanding
these relationships can help in gaining a deeper understanding of the factors influencing
bike demand and in formulating strategies to meet the demand effectively. In addition, we
also performed correlation-based feature selection to find the predictors that contribute to
bile prediction. From these analyses, we understand that the features like “atemp”, “hum”,
“weathersit”, etc., play a less significant role in determining the number of bikes rented.
The attributes which play a significant role are explored in Section 4.2.
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3.3. Modeling Approach for Demand Forecasting

In this section, we present a summary of the models developed for predicting the
demand for bikes. We use regression and time series models to develop a demand
prediction model.

3.3.1. Random Forest

Random Forest (RF) creates multiple decision trees on randomly selected subsets of
data and features, then combines their predictions to make more accurate predictions [25].
To use this algorithm, we first analyze the importance of each feature and select relevant
features that contribute significantly to the bike demand prediction. Then, we train the
RF model using the training dataset and the model creates an ensemble of decision trees
based on random subsets of features and data samples. During training, we optimize the
model’s hyperparameters, such as the number of trees and their depth in the forest, and
the number of features considered at each split to improve its performance. After training,
the model learns patterns and relationships between the input features and the number of
bikes rented. Once the model is trained and optimized, we use it to make predictions on
test data.

3.3.2. ARIMA

Autoregressive Integrated Moving Average (ARIMA), a time series forecasting model [26],
is used to model time series data and make predictions. ARIMA models require the time
series to be stationary, meaning that the mean and variance should be relatively constant
over time. To address the non-stationarity of the dataset utilized in this study, differencing is
employed as a technique to achieve stationarity. Differencing involves taking the difference
between consecutive observations to remove trends or seasonality. Figure 4 shows the non-
stationary and stationary (by differencing) datasets. Each of the AR, I, and MA components
are included in the model as parameters such as p, d, and q. An Autocorrelation Function
(ACF) plot is used to determine the appropriate values for p and q. The ACF plot with
50 lags is shown in Figure 5.
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The ACF measures the correlation between the time series and its lagged values. The
ACF plot displays the correlation coefficients for different lag values.

• If the ACF plot shows a gradual decline and becomes statistically insignificant after
a few lags, it suggests an AR component. The lag at which the ACF plot crosses the
significance level for the first time indicates the value of p for the AR component.

• If the ACF plot exhibits a significant spike at a specific lag followed by a sharp drop, it
suggests a MA component. The lag at which the spike occurs in the ACF plot indicates
the value of q for the MA component.
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Using ACF, proper values of p and q are found. Then, the model is trained using
a training dataset. If the ARIMA model does not perform satisfactorily, we can refine it
by adjusting the model order. ARIMA models are particularly useful when the histori-
cal patterns of bike demand exhibit autocorrelation (dependence on past observations)
and/or seasonality.

3.3.3. SARIMA

Seasonal Autoregressive Integrated Moving Average (SARIMA) is an extension of
ARIMA that is used for seasonal time series data [27]. SARIMA models can handle data
with seasonal patterns and these parameters help to capture the seasonal fluctuations in
the data. Since the dataset exhibits seasonal patterns, we use this model to forecast the
demand for bikes.

The following are the steps used to develop the prediction model using SARIMA:

1. Analyze the data for any trends, seasonality, or other patterns.
2. Determine the appropriate values for p, d, q (non-seasonal components), P, D, Q, and

S (Seasonal SARIMA components) based on data analysis and ACF plots.
3. Fit the SARIMA model using the training data.
4. Evaluate the model’s performance on the test set using appropriate metrics.
5. Fine-tune the model by adjusting the parameter values or trying different combinations.
6. Make predictions for future periods using the trained model.

By utilizing the SARIMA model, we can capture both the non-seasonal and seasonal
components of the bike demand data, enabling us to make accurate predictions.

3.3.4. LSTM

Long Short-Term Memory (LSTM) is commonly used for time series forecasting [26,27]
and is particularly effective at modeling sequences with long-term dependencies. LSTM
models are designed to overcome the limitations of traditional neural networks in capturing
long-term dependencies in sequential data. Since LSTM can identify recurring patterns in
bike demand, such as daily or weekly trends, and use this information to make accurate
predictions for future time steps, we intend to use LSTM also. Since the demand patterns
can be influenced by multiple factors, such as weather conditions, holidays, seasons, etc.,
LSTM can capture these complex relationships, allowing it to generate more accurate
forecasts compared to traditional linear models. In the proposed bike demand forecasting,
LSTM utilizes historical demand sequences to understand how past patterns and trends
relate to future demand.

