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Abstract: The maritime industry has introduced the concept of “green ports” as a means to achieve
sustainable development by reducing carbon emissions. Within ports, trucks play a crucial role in
transportation operations. However, there is limited comprehensive research on the electric truck
routing problem containing practical constraints such as charging options and charging processes.
This study presents a more realistic routing problem for electric trucks, with a specific focus on
multiple charging options within green ports. To address this challenge, we formulate a mixed-
integer programming model designed to minimize overall operational costs associated with the
transportation of trucks over the planning horizon. In order to solve this problem effectively, we de-
vise an Adaptive Large Neighborhood Search (ALNS) algorithm, embedded with several customized
operators. Through a series of numerical experiments, the effectiveness of the proposed algorithm is
verified. The experimental results provide compelling evidence of the superior performance of the
proposed algorithm compared to the original ALNS algorithm. Furthermore, sensitivity analysis is
conducted, leading to valuable managerial insights.

Keywords: vehicle routing problem; electric terminal truck; battery swapping option; nonlinear
charging; improved adaptive large neighborhood search algorithm

1. Introduction

The pressing challenge of escalating greenhouse gas (GHG) emissions and the im-
perative for sustainable development in the shipping industry call for the construction
of green ports. Global GHG emissions, primarily CO2 (25%), rose from 52.82 billion tons
in 2016 to 54.59 billion in 2021, with an increase of 3.4% [1]. Recognized as the principal
driver of climate change [1], GHG emissions have the potential to lead to extreme weather,
natural disasters, and agricultural production reduction. Consequently, these issues pose
significant threats to human health and social stability, garnering international attention.
In response, the 2015 Paris Agreement required that signatory parties should intensify
their efforts to mitigate climate change, particularly by reducing GHG emissions from
human activities. The shipping industry, responsible for over 80% of the volume of global
trade [2,3], reflects this commitment through the development of the “green port”.

A green port refers to a sustainable port that minimizes environmental pollution,
exhibits high energy efficiency, incorporates scientific layout, and demonstrates promising
development potential. In particular, the application of green technology and infrastructure
constitutes a constructive response to environmental changes for sustainable development,
providing competitive advantages. Several seaports, including Shanghai Port and Rotter-
dam Port, have implemented fully electrified equipment to exemplify this concept. Upon
further examining the source composition of port emissions, it is found that transportation
operations in port areas significantly contribute to emissions. According to the investigation
conducted by Goodchild and Mohan [4], heavy-duty vehicles, including trucks, are the

Sustainability 2023, 15, 13752. https://doi.org/10.3390/su151813752 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151813752
https://doi.org/10.3390/su151813752
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su151813752
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151813752?type=check_update&version=1


Sustainability 2023, 15, 13752 2 of 29

second largest source of pollution after ships. To address this challenge, various methods
have emerged, including the adoption of electric truck (ET) [5], the reduction of truck idling
and queuing time [6], and the implementation of a mandatory clean truck program [7].
Notably, advancements in technology have made electric trucks an increasingly viable
solution and a breakthrough to reduce port emissions.

ETs offer many advantages, such as low carbon output, greater energy efficiency, and
low operation noise [8]. However, the deployment of ETs is hindered by the limited driving
range, which necessitates frequent recharging. Traditional ETs primarily rely on plug-in
charging modes, either time-consuming normal charging or fast charging that accelerates
battery degradation. In recent years, battery swapping technology has been integrated into
ETs, enabling the direct replacement of batteries. This approach provides convenient and
time-efficient charging while minimizing negative grid impact from the mass charging of
vehicles. Nevertheless, battery swapping incurs higher costs compared to plug-in charging
due to the complex and expensive construction of battery exchange facilities. Therefore,
optimizing both the operational routes of ETs and their charging decisions becomes crucial
to reduce operational costs.

The existing literature has scarcely considered comprehensive energy replenishment
methods, with limited focus on the application of ETs. In this study, we investigate a
scenario in which all the stations are capable of providing battery swapping and plug-in
recharging. The plug-in method offers both normal and fast charging options, following
a nonlinear charging function. Additionally, ETs can be partially recharged based on
their specific requirements. To address this problem comprehensively, we propose a
mixed-integer programming model that considers the aforementioned factors, building
upon the Electric Vehicle Routing Problem (EVRP) model introduced by Mao et al. [9].
Furthermore, due to the complexity of the model, an Adaptive Large Neighborhood
Search (ALNS) algorithm is proposed by integrating various destroy and repair operators.
Finally, we conduct computational experiments using a set of instances derived from
Montoya et al. [10], and the results confirm the efficiency of the enhanced ALNS algorithm.

The main contributions of the paper can be summarized as follows:

- This paper extends EVRP to combine multiple realistic charging options and present a
formal mathematical formulation.

- As a solution methodology, this paper develops an ALNS embedded with efficient
operators tailored to the characteristics of the problem.

- This paper devises a series of comprehensive experiments to validate the performance
of the proposed algorithm and demonstrate the benefits of flexible charging options
and partial recharging policies.

The remainder of this paper is organized as follows. Section 2 reviews the relevant
literature. The problem and the mathematical model are described in Section 3. Section 4
presents the proposed ALNS algorithm and Section 5 provides the numerical results
of extensive computational experiments. Finally, the paper closes with conclusions in
Section 6.

2. Related Literature

With rapid advancement in battery technology and an increasing emphasis on emis-
sion reduction targets, ETs have garnered significant interest. Routing and scheduling for
ETs constitutes a variant of the thoroughly researched Electric Vehicle Routing Problem
(EVRP). Previous studies on EVRP variants are summarized in Table 1, in which the results’
quality represents the solution discrepancy between the proposed algorithm and commer-
cial solver for small-scale instances (10–20 nodes). In this section, we provide a concise
overview of EVRP variants that are relevant to our work.

The Electric Vehicle Routing Problem (EVRP) encompasses various extensions, in-
cluding the EVRP with Time Windows (EVRP-TW). Time windows in this context can be
classified into two categories: hard and soft [11]. In hard time windows, vehicles can arrive
before the time window opens and wait but are prohibited from arriving [12] after it closes.
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However, hard time windows may lead to infeasible solutions if it is impossible to reach all
customers within their designated time windows using the available vehicles. Conversely,
soft time windows allow vehicles to arrive earlier than their lower bound or later than their
upper bound but come with certain penalties [13]. Providing more flexibility than their
hard counterparts, soft time windows increase complexity by requiring the balance of cost
optimization and penalty minimization.

Furthermore, modeling the recharging process is a critical consideration. Charging
strategies can be categorized into full or partial charging. Full charging strategies mandate
that the battery be completely recharged each time an Electric Vehicle (EV) enters a Charging
Station (CS). Some studies have considered full charging policies with a linear charging
function approximation. For instance, Küçükoğlu et al. [14] proposed an EVRP-TW variant
considering mixed charging rates at stations and designed a hybrid algorithm based on
Simulated Annealing and Tabu Search. In this model, only a full charging policy was
taken into account. Zhao et al. [15] mandated each vehicle to visit a charging station before
depleting its power, charging to full battery level in a predefined charging time. They solved
this problem using a heuristic approach based on the ALNS and Integer Programming (IP).
Kancharla and Ramadurai [16] incorporated the vehicle load for power estimation and
defined recharging time as a complete recharge with a linear charging function. To solve
the problem, they employed ALNS. In these studies, the time spent at each CS depends
on the battery level upon the EV’s arrival and the constant charging rate of the CS. Other
studies, such as Masmoudi et al. [17], Zhou and Tan [18], Li et al. [8], and Jie et al. [19],
assumed a constant charging time using full charging strategies within battery swapping
mode. In such cases, the CSs only replace a depleted battery with a fully charged one.

In the partial charging policy, both the charging level and charging time at each CS
are considered as decision variables. Lam et al. [20] argued that fully charging the battery
causes the vehicle to discharge and charge through the slowest part at a higher charging
state, making the problem easier to solve by delaying the vehicle. They believed that slow
charging yields a smaller search space because the time constraint is more likely to be
violated. However, the feasibility of partial charging has been verified in many studies.
Cataldo-Díaz et al. [21] demonstrated the benefits of partial charging in terms of reducing
the total time spent on distribution routes and improving energy utilization efficiency.
Felipe et al. [22] introduced fast charging, slow charging, and partial charging strategies
to the EVRP for the first time. They focused on decisions regarding charging methods
and volumes in addition to determining electric vehicle routes. Park et al. [23] adopted
partial charging in an EVRP with heterogeneous vehicles, and developed a mathematical
formulation to minimize the total distance traveled by the vehicles. Jiang et al. [24]
considered partial charging for a multi-depot e-bus scheduling problem with vehicle
relocation constraints. They enhanced a Large Neighborhood Search (LNS) heuristic with
novel destroy-and-repair operators to tackle the problem. More recently, partial recharging
was integrated into an EVRP with time windows, simultaneous pickup, and deliveries
solved by a new self-adaptive variant of the matheuristic “Construct, Merge, Solve &
Adapt” [25]. The above studies investigated the EVRPs with different charging modes.

Recent research has further extended the EVRP by introducing multiple charging
options. Verma [26] first allowed the available stations to serve as both charging stations
and battery swapping stations, and improved genetic algorithms to produce high-quality
solutions. Mao et al. [9] studied the EVRP with time windows and multiple charging
options, including fast charging and battery swapping. The authors proposed an improved
ant colony optimization algorithm with a probability selection model that combines both
distance and time window factors. Amiri et al. [27] extended charging technologies
to include one-stage, two-stage, and three-stage chargers as well as battery swapping.
These studies introduced more complex decision-making scenarios by considering various
charging technologies and charging policies with linear charging functions.

Typically, the charging functions are nonlinear, as the charging rate varies over time.
Montoya et al. [10] were the first to highlight the significance of the nonlinear charging
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process. They defined the problem as EVRP with a nonlinear charging function (EVRP-NL)
and introduced a metaheuristic to optimize the charging decisions along fixed routes.
Froger et al. [28] presented new formulations by providing two CSs, replication-based
models and one path-based model without CS copies, for the EVRP-NL. Similar to Montoya
et al. [10], they also investigated the optimal charging decisions for a given route using a
heuristic and an exact labeling algorithm. Lee [29] was the first to design the global optimal
algorithm for EVRP with the exact nonlinear charging time function, developing the
branch-and-price method on the extended charging station network to solve the problem.
Furthermore, Karakatič [30] extended EVRP-NL to multi-depot EVRP with time window
constraints and nonlinear battery charging, solving it with a Two-Layer Genetic Algorithm.

To summarize, existing studies have shown the effectiveness of both partial recharging
and battery swapping strategies. However, research on EVRP with multiple charging
options remains limited. Multiple charging options are particularly advantageous as
they enable visits to more customers with time windows, resulting in a reduction in
recharging time and improved efficiency. Furthermore, it is noteworthy that the EVRP with
nonlinear charging functions has not been widely researched. The incorporation of such
charging functions complicates the problem in both terms of modeling and problem solving.
Consequently, this study distinguishes itself from the existing literature by integrating the
EVRP with multiple charging options and nonlinear charging functions.

Table 1. Summary of the previous studies on the EVRP and relevant variants.

Paper Charging
Battery
Swap-
ping

Nonlinear
Charging

Partial
Charging

Multiple
Charging

Rates

Time
Window

Solution
Method

Results
Quality 1

Felipe et al. (2014) [22] X X X Heuristic -
Keskin and Catay (2016) [31] X X X Heuristic 0.15

Montoya et al. (2017) [10] X X X X X Heuristic −1.09

Froger et al. (2018) [28] X X X X X
Heuristic
and Exact *

Masmoudi et al. (2018) [17] X X Heuristic −0.06

Keskin and Catay (2018) [32] X X X X
Heuristic

and
CPLEX

*

Zhou and Tan (2018) [18] X
Heuristic
and Exact −0.11

Verma (2018) [26] X X X Heuristic 0.06
Kancharla and Ramadurai (2018) [16] X X Heuristic -

Zhao et al. (2019) [15] X X Heuristic *
Küçükoğlu et al. (2019) [14] X X X Heuristic 2.94

Keskin et al. (2019) [33] X X X
Heuristic
& Exact 1.1

Jie et al. (2019) [19] X Heuristic 1.12
Li et al. (2020) [8] X Heuristic -

Mao et al. (2020) [9] X X X X Heuristic 1.94
Park et al. (2020) [23] X X X X CPLEX -

Lee (2021) [29] X X Exact *
Karakatič (2021) [30] X X X X Heuristic -

Sayarshad and Mahmoodian (2021) [34] X X X Exact -
Lam et al. (2022) [20] X X X Exact *

Cataldo-Díaz et al. (2022) [21] X X X X Gurobi *
Jiang et al. (2022) [24] X X X Heuristic 0.12

Akbay et al. (2023) [25] X X X Heuristic *
Amiri et al. (2023) [27] X X X X X Heuristic -

This study X X X X X X Heuristic 0.61

1 Results quality: [*] the algorithm can reach optimum solutions; [Value] the performance gap between the
commercial solver and the algorithm. The positive value indicates better algorithm performance (the algorithm
cannot reach optimum solutions); [-] the article does not show relevant values.
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3. Problem Description and Model Formulation
3.1. Problem Description

In this study, a planning problem related to horizontal transportation within a port
consisting of multiple container terminals is considered. As depicted in Figure 1, a fleet
of Electric Trucks (ETs) is tasked with the collection and distribution of bulk goods across
the terminals during the planning horizon [0, Tmax]. The ETs depart from the depot with
a fully charged battery and return after visiting their designated customers. Due to the
limited battery capacity, the ETs have a restricted driving range, necessitating charging
activities when they lack sufficient energy to complete their routes. In accordance with the
current technology, these ETs are equipped with swappable batteries that can be recharged
or replaced when depleted. Three recharging options are available for the ETs at each
station: normal recharging, fast recharging, and battery swapping. Normal recharging and
fast recharging involve replenishing the battery to ensure that the ET can continue serving
subsequent customers. While normal recharging offers cost efficiency due to lower unit
costs, it extends the station visit duration due to a slower recharging rate. The third option
is battery swapping, which is characterized by a significantly shorter operational time
compared to the route’s travel time. Irrespective of the current battery charge level, a fully
charged battery replaces the existing one. Consequently, this alternative incurs higher costs
than typical recharging methods due to its substantial electrical infrastructure requirements
and more expensive equipment.

Figure 1. The ET work scene and container flows.

Let I and 0 denote the set of customers and the depot, respectively. Given that
each recharging station allows multiple visits and can function, we define E as the set
comprising all Charging Stations (CSs) and Battery Swapping Stations (BSSs), and their
duplicates. Then, the problem can be represented by a complete graph G = (V, A), where
V = I ∪ E ∪ {0} and A = {(i, j)|i, j ∈ V}. Each customer i ∈ I is associated with a demand
qi, a service time si, and a predetermined soft time window [wi, wi). Specifically, an ET
must wait if it arrives at a customer point before the specified early arrival time wi or incur
a delay penalty cost if it arrives later than the preferred latest arrival time wi. In addition,
when the ET traverses any arc (i, j) ∈ A, it incurs a travel time tij as well as an energy cost
eij due to battery discharging. The mathematical notation is given in Table 2.

Table 2. Mathematical notations.

Sets

A Set of arc (i, j), i, j ∈ V
Ec Set of recharging stations
Es Set of battery swapping stations
E Set of recharging and battery swapping stations (Ec ∪ Es)
I Set of customers
V Set of nodes (I ∪ E ∪ {0})
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Table 2. Cont.

Parameters

ak,m
i Charging time for each breakpoint k, based on nonlinear charging function, k ∈ K,

i ∈ Ec, m ∈ M
bk,m

i Charge level for each breakpoint k, based on nonlinear charging function, k ∈ K,
i ∈ Ec, m ∈ M

C Cargo capacity of a vehicle
ei,j Energy cost from node i to node j
qi Demand of customer i, i ∈ I
Qe Battery capacity of a vehicle, Qe � maxi∈I,j∈E,j′∈E∪{0}{ej,i + ei,j′ }
rs Battery swapping time
si Time required to serve customer i, i ∈ I
ti,j Travel time from node i to node j
uv Per unit fixed vehicle cost
ub Per unit energy cost
ud Per delay arrival penalty cost
uo Per unit cost of a vehicle occupying a charging station
um

c Per unit cost of charging using mode m, m ∈ M
us Cost per battery swap
v Constant traveling speed of the vehicles
[wi , wi) Soft time window of customer i, i ∈ I

Variables

β
i,j

/ βi,j the charge level when the ET arrives at and departs from j ∈ Ec, respectively, xi,j = 1

ci,j / ci,j the time required to replenish the charge level from 0 to β
i,j

/ βi,j, respectively

∆i,j the time spent at j ∈ E, xi,j = 1
ηi delay arrival time at customer i
γi,j the charge level when a vehicle departs from node i, (i, j) ∈ A, xi,j = 1
li,j remaining cargo when a vehicle departs from node i, (i, j) ∈ A, xi,j = 1
τi,j the time when a vehicle departs from node i, (i, j) ∈ A, xi,j = 1
xi,j 1 if the vehicle traverses arc(i,j), 0 otherwise
ym,k

i,j
/ ym,k

i,j 1 if the charge level is between ak−1,m
i and ak,m

i , when the ET arrives at and departs

from j ∈ Ec, respectively, 0 otherwise, xi,j = 1
zi,i′ 1 if an ET starts from customer i, and serves customer i

′
after passing through a

station, otherwise 0
εm,k

i,j / εm,k
i,j coefficients of the breakpoint k ∈ Km in the piecewise linear approximation when the

ET arrives at and departs from j ∈ Ec respectively, xi,j = 1
ρc

i,j charging costs of a vehicle at node j ∈ Ec, xi,j = 1

3.2. Assumptions

To formulate the mathematical model for the problem, we establish the following
fundamental assumptions:

• A fixed number of homogeneous Electric Trucks (ETs), initially fully charged, are
available at the central depot.

• The central depot and the charging stations operate continuously, allowing ETs to
return to the depot at any time.

• ETs depart from the depot and eventually return to the depot.
• Each customer is visited exactly once by an ET, while multiple ETs can visit each CS

or BS.
• ETs travel at a constant speed, and their batteries discharge at a linear rate solely in

relation to the distance traversed.