3.3.5. GRU

Gated Recurrent Unit (GRU) is similar to LSTM but has fewer parameters [28]. Similar
to LSTM, GRU models are designed to capture long-term dependencies in sequential
data. This is crucial for bike demand forecasting, as it allows the model to understand
and leverage patterns and trends that occur over longer time horizons, such as weekly
or monthly cycles. GRU models can adapt to changing patterns in the dataset. They can
quickly update their internal state based on new information, allowing them to capture
shifts in bike demand patterns due to various factors. This adaptability is beneficial for
forecasting bike demand shortly, where patterns may evolve over time.

From the existing research attempts, we find that most of them focus on short-term
prediction rather than long-term prediction. As BSS aims for sustainable growth, un-
derstanding long-term demand trends is essential to scale the system effectively. Such
predictions help in planning the expansion, relocation, or reduction of stations and re-
sources based on projected demand growth or shifts over time. Further, the proposed
work aims to find the optimal set of fine-grained features for demand prediction. These
features help the models recognize and account for temporal patterns, such as daily and
weekend commuting peaks, and seasonal variations. Figure 6 illustrates the comprehensive
procedure for forecasting shared bike demand. Beginning with the loading of the bike
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dataset, the subsequent steps encompass data pre-processing, followed by the construction
of prediction models and a subsequent comparison of their performance.
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4. Experiments and Results
4.1. Performance Metrics

After training the models, we evaluate the performance of the trained models using
the testing dataset. The choice of performance metrics for time series forecasting depends
on the specific problem and the goals of the analysis. Common evaluation metrics for
regression tasks such as time series prediction include Mean Squared Error (MSE), Root
MSE (RMSE), and Mean Absolute Error (MAE).

MSE: MSE is computed by taking the average of the squared differences between the
predicted values and the actual values. MSE penalizes larger errors more heavily due to the
squaring operation. MSE is less sensitive to outliers than RMSE, making it a better choice
when outliers are present in the data.

MAE: MAE is determined by calculating the average of the absolute squared differ-
ences between the predicted and the actual values. MAE does not penalize larger errors as
heavily as MSE.

RMSE: RMSE on the other hand, is calculated by taking the square root of the mean
of the squared differences between the anticipated and observed values. RMSE is more
sensitive to outliers than MAE, making it a better choice when outliers are not present in
the data. The smaller the MAE, MSE, and RMSE value is, the higher the prediction accuracy
and the stronger the feature expression ability of the model.
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4.2. Experimental Settings and Results
4.2.1. Experimental Settings

The proposed work has been implemented using Python under Google Colab. For
developing the models, packages like statsmodel, sklearn, and keras have been imported
and appropriate functions have been used. The selection of predictor variables that have an
impact on the target variable (the number of bikes rented) was found using the correlation-
based feature selection. The correlation shows which variables, such as temperature, hour,
holiday, humidity, season, wind speed, weekday, and weather, best fit the data and forecast
appreciably. All the prediction models have been trained using the training dataset and
their performance has been tested against the testing dataset. The results of evaluating
the performance of each model using the metrics discussed in Section 4.1 are presented in
this section.

The dataset is split for the experiment in an 80:20 ratio as training and testing datasets,
respectively. First, we ran the RF model over the training dataset with all the input features
and then, the test dataset has been evaluated using the model. The performance of the
model based on RF has been calculated using different hyperparameter settings such as
n_estimators, max_features, max_depth, min_samples_split, etc. Table 1 shows the settings
of hyperparameters for the RF model. We use randomized search to find the optimal values
of hyperparameters which give better results. The optimal values for the hyperparameters
are also presented in Table 1.

Table 1. Search Space for the hyperparameters in the RF model.

Hyperparameters Search Space Optimal Value

n_estimators [400, 500, 700, 800, 1000, 1300, 1600, 1900, 2000] 1600

Max features [‘auto’, ‘sqrt’] auto

Max depth [None, 10 to 110 in steps of 10] 90

Min samples split [2, 4, 5, 8, 10 ] 5

Min samples leaf [1, 2, 4, 8] 1

Bootstrap [True, False] True

For the ARIMA model, the values of p, q, and d play a vital role and are determined
using the auto-correlation function as explained in Section 3.3.2. Similarly, the appropriate
values for p, d, q (non-seasonal components), P, D, Q, and S (Seasonal components) for
the SARIMA model are determined by ACF plots. For LSTM and GRU-based models, the
number of layers, number of neurons per layer, and activation functions are fine-tuned.

4.2.2. Experimental Results

The dataset has 13 input features, and all these attributes may not significantly con-
tribute to finding the number of bikes being rented. So, we perform a rigorous analysis of
these attributes to determine their role in prediction. First, we used all the input features
for training and testing. The prediction performance of all the developed models for the
test dataset is presented in Table 2.