3.3. Problem Formulation
Nonlinear Charging Function

Before presenting the mathematical model, it is essential to elaborate on the nonlinear
charging function. Let m ∈ M denote the charging options, where M = {0, 1, 2} represents
normal charging, fast charging, and battery swapping, respectively. The nonlinear charging
function proposed by Montoya et al. [10] is adopted in this study. For each CS as i ∈ Ec,
a corresponding piecewise linear approximation charging function Fm

i (t) is defined, as
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shown in Figure 2. Fm
i (t) consists of four sets of coordinate points {(ak,m

i , bk,m
i )}, indicating

the time ak,m
i required for the ET to replenish its charge from 0 to bk,m

i . The input parameters
Fm

i (t) are the remaining charge β
i,j

when the ET arrives at the CS and the remaining

charge βi,j when it leaves the CS. Then the time ∆i,j consumed by the ET at the CS can be

expressed as Fm−1

i (βi,j)− Fm−1

i (β
i,j
). To construct a mixed-integer programming model,

this paper introduces binary decision variables ym,k
i,j

and ym,k
i,j to track the charging status

of ETs. Specifically, ym,k
i,j

=1 if the ET arrives at the CS with a charge between bk−1,m
i and

bk,m
i , while ym,k

i,j =1 if the ET leaves the CS with a charge in the range of bk−1,m
i and bk,m

i . In

addition, continuous decision variables εm,k
i,j and εm,k

i,j are introduced to represent (ci,j, β
i,j
)

and (ci,j, β
i,j
) as linear combinations of {(ak,m

i , bk,m
i )}, respectively.

Figure 2. Piecewise linear approximation function.

Figure 3 depicts an example of an EVRP considering a nonlinear partial charging
and swapping strategy. The example involves ten customer nodes and three CS or BSS
nodes. The values [γi,j, τi,j, li,j] on the nodes indicate the remaining charge, current time,
and remaining cargo when the ET leaves from that node, respectively. The values (ei,j, ti,j)
on the arcs indicate the energy and time consumed by the ET while traversing the arcs.
Upon arriving at customer node C3, the ET is required to wait until the specified time
window is open before unloading due to time constraints. Therefore, the departure time
from this node is calculated based on the earliest start time of service plus the service time,
as opposed to the arrival time plus the service time. When the ET’s battery is running low,
it has the option to recharge at a nearby CS (C3 → CS1 → C7, C1 → CS2 → C6) or to visit a
BSS (C2 → BSS1 → C0) for battery replacement. CSs offer two modes of charging, normal
and fast, each with its own piecewise linear approximate charging function. In the provided
example, the ET arrives at CS1 with a remaining charge of β

i,j
= 38.8 and replenishes the

charge to βi,j = 69.0 to meet operational requirements. The function indicates that the

corresponding charging times for β
i,j

and βi,j are ci,j = 19.4 and ci,j = 36.9, respectively.

Therefore, the total time spent at CS1 will be ∆1 = 36.9 − 19.4 = 17.5.
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Figure 3. An example of electric truck driving path.

3.4. Mathematical Model
3.4.1. Objective Function

Satisfying the demand of all customers, the objective of our model is to minimize
the total costs including fixed costs, energy costs, delay penalty costs, charging costs, and
battery swapping costs.

• Fixed Costs: the fixed cost required to dispatch an ET including the total costs of
truck purchase, truck maintenance, employee salaries, opportunity costs, and other
expenses allocated to the unit truck. Let x0,i = 1, representing the trucks driving
from the depot to customer i, and ∑

(0,i)∈A
x0,i, indicating the total number of vehicles

departing from the depot. With a per unit fixed vehicle cost uv, the total fixed costs of
dispatched ETs are then

TC1 = uv ∑
(0,i)∈A

x0,i (1)

• Energy Costs: the costs of energy consumed by ETs while driving. Let ei,j represent
the energy costs by vehicles from node i to node j, which is linearly related to driving
distance. With per unit energy cost ub, the total energy costs generated by driving can
be expressed as

TC2 = ub ∑
(i,j)∈A

ei,jxi,j (2)

• Delay Penalty Costs: the penalty costs paid by ETs for exceeding the latest service
time specified by customers during the process of unloading. A specific expression
being provided in constraint (21), ηi represents delay arrival time at customer i. With
per unit delay penalty cost ud, the total delay penalty costs generated on the serving
route are then

TC3 = ud ∑
i∈I

ηi (3)

• Charging Costs: the costs of ETs replenishing energy at CSs on account of insufficient
charge level. With a specific expression in constraint (35), ρc

i,j represents the cost of
a vehicle traversing arc(i, j) ∈ A and recharging at CS j ∈ Ec, comprising two parts,
that is, CS occupancy cost and basic electricity fee. The total charging costs during
driving are formulated as

TC4 = ∑
j∈Ec

∑
(i,j)∈A

ρc
i,j (4)
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• Battery Swapping Costs: the costs of ETs replacing the battery at BSS due to insufficient
charge level. Unlike CSs, ETs replace fully charged batteries at the BSS, without having
to pay for electricity based on the amount of charge. With per battery swap cost us,
the total battery swapping costs generated by driving are then

TC5 = us ∑
j∈Es

∑
(i,j)∈A

xi,j (5)

• Overall, the objective function of this model can be formulated as

Minimize uv ∑
(0,i)∈A

x0,i + ub ∑
(i,j)∈A

ei,jxi,j + ud ∑
i∈I

ηi + ∑
j∈Ec

∑
(i,j)∈A

ρc
i,j + us ∑

j∈Es
∑

(i,j)∈A
xi,j (6)

3.4.2. Constraints

Based on the notation definitions and model assumptions mentioned above, this
section classifies and models the real constraints involved in the problem, mainly including
basic constraints, load capacity constraints, time constraints, battery capacity constraints,
charging or swapping constraints, as well as valid inequalities and decision variables.

• Basic Constraints and Core Decisions
Constraints (7)–(14) are typical constraints on the path conditions of the EVRP prob-
lem [22]. Specifically, constraint (7) ensures that each customer is visited by a truck
exactly once. Constraint (8) guarantees the flow conservation between nodes. Con-
straints (9) and (10) ensure that the last and next nodes of a customer node be a
depot, charging station, battery swapping station, or other customer, respectively.
Constraints (11) and (12) connect decision variables xi,j, xj, i, and Zi,i′ (i.e., the next

node of customer i and the last node of customer i
′

must belong to CSs or BSSs when
zi,i′ is equal to 1). Constraint (13) represents that xi,j and xj,i′ must be equal to 1 when
zi,i′ is equal to 1 (i.e., the ET departs from customer i and continues to serve customer j
after replenishing the battery at a CS or BSS). The consistency of the accessed CS or
BSS is ensured by constraint (14).

∑
(i,j)∈A

xi,j = 1 ∀i ∈ I (7)

∑
(j,i)∈A

xj,i − ∑
(i,j)∈A

xi,j = 0 ∀i ∈ V (8)

x0,i′ ∑
i∈I,i 6=i′

zi,i′ + ∑
i∈I,i 6=i′

xi,i′ = 1 ∀i
′ ∈ I (9)

xi,0 ∑
i′∈I,i′ 6=i

zi,i′ + ∑
i′∈I,i′ 6=i

xi,i′ = 1 ∀i ∈ I (10)

∑
(i,j)∈A,j∈E

xi,j = ∑
i′∈I,i′ 6=i

zi,i′ ∀i ∈ I (11)

∑
(j,i′ )∈A,j∈E

xj,i′ = ∑
i∈I,i 6=i′

zi,i′ ∀i
′ ∈ I (12)

∑
(i,j)∈A,j∈E

xi,j + ∑
(j,i′ )∈A,j∈E

xj,i′ ≥ 2zi,i′ ∀i, i
′ ∈ I, i 6= i

′
(13)

| V | (zi,i′ − 1) ≤ ∑
(i,j)∈A,j∈E

jxi,j − ∑
(j,i′ )∈A,j∈E

jxj,i′ ≤| V | (1− zi,i′ ) ∀i, i
′ ∈ I, i 6= i

′
(14)
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• Load Capacity Constraints
Constraint (15) is about the load capacity constraint for ETs [35]. Constraint (16)
indicates that the remaining cargo capacity of ETs at each customer node should be
able to meet the demand. Constraints (17) and (18) ensure that the remaining cargo
capacity of an ET does not change when passing through a CS or BSS (i.e., CS or BSS
have no demand for goods).

0 ≤ li,j ≤ Cxi,j ∀(i, j) ∈ A, i ∈ V (15)

0 ≤ ∑
(i,j)∈A

li,j = ∑
(j,i)∈A

(lj,i − qixj,i) ∀i ∈ I (16)

∑
(i,j)∈A,j∈E

li,j ≥ ∑
(j,i′ )∈A,j∈E

lj,i′ − C(1− zi,i′ ) ∀i, i
′ ∈ I, i 6= i

′
(17)

∑
(i,j)∈A,j∈E

li,j ≤ ∑
(j,i′ )∈A,j∈E

lj,i′ + C(1− zi,i′ ) ∀i, i
′ ∈ I, i 6= i

′
(18)

• Time Constraints
Constraint (19) links decision variables xi,j with τi,j. Constraint (20) restricts the time
at which ETs leave each customer node under the condition of time windows and
service time. The delay arrival time of each customer node is defined by constraint (21).
Constraints (22) and (23) express the time spent at CSs and BSSs, respectively.
Constraint (24) tracks the time at which ETs depart from each customer node. Also,
constraints (25) and (26) track the time at which ETs depart from each CS or BSS.