Table 2. Results of the models for all input features.

Metrics RF ARIMA SARIMA LSTM GRU

MSE 5155.89 7258.02 5802.4 3242.16 3188.86

RMSE 71.80 85.19 76.17 56.94 56.47

MAE 44.49 64.09 56.35 35.21 33.76
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Figure 7 depicts the actual and predicted number of bikes rented for the test dataset
using the developed models.
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We initially trained all the models using the training datasets with all input features
and the results are presented above. But, from the correlation function, we understand
that all the input features do not play a significant role in forecasting the bike demands.
Hence, we identified and removed a few sets of attributes using various techniques such as
p-values and correlation-based feature selection methods. And, then we trained the models
and evaluated the models without insignificant features. The results of such training are
presented in Table 3, which also shows the set of attributes used for forecasting.

Table 3. Results of the models with different sets of features selected for testing.

Attributes Selected Models MSE RMSE MAE

month, hour, weekday
(Feature Set 1)

RF 9893.978 99.47 63.948

ARIMA 4371.854 66.12 54.712

SARIMA 5801.870 76.17 56.354

LSTM 3316.49 57.589 35.381

GRU 3120.22 55.859 33.281

month, hour, weekday, year
(Feature Set 2)

RF 6120.259 78.232 44.392

ARIMA 7258.02 63.62 52.493

SARIMA 5802.37 68.52 54.653

LSTM 3582.50 59.854 36.084

GRU 2676.82 51.738 31.875

month, hour, weekday, year, season
(Feature Set 3)

RF 5625.067 75.00 42.367

ARIMA 7258.02 71.19 50.521

SARIMA 5802.37 73.84 56.356

LSTM 3979.34 63.082 38.207

GRU 3646.95 60.39 35.584

month, hour, weekday, year, season,
holiday, working day
(Feature Set 4)

RF 5062.746 71.15 39.926

ARIMA 4162.959 64.521 37.231

SARIMA 3966.984 62.984 35.956

LSTM 3713.07 60.935 36.973

GRU 2641.24 51.393 30.764

month, hour, weekday, year, season,
holiday, working day, weathersit and temp
(Feature Set 5)

RF 3123.477 55.89 30.360

ARIMA 3508.311 59.231 36.621

SARIMA 3493.164 59.103 36.001

LSTM 3381.42 58.15 35.890

GRU 3276.53 57.241 34.500

5. Findings and Discussion

The proposed research work explored the temporal dependencies of travel demands
using regression and time series models. To identify the correlation between the predic-
tor and target features, correlation analysis has been performed. The study focused on
two traditional time-series forecasting models (ARIMA, SARIMA) deep learning methods
(LSTM GRU), and an ensemble method (Random Forest). In this section, we discuss the
performance of the developed models, and interpret and present our findings. We trained
and ran the models using different sets of input features. Initially, we ran using all the
features without considering their correlations to the bike demand and found that GRU
has performed well by giving lower MSE and MAE values. This is shown in Figure 8.
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Then, we ran the models with selected features, and these features have been selected
using a correlation-based selection method. First, we took “mnth”, “hr” and “weekday”
attributes as they stand at the top of the list identified by the feature selection method.
Then, gradually we added attributes to train the models. The results are shown in Table 3.
We also present the same in Figures 9 and 10 for better visualization. From these figures,
we can see that GRU performs comparatively better for feature sets 1, 2, 3, and 4. However,
RF performs better for feature set 5 in terms of MAE. For feature set 4, GRU gives a low
MSE/RMSE value. While analyzing the reasons for such performance, we find that RF
performs better because it is good at handling both numerical (“temp”) and categorical
features (“hr”, “mnth”, “season”, etc.) and can capture complex relationships in the data.
Hence, we understand that RF can be effective for bike demand forecasting, especially when
there are multiple relevant categorical and numerical features available. However„ GRU
also performs equally better for most of the feature sets. Since the gating mechanisms of
GRU enable it to capture long-term dependencies in time series data, which is important for
bike demand forecasting, GRU leads to better prediction. As biking patterns and demands
are influenced by various factors that might have delayed effects, GRU has effectively
modeled these dependencies.
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GRU can also work effectively with numerical features, especially if those features are
relevant and informative for predicting bike demand. Numerical features might include
historical bike demand data, temperature, humidity, or other factors that influence demand
patterns. In many real-world scenarios, a combination of both categorical and numerical
features is used to capture the complexity of bike demand patterns accurately. The GRU
model, being capable of handling both sequential data and additional features, can leverage
this information to improve its forecasting performance. Compared to deep learning and
ensemble models, there is a significant deviation between actual and predicted variables.
Since the ARIMA and SARIMA models are designed to capture linear dependencies in
the time series data and the relationship between the target variable and the predictors is
non-linear, these models may not be able to capture the underlying patterns effectively,
leading to higher prediction MAE and MSE.