τ ≤ Tmaxxi,j ∀(i, j) ∈ A, i ∈ I ∪ E (19)

wi + si ≤ ∑
(i,j)∈A

τi,j ∀i ∈ I (20)

ηi ≥ ∑
(i,j)∈A

τi,j − si − wi ∀i ∈ I (21)

∆i,j = ci,j − ci,j ∀(i, j) ∈ A, j ∈ Ec (22)

∆i,j = rsxi,j ∀(i, j) ∈ A, j ∈ Es (23)

∑
(j,i)∈A

(τj,i + (tj,i + si)xj,i) ≤ ∑
(i,j)∈A

τi,j ∀i ∈ I (24)

∑
(i,j)∈A,j∈E

(τi,j + ti,jxi,j + ∆i,j ≥ ∑
(j,i′ )∈A,j∈E

τj,i′ − Tmax(1− zi,i′ ) ∀i, i
′ ∈ I, i 6= i

′
(25)

∑
(i,j)∈A,j∈E

(τi,j + ti,jxi,j + ∆i,j ≤ ∑
(j,i′ )∈A,j∈E

τj,i′ + Tmax(1− zi,i′ ) ∀i, i
′ ∈ I, i 6= i

′
(26)

• Battery Capacity Constraints
Constraints (27) and (28) link decision variables xi,j and γi,j. Specifically, the range
of charge level for ETs departing from customer and station nodes is provided by
constraint (27), and constraint (28) ensures that ETs depart from the depot and BSSs
with full batteries. Constraints (29) and (30) track the charge level when an ET departs
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from each customer node and arrives at charging station j. Constraints (31) and (32)
track the charge level when an ET departs from a CS to serve the next customer node.
Constraint (33) represents that if an ET accesses a CS or BSS, it must replenish more
electricity than it consumes while driving, that is, avoiding invalid access.

ei,jxi,j ≤ γi,j ≤ Qexi,j ∀(i, j) ∈ A, i ∈ I ∪ Ec (27)

γi,j = Qexi,j ∀(i, j) ∈ A, i ∈ Es ∪ {0} (28)

∑
(i,j)∈A

γi,j − ∑
(i,j)∈A

ei,jxi,j = ∑
(j,j′ )∈A

γj,j′ ∀j ∈ I (29)

∑
(i,j)∈A,j∈Ec

γi,j − ∑
(i,j,j∈Ec)∈A

ei,jxi,j = ∑
(i,j)∈A,j∈Ec

β
i,j
∀i ∈ I (30)

∑
(j,i′ )∈A,j∈Ec

γj,i′ ≤ ∑
(i,j)∈A,j∈Ec

βi,j + Qe(1− zi,i′ ) ∀i, i
′ ∈ I, i 6= i

′
(31)

∑
(j,i′ )∈A,j∈Ec

γj,i′ ≥ ∑
(i,j)∈A,j∈Ec

βi,j −Qe(1− zi,i′ ) ∀i, i
′ ∈ I, i 6= i

′
(32)

∑
(i,j)∈A,j∈Ec

(βi,j − β
i,j
) + Qe ∑

(i,j)∈A,j∈Es
xi,j ≥ ∑

(i,j)∈A,j∈Ec
xi,jei,j

+ ∑
(j,i′ )∈A,j∈E

xj,i′ ej,i′ − (1− xi,i′ )ei,i′ + 2Qe(zi,i′ − 1) ∀i, i
′ ∈ I, i 6= i

′ (33)

• Charging and Swapping Constraints
Constraint (34) indicates that the ET arrives at the CS with a battery level no higher than
that at the time of departure. Constraint (35) defines the charging costs, which include
both the time cost of occupying the CS and the basic electricity cost for charging. Based
on the piecewise linear approximation charging function, constraints (36)–(43) define
the charge level and the corresponding time for an ET to arrive at a CS, and represent
(ci,j, β

i,j
) as a convex combination of (am,k

j , bm,k
j ) by introducing a charging coefficient

εm,k
i,j . Similarly, constraints (44)–(51) define the battery level and the corresponding

time for an ET to depart from a CS, and represent (ci,j, βi,j) as a convex combination of

(am,k
j , bm,k

j ) by introducing a charging coefficient εm,k
i,j . Constraint (52) ensures charging

consistency when entering and leaving CSs for ETs.

β
i,j
≤ βi,j ∀(i, j) ∈ A, j ∈ Ec (34)

ρc
i,j = uo∆i,j + ∑

m∈M
∑

k∈Km

(εm,k
i,j − εm,k

i,j )bm,k
j um

c ∀(i, j) ∈ A, j ∈ Ec (35)

β
i,j
= ∑

m∈M
∑

k∈Km

εm,k
i,j bm,k

j ∀(i, j) ∈ A, j ∈ Ec (36)

ci,j = ∑
m∈M

∑
k∈Km

εm,k
i,j am,k

j ∀(i, j) ∈ A, j ∈ Ec (37)

∑
m∈M

∑
k∈Km

εm,k
i,j = xi,j ∀(i, j) ∈ A, j ∈ Ec (38)

∑
m∈M

∑
k∈Km\{0}

ym,k
i,j

= xi,j ∀(i, j) ∈ A, j ∈ Ec (39)
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∑
k∈Km\{0}

ym,k
i,j
≤ xi,j ∀(i, j) ∈ A, j ∈ Ec, m ∈ M (40)

εm,0
i,j ≤ ym,1

i,j
∀(i, j) ∈ A, j ∈ Ec, m ∈ M (41)

εm,k
i,j ≤ ym,k

i,j
+ ym,k+1

i,j
∀(i, j) ∈ A, j ∈ Ec, m ∈ M, k ∈ Km\{0, | Km |} (42)

ε
m,|Km |
i,j ≤ ym,|Km |

i,j
∀(i, j) ∈ A, j ∈ Ec, m ∈ M (43)

βi,j = ∑
m∈M

∑
k∈Km

εm,k
i,j bm,k

j ∀(i, j) ∈ A, j ∈ Ec (44)

ci,j = ∑
m∈M

∑
k∈Km

εm,k
i,j am,k

j ∀(i, j) ∈ A, j ∈ Ec (45)

∑
m∈M

∑
k∈Km

εm,k
i,j = xi,j ∀(i, j) ∈ A, j ∈ Ec (46)

∑
m∈M

∑
k∈Km\{0}

ym,k
i,j = xi,j ∀(i, j) ∈ A, j ∈ Ec (47)

∑
k∈Km\{0}

ym,k
i,j ≤ xi,j ∀(i, j) ∈ A, j ∈ Ec, m ∈ M (48)

εm,0
i,j ≤ ym,1

i,j ∀(i, j) ∈ A, j ∈ Ec, m ∈ M (49)

εm,k
i,j ≤ ym,k

i,j + ym,k+1
i,j ∀(i, j) ∈ A, j ∈ Ec, m ∈ M, k ∈ Km\{0, | Km |} (50)

ε
m,|Km |
i,j ≤ ym,|Km |

i,j ∀(i, j) ∈ A, j ∈ Ec, m ∈ M (51)

∑
k∈Km\{0}

ym,k
i,j ≥ ∑

k∈Km\{0}
ym,k

i,j
∀(i, j) ∈ A, j ∈ Ec, m ∈ M (52)

• Valid Inequalities and Decision Variables
Constraint (53) ensures that the ET has enough electricity power to complete the
service and return to the depot. Constraint (54) defines the minimum remaining
power for an ET to depart from each customer node. Specifically, when zi,i′ is equal

to 1, the remaining power to reach customer node i
′

must not be less than that at
customer node i plus the power replenished at a CS or BSS minus the power consumed
en route. Constraints (55)–(61) define the range of decision variables.

∑
i∈V

∑
(i,j)∈A

xi,jei,j ≤ Qe( ∑
(0,i)∈A

x0,i + ∑
i∈I

∑
(i,j)∈A,j∈Es

xi,j) + ∑
i∈I

∑
(i,j)∈A,j∈Ec

(βi,j − β
i,j
) (53)

∑
(i,j)∈A

γi,j − ∑
(i′ ,j)∈A

γi′ ,j + ∑
j∈Ec

(βi,j − β
i,j
) + Qe ∑

j∈Es
xi,j ≥ xi,i′ ei,i′

+ ∑
(i,j)∈A,j∈E

xi,jei,j + ∑
(j,i′ )∈A,j∈E

xj,i′ ej,i′ + 3Qe(zi,i′ − 1) ∀i, i
′ ∈ I, i 6= i

′ (54)

xi,j ∈ {0, 1}, τi,j ≥ 0, γi,j ≥ 0, li,j ≥ 0 ∀(i, j) ∈ A (55)

ym,k
i,j
∈ {0, 1}, ym,k

i,j ∈ {0, 1} ∀(i, j) ∈ A, j ∈ Ec, m ∈ M, k ∈ Km\{0} (56)
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εm,k
i,j ≥ 0, εm,k

i,j ≥ 0 ∀(i, j) ∈ A, j ∈ Ec, m ∈ M, k ∈ Km (57)

β
i,j
≥ 0, βi,j ≥ 0, ci,j ≥, ci,j ≥ 0 ∀(i, j) ∈ A, j ∈ Ec (58)

∆i,j ≥ 0 ∀(i, j) ∈ A, j ∈ E (59)

ηi ≥ 0 ∀i ∈ I (60)

zi,i′ ∈ {0, 1} ∀i, i
′ ∈ I, i 6= i

′
(61)

4. Solution Heuristic

In a recent study by Qin et al. (2021) [36], the authors identified the limitations of exact
methods for solving EVRPs, and demonstrated that the ALNS algorithm outperformed
other existing heuristics in the literature. Motivated by these findings, an ALNS algorithm
was developed to solve our problem. Given the presence of multiple charging options
and nonlinear charging functions, tailored destroy-and-repair operators are designed. For
comparison, this paper also implemented the ALNS for solving an EVRP as introduced by
Keskin et al. [33], denoted by Pre-ALNS.

The ALNS algorithm uses multiple removal and insertion operators and dynamically
selects the operator to execute in each iteration by roulette selection operation [37]. The se-
lection depends on the historical operator performance, i.e., operators with better historical
performance have a higher probability of being selected. The weight of an operator in the
nth iteration is calculated as follows:

wn
a = (1− ρ)wn−1

a + ρ
πn−1

a

θn−1
a

, (62)

where ρ ∈ [0, 1] represents the speed of weight adjustment based on the operator’s perfor-
mance, and θn−1

a and πn−1
a indicate the number of uses of the operator a and its score in the

n−1th cycle, respectively. The probability of selecting each operator in iteration cycle n is
given by

Pn
a =

wn
a

m
∑

l=1
wn

l

. (63)

Note that the proposed ALNS algorithm consists of four different sets of operators:
customer removal, station removal, customer insertion, and station insertion. Each operator
set’s adaptive weights and selection probabilities are calculated independently, alongside
differing iteration cycles for customer and station nodes. Additionally, a probabilistic
jumping technique is utilized, derived from the simulated annealing algorithm, to randomly
search for the global optimal solution within the solution space. The adaptive weights
and selection probabilities of each operator set are calculated separately, and the iteration
cycles for customer nodes and station nodes are different. In addition, we introduce the
probabilistic jumping from the simulated annealing algorithm to find the global optimal
solution randomly in the solution space. Figure 4 presents the ALNS algorithm flow for the
problem under study, in which NRR and NSR represent the number of iteration times to
select the RR operator and SR operator, respectively. nr, nRR, and Nmax denote the current
internal iteration times, the max internal iteration times, and the max iteration times.
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Figure 4. The ALNS algorithm flow suitable for the problem studied in this paper.

4.1. Removal Operators

The removal operator is a vital component of the ALNS, which significantly affects
the solution quality. The degree of destruction caused by the removal operator directly
determines the algorithm’s effectiveness in exploring the solution space. If the removal
operator is less destructive, the algorithm may not explore the solution space thoroughly
enough. Conversely, if the operator excessively destroys the current solution, the solution
quality degrades, needing more time to converge. Given the different impacts of removing
customer nodes and station nodes on the current solution, we apply separate Customer
Removal (CR) and Station Removal (SR) operators to destroy the current solution.

4.1.1. Customer Removal

Figure 5 illustrates the implementation process of the customer removal operator. In
addition to commonly used CR heuristics, such as Random [38], Worst Distance [38], Worst
cost [15], and Worst Delay-Time Removal [39], we utilize the following operators tailored
to the problem’s characteristics, inspired by previous research [38,40]:

• Related Customer Removal (ReCR): In ReCR, we remove a set of customer nodes with
high correlation. These nodes are easily exchanged during subsequent iterations and
eliminated from the current solution. A similarity function is constructed to express
the correlation of customer nodes:

R(i, j) = Φ1di,j + Φ2 | (wi − wi)− (wj − wj) | +Φ3θi,j, (64)

where Φ1, Φ2, and Φ3 ∈ [0, 1] represent correlation coefficient with Φ1 + Φ2 + Φ3 = 1;
di,j denotes the distance between customers i and j; wi and wj represent the earliest
service times of customers i and j, respectively; wi and wj represent the latest service
times of customers i and j; θi,j indicates whether customers i and j are on the same
route (θi,j=-1 if on the same route; θi,j=1, otherwise). A smaller value of R(i, j) means
higher relevance between the two customers. The function calculates the similarity
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between customer node i and other customer nodes j which have been inserted into the
route. Then, the customers are sorted in non-decreasing order based on this similarity.
In addition, a related customer removal factor is used to introduce randomness during
the removal process. Customer nodes are successively removed based on the similarity
between them until ncr customer nodes are removed.

• Worst Wait-Time Removal (WWTR): Due to the presence of time windows, vehicles
must wait until the time window opens if they arrive early. Therefore, the WWTP
operator is applied to remove the customer nodes with long waiting times from the
current solution. This allows vehicles to arrive within the customer service time
window as frequently as possible.

• Station-Based Removal (SBR): To reduce the charging and swapping costs of the
current solution, we employ the SBR operator to remove the customer nodes connected
to the charging and swapping station nodes. This reduction results in fewer vehicles
passing through these stations. The heuristic framework is presented in Algorithm 1.

Figure 5. The implementation process of customer node removal operator.

Algorithm 1 Station-Based Removal(SBR)

1: Initialization: number of customer nodes to be removed ncr; n← 0
2: while n < ncr do
3: Calculate the number of station nodes for all routes in the solution staNum(r)
4: if staNum(r) > 0 then
5: Save route r into the set tempRoute
6: end if
7: Randomly select the route r∗ to be destroyed from the set staNum(r)
8: Randomly select a station node sta from the route r∗

9: Remove the station node sta and the customer node k connected to sta
10: Put the customer node k into the removal list L
11: if The power of route r∗ is not feasible then
12: Repair route r using GSI
13: end if
14: Clear the set tempRoute
15: n ++
16: end while

4.1.2. Station Removal

The EVRP involves the removing or reordering of station nodes. This permutation
has the potential to enhance the solution obtained. Following each NSR iteration, the
algorithm dynamically selects a station removal operator and removes nsr station nodes
from the current solution according to the destroy rules of the operator. The value of nsr
is determined by the total number of charging and swapping stations ns in the current
solution (nsr = min(10, 0.4ns)). Figure 6 shows the implementation process of the node
removal operator of the CS or swapping station.
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Figure 6. The implementation process of station node removal operator.

In addition to the Random Station Removal (RSR) operator proposed by Keskin and
Catay [31] and the Expensive Station Removal (ESR) [32], we introduce two additional
Station Removal (SR) operators inspired by previous research concepts:

• Worst Distance Station Removal (WDSR) [16]: Similar to the WDR mechanism, WDSR
removes station nodes that cause considerable detours in the current solution, thereby
reducing energy consumption. The removal cost of station j is defined as

c(i, j) = d(i, j) + d( j, i + 1)− d(i, i + 1), (65)

where di,j and di,j represent the distances from customer i to station j and from j to
customer i + 1, respectively.

• Least Used Station Removal (LUSR) [41]: For ETs that can be replenished with as much
power as possible at stations, LUSR removes the CS or swapping stations with the
least additional power for ETs from the current solution, rather than making multiple
visits for small amounts of charging. This reduces the cost associated with frequent
vehicle access to stations.

4.1.3. Route Removal

After each NRR iteration, our algorithm performs nRR times random route removal
operator [42] or greedy route removal operator [31]. This process selects nrr routes, removes
all nodes within the routes, and performs these removals according to the operator-specified
rules. The value of nrr depends on the total number of routes, nr, and is randomly generated
within the interval [0.1nr, 0.4nr]. Figure 7 shows the effects of the route removal operator
when nrr = 2.

Figure 7. The implementation process of route removal operator.

4.2. Insertion Operators

After removing some customer and station nodes from the current solution, the algo-
rithm utilizes the insertion operators to reinsert these nodes into the routes. Thereby, we de-
sign specific customer insertion and station insertion operators to repair the damaged solution.
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4.2.1. Customer Insertion

After each CR operator, our algorithm adaptively selects a Customer Insertion (CI)
operator. Following operator-specified rules, the CI operator reinserts the customer nodes
from the removal list L into the routes and simultaneously removes them from the list.
The value of nrr depends on the total number of routes nr and is randomly generated on
the interval [0.1nr, 0.4nr]. The implementation process of the CI operator is presented in
Figure 8.

Figure 8. The implementation process of customer insertion operator.

We use Random Customer Insertion (RCI) and Greedy Customer Insertion (GCI)
as proposed by Keskin and Catay [31]. Regret-K Customer Insertion (RKCI) [15] is also
employed, with values of k = 2 and k = 3. Considering the presence of various time-related
costs, such as delay costs and charging costs, we introduce Time-based Customer Insertion
(TCI) to minimize the total duration of vehicle routes. It continuously inserts the customer
node with the minimum route time variation into better positions.

4.2.2. Station Insertion

After removing station nodes, some routes may become infeasible due to battery
capacity limitations. Hence, it is necessary to reinsert the stations to restore the feasibility
of the routes. For an infeasible route, the algorithm identifies the first customer node with
a negative charge level when the vehicle arrives, and then adaptively selects a Station
Insertion (SI) operator. Since partial charging is considered, the amount of electricity
replenished by the vehicle at the CS should be able to meet the energy requirements of the
subsequent route. Note that the redundant CSs that do not provide power are removed
after repairing the route by inserting the CSs. Figure 9 outlines the implementation process
of the SI operator.

Figure 9. The implementation process of station insertion operator.