In this research, we employed historical bicycle data to conduct long-term forecasting,
and this was achieved by leveraging various sets of features outlined in Table 3. For long-
term prediction, we have taken the instances of the last two months of the datasets as the
testing data and predicted the demand. We have evaluated the performance of the different
time series modeling algorithms and compared them to actual demand and presented in
Table 3. In addition, we have fine-tuned the process of prediction by choosing a different
set of features. These features allow the model to capture variations in demand that occur
at different times of the day and different days of the week. This enables the model to
identify recurring patterns and trends, such as daily commuting patterns, working day
and week-end patterns, and off-peak periods. The inclusion of time-related features adds
granularity to the understanding of demand fluctuations. By identifying relevant features,
the risk of overfitting, the model capturing noise rather than actual patterns, is reduced.
The selected features contribute to a more robust and generalizable model.

Still, there are a few unsettled points in dynamic bike demand prediction that require
further exploration. A few potential limitations in dynamic bike demand prediction include:

i. Special events and occasions can influence bike demand.
ii. Changes in infrastructure, such as new bike lanes or changes in public transportation

routes, can influence bike demand patterns.
iii. Latency in real-time or near-real-time predictions for dynamic bike demand
iv. Unforeseen events, such as road closure for maintenance, natural calamities, public

health crises (like COVID-19), etc., and social-environmental issues, such as equity
and accessibility, can disrupt regular demand patterns.
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These points might involve challenges, uncertainties, or areas where more investi-
gation is needed. In addition, there are some methodological challenges to the proposed
models which are listed below:

i. Data from a single BSS might not be representative of the bike demand patterns of
other locations in the city. It could be biased toward specific user demographics, usage
patterns, or geographic locations.

ii. A BSS in one location may not exhibit the full range of demand patterns that occur
across different lotions of a city.

iii. Bike demand patterns may change over time due to various factors, including chang-
ing user behaviors, weather patterns, and urban developments. The models trained
on historical data might struggle to adapt to these evolving patterns.

To check whether the developed models can address the above challenges, we have
taken another dataset named the London Bike Sharing Dataset [29] which contains the
bike sharing details collected between January 2015 and December 2016. Various temporal
features, such as temperature, season, weather details, wind speed, etc., and predicted bike
demand have been recorded in the dataset and contains 17,000 observations approximately.
The results of the predictions of the proposed models against this dataset are presented in
Table 4.

Table 4. Performance of the models on the London Bike Sharing Dataset.

Metrics RF ARIMA SARIMA LSTM GRU

MSE 5992.64 8413.57 6319.83 4302.41 3965.34

RMSE 77.41 91.72 79.49 65.59 62.97

MAE 52.03 70.92 61.27 39.52 35.22

Without fine-tuning, we executed the developed models against the London Bike
Sharing Dataset. The results indicated that, while the performance was not exceptional, it
was not poor. However, we believe that, through the utilization of diverse datasets and
suitable feature selection techniques, transfer learning methodologies, and the integration
of predictions derived from models trained on various BSS datasets, performance can be
enhanced, and a broader spectrum of demand patterns can be captured. While generalizing
the models, there will always be some level of fine-tuning and continuous evaluation of
models required for each BSS.

6. Conclusions

In this study, we explored and compared five different forecasting models, namely RF,
ARIMA, SARIMA, LSTM, and GRU, for predicting bike demand. Before forecasting, we
performed an exploratory data analysis to find the correlation between the predictor and
target features. Based on the correlation results, we trained and tested the models using
different sets of features and found that GRU performs better for different sets of features
with the least RMSE value of 51.393. Surprisingly, RF performed better when considering
both numerical and categorical features with the least MAE value of 30.36. Through this
study, it is demonstrated that the temporal features are crucial for forecasting the demand
for bike-sharing. In conclusion, the selection of the best forecasting model for bike demand
prediction depends on the specific dataset and the forecasting horizon.

While our research offers insightful information on the effectiveness of various fore-
casting algorithms, for bike demand prediction, there are several avenues for future work
to improve the accuracy and robustness of the predictions. Although this study considers
temporal dependencies, several spatial factors shall also be considered in future work.
Careful selection and engineering of relevant features can enhance the models’ ability
to capture underlying patterns. Further, we intend to develop methods to incorporate
real-time data streams to make more up-to-date and accurate predictions for bike demand.
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