Greedy Station Insertion (GSI) [43] is adopted. It selects the nearest station to the first
customer node with a negative charge level when the vehicle arrives as the insertion point,
and chooses the mode m ∈ M to minimize the cost. In addition to GSI, we design two
additional SI operators:
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• Minimum Cost Insertion (MCI): The MCI operator considers inserting the station node
into the first arc and its previous arc where the EV has a negative charge level. It then
chooses the insertion point with the lowest insertion cost, including the determination
of the charging rate. Algorithm 2 presents the heuristic framework of MCI.

Algorithm 2 Minimum Cost Insertion (MCI)

1: Initialization: the number of routes in the current solution routeNum; r ← 0; k ← 0;
∆d = di−1,j + di,j; cpos,m = cd

pos,m + cc
pos,m; c∗pos = minm∈M{cpos,m}+ c∗pos = + ∞

2: while r < routeNum do
3: while The power of route r is not feasible do
4: Find the first customer node with negative power and record its location p
5: for p-k > 0 do
6: Calculate the distance ∆d between the customer with a location of pos1 = p-k and

all station nodes
7: if The electric quantity of the vehicle arriving at the charging station node s1 is

less than 0 then
8: k ++
9: else

10: Calculate the minimum insertion cost c∗pos1
at the insertion node s1

11: Jump out of the current cycle
12: end if
13: end for
14: Calculate the distance ∆d between the customer node of the location pos2 = pos1-1

and all the station nodes
15: Record the station node s2 corresponding to min(∆d)
16: Calculate the minimum insertion cost c∗pos2

at the insertion node s2
17: if c∗pos1

< c∗pos2
then

18: Insertion s1 at position pos1
19: else
20: Insertion s2 at position pos2
21: end if
22: end while
23: r++
24: end while
25: Delete redundant station nodes

• Best Location Insertion (BLI): The BLI operator expands the search range, considering
all the insertable locations (pos) between the first customer node with negative power
and the previously visited station node or depot. It identifies the best station insertion
method as follows. Firstly, it selects the station closest to pos, calculates the insertion
cost of using different modes m ∈ M at the station, and figures out the best station
with the minimum cost. Subsequently, it inserts the nearest station along with the
determined mode into the arc between the location and the previous customer node.
The heuristic framework of BLI is provided in Algorithm 3.

4.3. Constructing the Initial Solution

Because of the sensitivity of ALNS to the initial solution, we design an initial solution
generation algorithm based on a greedy fashion. Although the greedy insertion algorithm
does not guarantee finding the global optimal solution, it can efficiently produce a suitable
initial solution. Various station-related decisions are involved in the problem, including
CS location, charging mode, and supplementary power, which have a great impact on the
quality of the initial solution and subsequent iterative optimization. Thus, a greedy initial
solution generation algorithm based on the BLI is proposed similar to the greedy insertion
algorithm for customer nodes.
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Algorithm 3 Best Location Insertion (BLI)

1: Initialization: the number of routes in the current solution routeNum; r ← 0; k ← 0;
∆d = di−1,j + di,j; cpos,m = cd

pos,m + cc
pos,m; c∗pos = minm∈M{cpos,m}+ c∗pos = +∞

2: while r < routeNum do
3: while The power of route r is not feasible do
4: Find the first customer node with negative power and record its location p
5: for p-k > 0 do
6: Calculate the distance ∆d between the customer with a location of pos1 = p-k and

all station nodes
7: Record the station node s corresponding to min(∆d)
8: Save the position pos, station s, and insertion cost c∗pos to the set tempSta
9: k++

10: end for
11: Sort the set tempSta according to the monotonicity of c∗pos
12: Insert the station s∗ with index 0 in set tempSta into the corresponding position

pos
′

13: end while
14: r++
15: end while
16: Delete redundant station nodes

4.4. Simulated Annealing Acceptance Criterion

In the heuristic algorithm, it is necessary to evaluate whether the obtained solution can
be accepted as the current solution or not. The simplest way is to accept only solutions better
than the current one. Nevertheless, such a setting increases the possibility of falling into a
local optimum. To tackle this issue, we used the probabilistic acceptance mechanism of the
simulated annealing algorithm [44]. This mechanism occasionally accepts less competitive
solutions, allowing the algorithm to escape the local optimum and explore the solution
space more extensively.

5. Numerical Experiments and Analysis of the Model
5.1. Instance Generation and Parameter Setting

To evaluate the performance of the ALNS algorithm and its practical applicability, a
series of numerical experiments are conducted based on a modified dataset inspired by
the Montoya et al. [10] dataset (https://pan.baidu.com/s/1IWPKF4pjyBMuSrGyai7z-w?
pwd=1x7a, accessed on 29 August 2023). In this part, the construction of instances used in
this study is described, including node coordinates, service time windows, and customer
goods demand. The details are summarized as follows:

• This paper uses the information of customer and station node coordinates provided
by Montoya et al. [10], distributed within a 120 km × 120 km range. To accommodate
practical scenarios, we opted for 10 and 20 customer nodes from the dataset for
small-scale experiments, while 40, 80, 100, and 120 customer nodes were chosen for
large-scale experiments. The locations of BSSs correspond to those of CSs, ranging
from 2 to 21 stations in each set of instances.

• Customer service time windows are generated using a uniform distribution method.
The earliest service start time ranges from 6 a.m. to 8 p.m., represented as wi ∈
uni f orm [360, 1200] on the timeline. The time window widths range from 1 to 2 hours,
expressed as twi ∈ uniform [60, 120] on the timeline. The latest service start time is
calculated as

wi = wi + twi. (66)

• Customer cargo demand is generated using the uniform distribution method, with qi
randomly generated in the interval uniform [10, 100].

https://pan.baidu.com/s/1IWPKF4pjyBMuSrGyai7z-w?pwd=1x7a
https://pan.baidu.com/s/1IWPKF4pjyBMuSrGyai7z-w?pwd=1x7a
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In summary, 12 datasets are generated based on the number of customer and station
nodes, resulting in a total of 72 instances. To facilitate the experimental analysis, each
instance is named as Gm-n, where m and n denote the dataset number and instance number,
respectively. The dataset sizes are presented in Table 3.

Table 3. Experimental data size setting.

Dataset
Number NC 1 NCS 2 Dataset

Number NC NCS

G1 10 2 G7 80 8
G2 10 3 G8 80 12
G3 20 3 G9 100 12
G4 20 4 G10 100 16
G5 40 5 G11 120 16
G6 40 8 G12 120 21

1 NC: Number of customers 2 NCS: Number of charging stations.

Several process parameters are considered to ensure the rapid convergence and effi-
cient resolution of the ALNS algorithm. These parameters, which include operator score
increments, simulated annealing control parameters, correlation coefficients, operator re-
moval factors, and iteration counts. Among them, iteration count parameters are adopted
with reference to Keskin and Çatay’s work [32]. And the other parameters are determined
experimentally based on the problem. The detailed parameter values are provided in
Appendix A (Table A1).

5.2. Validation of Algorithm Effectiveness

The following section presents the results of numerical experiments conducted on
both small- and large-scale instances. Given the complexity of the problem, the state-of-
the-art commercial solver CPLEX is only practical for small-scale instances. For large-scale
instances, we have implemented Pre-ALNS for comparison purposes. All experiments were
conducted in a JAVA environment, utilizing CPLEX 12.6.1 as the MIP model solver, with a
maximum solution time of 7200 s. The experiments were run on a computer configured as
AMD Ryzen 7, 2.9 GHz CPU, 16 GB memory. To guarantee experiment consistency, the
proposed ALNS algorithm and Pre-ALNS algorithm were each tested five times for every
instance, and the best results were selected for further analysis.

5.2.1. Results for Small Instances

To validate our problem model and the effectiveness of the ALNS algorithm, we solve
24 small-scale instances using both the CPLEX solver and the ALNS algorithm. We then
compare the results in terms of solution quality and efficiency. Tables 4 and 5 present the
results for small-scale settings (group G1 to group G4). These tables provide information
on instances, the number of charging or swapping times (NR), total costs (TCs), running
time (CPU(s)), differences between the numbers of charging or swapping times (∆N), and
the gap (Gap %) between TCs obtained by CPLEX and the proposed ALNS. A positive
Gap % signifies that the proposed ALNS solution outperforms the CPLEX solver, while the
highlighted results indicate that the optimal solution is found by CPLEX.

Table 4 reveals that the total costs and the number of charging or battery swapping times
obtained by the two methods are identical. CPLEX succeeds in obtaining optimal solutions of
all instances within the predefined maximum running time, indicating the optimality of the
solution values. The ALNS algorithm achieves the same total costs as CPLEX, which signifies
its performance in tackling the problem. Meanwhile, the running time of ALNS significantly
outperforms that of CPLEX. Specifically, the time gap between the two methods notably
increases with the expansion of customer size. On average, the proposed algorithm proves to
be a significantly faster solution, with a speed advantage of approximately 20 times over the
CPLEX method. Regarding Table 5, we find that the objective function values improved by
an average of 0.61% compared to CPLEX for the test instances. For three instances of group
G4, the ALNS outperforms CPLEX in terms of objective function values, with fewer charging
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operations. This may be due to the fact that inefficient charging plans would incur additional
energy consumption costs and operational times, and thus lead to higher total distribution
costs. Additionally, the ALNS still exhibits a short average running time of 30.78 s, while
CPLEX reaches the maximum setting time.

Table 4. Comparison of results on small size instances (NC = 10).

Instance CPLEX ALNS
∆N Gap %

NR TC CPU(s) NR TC CPU(s)

G1

1 3 889.97 26.66 3 889.97 5.93 0 0.00
2 2 1242.35 50.08 2 1242.35 3.98 0 0.00
3 0 1154.71 36.44 0 1154.71 3.70 0 0.00
4 2 1237.01 41.02 2 1237.01 4.08 0 0.00
5 0 1129.26 27.86 0 1129.26 3.25 0 0.00
6 2 1125.39 38.59 2 1125.39 5.10 0 0.00

G2

1 3 889.97 53.53 3 889.97 5.63 0 0.00
2 2 1242.35 82.42 2 1242.35 3.89 0 0.00
3 1 1145.87 303.08 1 1145.87 3.73 0 0.00
4 2 1236.43 99.05 2 1236.43 4.07 0 0.00
5 0 1129.26 42.84 0 1129.26 3.18 0 0.00
6 2 1073.59 179.52 2 1073.59 3.93 0 0.00

Average 1.58 1124.68 81.76 1.58 1124.68 4.21 0 0.00

Table 5. Comparison of results on small size instances (NC = 20).

Instance CPLEX ALNS
∆N Gap %

NR TC CPU(s) NR TC CPU(s)

G3

1 1 1327.36 7200 1 1327.36 34.61 0 0.00
2 3 1261.53 7200 3 1261.53 33.12 0 0.00
3 2 1289.45 7200 2 1287.93 30.31 0 0.12
4 2 1273.72 7200 2 1273.72 27.87 0 0.00
5 2 1320.14 7200 2 1319.78 28.23 0 0.03
6 2 1318.33 7200 2 1318.33 29.15 0 0.00

G4

1 3 1408.56 7200 1 1327.36 36.26 −2 5.76
2 3 1260.43 7200 2 1258.62 31.28 −1 0.14
3 2 1288.68 7200 2 1288.68 30.88 0 0.00
4 3 1262.32 7200 3 1262.32 28.95 0 0.00
5 2 1319.78 7200 2 1319.78 28.79 0 0.00
6 3 1334.61 7200 2 1317.27 29.90 −1 1.30

Average 2.33 1305.41 7200 2.00 1296.89 30.78 −0.33 0.61

5.2.2. Results for Large Instances

The previous section has confirmed the performance of the ALNS algorithm in solving
small-scale problems. In order to further test its computational capabilities for large-scale
problems, this section solves the instance groups G5 to G12. The objective is to assess the
quality and efficiency of the solutions generated. The ALNS algorithm has been widely
adopted for addressing VRP variants [9,45,46]. Therefore, to demonstrate the enhanced
efficacy of our algorithm, a comparison with the Pre-ALNS is conducted. For each instance,
both the proposed ALNS and Pre-ALNS algorithms are run five times, and the best results
are selected for comparative analysis.

Table 6 provides a summary of the average results for the Pre-ALNS and ALNS algorithms
applied to large-scale instances. In this table, Gapc represents the difference in the objective
function values, while Gapt indicates the difference in runtime. Positive values for both Gapc
and Gapt signify that the ALNS algorithm outperforms the Pre-ALNS algorithm in terms of
solution quality and efficiency. The detailed results are provided in Appendix B (Table A2).

As shown in Table 6, the proposed ALNS outperforms the Pre-ALNS in terms of
total cost. By applying the proposed ALNS, cost savings range from 1.26% to 4.67%
across the four test groups. Moreover, the superiority of the proposed ALNS becomes more
pronounced as the instance size increases. When analyzing the outcomes of both algorithms,
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it is observable that the developed algorithm effectively minimizes costs by optimizing
charging and battery swapping frequencies. In terms of running time, both methods
exhibit efficiency. The proposed solution approach solved some instance groups with a
shorter average solution time. Overall, our methodology displays improved performance
in solving the problem to a certain extent.

Table 6. The summary of average results of the Pre-ALNS and ALNS on large-size instances.

ID
Pre-ALNS ALNS

∆N Gapc (%) Gapt (%)
NR TC CPU(s) NR TC CPU(s)

G5&6 4.67 2120.71 289.72 3.92 2093.72 286.17 −0.75 1.26 1.24
G7&8 5.42 2957.77 1507.41 4.67 2864.61 1505.68 −0.75 3.05 −0.27

G9&10 7.08 3541.30 2738.73 5.67 3407.49 2731.95 −1.42 3.73 0.23
G11&12 9.58 4293.02 3998.15 7.50 4092.65 4007.96 −2.08 4.67 −0.26

5.3. Sensitivity Analysis and Managerial Insights

To evaluate the impact of various factors on our model, we conduct three sets of experi-
ments. These experiments aim to analyze how partial charging strategy, nonlinear charging
functions, and battery swapping strategy influence the total cost, number of vehicles, and
charging/battery swapping times. These experimental instances are randomly selected
from 12 instance groups. The results of these comparisons are summarized in Tables 7–9,
with corresponding visualizations provided in Figures 10–12. Detailed comparisons are
provided in Appendix C (Tables A3–A5). In the tables, we define the following notations:
TC for the total cost, DC for delay penalty cost, NV for the number of dispatched vehicles,
NC for the number of visits to Charging Stations (CSs), NB for the number of visits to
Battery Swapping Stations (BSSs), and ∆X to denote cost or quantity differences.

Table 7. Experimental results under full charging strategy and partial charging strategy.

Instance
Full Charging Partial Charging

TC DC NV NC NB TC DC NV NC NB

G1-6 1129.3 0 2 0 0 1125.4 289.4 1 1 1
G2-1 941.4 51.7 1 1 1 890.0 51.7 1 2 1
G3-4 1323.0 0 2 0 1 1273.7 0 2 2 0
G4-1 1327.4 0 2 0 1 1327.4 0 2 0 1
G5-5 2191.4 0 3 1 2 2081.6 0 3 4 1
G6-5 2114.4 0 3 0 2 2068.5 0 3 3 1
G7-5 3051.7 0 4 0 4 2950.3 1.9 4 5 2
G8-2 2828.7 0 4 0 3 2683.8 12.0 4 3 1
G9-5 3358.2 81.8 5 1 1 3187.7 0 5 2 1
G10-1 3663.9 0 5 0 4 3570.5 0 5 1 3
G11-4 4350.1 0 6 0 5 4104.3 11.2 6 7 1
G12-5 4377.1 0 6 0 5 4201.8 1.1 6 7 2

Table 8. Experimental results under linear and nonlinear charging function.

Instance
Linear Charging Nonlinear Charging

TC DC NV NC NB TC DC NV NC NB

G1-6 1039.7 214.4 1 1 1 1125.4 298.4 1 1 1
G2-1 890.0 51.7 1 2 1 890.0 51.7 1 2 1
G3-4 1263.8 0 2 2 0 1273.7 0 2 2 0
G4-1 1327.4 0 2 0 1 1327.4 0 2 0 1
G5-5 2070.9 0 3 4 1 2081.6 0 3 4 1
G6-5 2049.1 0 3 3 1 2068.5 0 3 3 1
G7-5 2920.9 0 4 3 2 2950.3 1.9 4 5 2
G8-2 2672.5 0 4 3 1 2683.8 12.0 4 3 1
G9-5 3173.3 0 5 4 0 3187.7 0 5 1 3
G10-1 3532.4 0 5 5 2 3570.5 0 5 1 3
G11-4 4097.7 0 6 6 1 4104.3 11.2 6 7 1
G12-5 4148.6 0 6 7 1 4201.8 1.1 6 7 2



Sustainability 2023, 15, 13752 23 of 29

Table 9. Experimental results without and with battery swapping strategy.

Instance
Without Swapping With Swapping

TC DC NV NC NB TC DC NV NC NB

G1-6 1129.3 0 2 0 0 1125.4 298.4 1 1 1
G2-1 929.7 62.7 1 3 0 890.0 51.7 1 2 1
G3-4 1273.7 0 2 2 0 1273.7 0 2 2 0
G4-1 1343.3 0 2 3 0 1327.4 0 2 0 1
G5-5 2203.8 14.3 3 5 0 2081.6 0 3 4 1
G6-5 2181.1 14.8 3 4 0 2068.5 0 3 3 1
G7-5 3024.1 3.7 4 8 0 2950.3 1.9 4 5 2
G8-2 3005.0 0 5 2 0 2683.8 12.0 4 3 1
G9-5 3234.4 56.1 5 6 0 3187.7 0 5 2 1
G10-1 3821.3 11.4 5 8 0 3570.5 0 5 1 3
G11-4 4458.5 10.6 7 6 0 4104.3 11.2 6 7 1
G12-5 4411.9 0 7 6 0 4201.8 1.1 6 7 2

Figure 10. Comparison of results under full charging strategy and partial charging strategy. (a) Total
cost. (b) Number of vehicles. (c) Charging or battery swapping times.

Figure 11. Comparison of results under linear and nonlinear function. (a) Total cost. (b) Charging or
battery swapping times.

Figure 12. Comparison of results without and with battery swapping strategy. (a) Total cost. (b) Num-
ber of vehicles. (c) Charging or battery swapping times.
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5.3.1. The Influence of Partial Charging Strategy

To analyze the impact of the partial charging strategy, experiments are conducted
under both full charging and partial charging settings. The full charging strategy means
that the trucks must replenish the battery to the full state at the CS.

Figure 10 illustrates the comparisons between the two charging strategies. Figure 10a
clearly illustrates that the total operational cost under the partial charging strategy is
consistently lower than that under the full charging strategy. Figure 10b indicates that the
number of dispatched vehicles is mostly the same under both strategies, except for G1-6.
Figure 10c presents evidence that allowing ETs to leave the CS with an appropriate level
of charge can reduce visits to the Battery Swapping Station (BSS) in most scenarios, while
increasing visits to the CS. This is due to the effectiveness of partial charging, which allows
vehicles to recharge more quickly and reduces the need for battery swapping. Additionally,
partial charging can lead to increased charging and swapping times and delay costs, but
it can also lower the number of dispatched trucks and total operational costs, as seen in
G1-6. Therefore, considering partial charging can enable port terminal operators to make
optimal charging and swapping decisions, resulting in reduced operational costs across
various scenarios.

5.3.2. Nonlinear Charging Impact Analysis

In this part, experiments are conducted in solving problem instances using linear and
piecewise linear approximate charging functions. Figure 11 provides a visual comparison
of the results in Table 8. Figure 11a demonstrates that nonlinear charging results in slightly
higher total costs compared to linear charging. This is due to the piecewise linear charging
function, which gradually reduces the charging rate as the battery level approaches full
and charging time increases. As per Table 8, it is important to note that extended charging
times may lead to delays and additional penalty costs, which are often underestimated by
linear charging assumptions. In Figure 11b, we observe that ETs tend to opt for battery
swapping mode to minimize delays, resulting in higher battery swapping costs. Therefore,
port terminal operators should consider not only the single charging process but also the
battery endurance mileage and allocate charging time based on the actual charging power
of ETs to avoid such costs.

5.3.3. The Influence of Battery Swapping Strategy

To explore the impact of the battery swapping option on the routing solution, we
also conducted experiments using the algorithm without considering battery swapping.
Figure 12a shows that all instances obtain lower total costs when the battery swapping
option is employed. Combined with Figure 12b,c, there may be two possible reasons.
Firstly, the battery swapping mode allows ETs to rapidly reach a full charge level in a short
period of time, which means each truck is allowed to serve more customers while satisfying
the service time window. This leads to a reduction in the number of dispatched vehicles.
Secondly, in distribution schemes with the same number of dispatched vehicles, the vehicle
tends to choose battery swapping overcharging to reduce recharging frequency and the
energy consumption cost caused by frequent bypassing of the CSs. Based on this analysis,
battery-replaceable ETs may offer more cost advantages from an operational efficiency
perspective. However, port operators must consider challenges related to fleet renewal,
battery swapping facilities, and market support.

6. Conclusions

This study aims to facilitate the decision-making process of port operators to dispatch
electric trucks (ETs) within a green port context. Motivated by realistic scenarios, the
objective function includes decision-making elements such as fixed vehicle costs, energy
consumption, and replenishment costs, as well as delay penalty costs. The problem consti-
tutes a variant of the Electric Vehicle Routing Problem with Time Windows, incorporating
battery swapping, nonlinear charging, and partial charging options. Practical constraints
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include path constraints, load constraints, time constraints, and power constraints. To solve
this complex problem, we introduce an improved Adaptive Large Neighborhood Search
(ALNS) algorithm with innovative operators.

The performance of the proposed algorithm is evaluated through comparisons of
small-scale and large-scale problems. In addition, sensitivity analyses provide valuable
insights for port operators:

- Operators should allocate fleets and supplementary power based on customer de-
mands, considering both fixed and operational costs of ETs.

- Distribution plans should account for the actual charging power of ETs, i.e., reasonably
estimate the battery mileage and allocate sufficient charging time.

- Battery-replaceable ETs can reduce operational costs because of faster charging and
reduced recharging frequency. However, fleet renewal, battery swapping facilities,
and market support may pose challenges.

Future research could incorporate more realistic factors, such as uncertainty in travel-
ing routes or charging processes. Additionally, integrating the algorithms with specific ac-
celeration strategies could further improve the algorithm’s efficiency. Lastly, the retrofitting
and deployment of battery-replaceable ETs could be an interesting research direction.
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Appendix A. ALNS Parameters

In Table A1, we provide the list of the parameters of the proposed algorithm and the
values we used throughout the experimental study.

Table A1. Algorithm process parameter description and setting.

Parameter Description Value

σ1 Score of the best solution 33
σ2 Score of the better solution 9
σ3 Score of the poorer but accepted solution 13
ρ Weight adjustment response factor 0.1
ε Rate of temperature drop of acceptance criterion for SA 0.99975
µ Initial temperature control parameters of SA acceptance criteria 0.05
φ1 The distance correlation coef ficient of ReCR 9
φ2 The time correlation coefficient of ReCR 3
φ3 The route correlation coefficient of ReCR 2

rReCR Related Customer Removal factor 4
rWDR Worst Distance Removal factor 3
rWCR Worst Cost Removal factor 3

rWWTR Worst Wait-Time Removal factor 3
rWDTR Station Based Removal factor 3
Tmax Maximum running time 7200
Nmax Maximum number of iterations 25,000
NSR The number of iteration times to select the SR operator 60
NRR The number of iteration times to select the RR operator 2000
Nc The number of iterations of the weight update of the customer node operator 200
Ns The number of iterations of the weight update of the station node operator 5500

https://pan.baidu.com/s/1IWPKF4pjyBMuSrGyai7z-w?pwd=1x7a
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Appendix B. The Detailed Results of the Large-Scale Experiment

A comparison of results between Pre-ALNS and ALNS on large size instances is
provided in Table A2.

Table A2. Comparison of results between Pre-ALNS and ALNS on large size instances.

ID
Pre-ALNS ALNS

∆N 4 Gapc% 5 Gapt% 6

NR 1 TC 2 CPU 3 (s) NR TC CPU (s)

G5-1 4 2208.57 295.41 4 2173.12 303.17 0 1.61 −2.63
G5-2 5 2136.93 284.89 2 2079.27 289.33 −3 2.70 −1.56
G5-3 5 2162.25 308.62 3 2129.67 295.63 −2 1.51 4.21
G5-4 4 2158.81 285.17 3 2149.34 276.64 −1 0.44 2.99
G5-5 5 2087.77 293.21 5 2081.56 282.58 0 0.30 3.63
G5-6 5 2051.66 279.53 5 2030.33 265.35 0 1.04 5.07
G6-1 4 2181.97 294.40 4 2168.09 292.70 0 0.64 0.58
G6-2 5 2091.17 275.84 3 2077.58 267.80 −2 0.65 2.91
G6-3 5 2124.90 293.67 5 2023.47 313.74 0 4.77 −6.83
G6-4 4 2141.20 282.38 4 2115.30 271.58 0 1.21 3.82
G6-5 5 2071.37 289.67 4 2068.53 285.51 −1 0.14 1.44
G6-6 5 2031.93 293.80 5 2028.37 290.05 0 0.18 1.28

Average 4.67 2120.71 289.72 3.92 2093.72 286.17 −0.75 1.26 1.24
G5-1 4 2208.57 295.41 4 2173.12 303.17 0 1.61 −2.63
G5-2 5 2136.93 284.89 2 2079.27 289.33 −3 2.70 −1.56
G5-3 5 2162.25 308.62 3 2129.67 295.63 −2 1.51 4.21
G5-4 4 2158.81 285.17 3 2149.34 276.64 −1 0.44 2.99
G5-5 5 2087.77 293.21 5 2081.56 282.58 0 0.30 3.63
G5-6 5 2051.66 279.53 5 2030.33 265.35 0 1.04 5.07
G6-1 4 2181.97 294.40 4 2168.09 292.70 0 0.64 0.58
G6-2 5 2091.17 275.84 3 2077.58 267.80 −2 0.65 2.91
G6-3 5 2124.90 293.67 5 2023.47 313.74 0 4.77 −6.83
G6-4 4 2141.20 282.38 4 2115.30 271.58 0 1.21 3.82
G6-5 5 2071.37 289.67 4 2068.53 285.51 −1 0.14 1.44
G6-6 5 2031.93 293.80 5 2028.37 290.05 0 0.18 1.28

Average 5.42 2957.77 1507.41 4.67 2864.61 1505.68 −0.75 3.05 −0.27
G9-1 8 3803.96 2698.74 6 3637.69 2762.72 −2 4.37 −2.37
G9-2 9 3843.98 2727.68 9 3658.53 2627.17 0 4.82 3.68
G9-3 7 3678.03 2784.56 6 3559.27 2902.12 −1 3.23 −4.22
G9-4 5 3536.82 2651.85 5 3370.37 2765.10 0 4.71 −4.27
G9-5 7 3244.42 2472.37 3 3187.73 2280.61 −4 1.75 7.76
G9-6 7 3323.53 3012.64 6 3214.84 2975.33 −1 3.27 1.24

G10-1 9 3680.75 2759.78 4 3570.47 2612.20 −5 3.00 5.35
G10-2 9 3783.63 2610.71 8 3602.87 2568.83 −1 4.78 1.60
G10-3 8 3719.03 3000.31 8 3511.12 2830.22 0 5.59 5.67
G10-4 6 3310.75 2608.26 4 3197.42 2728.48 −2 3.42 −4.61
G10-5 4 3247.28 2663.92 3 3147.12 2810.97 −1 3.08 −5.52
G10-6 6 3323.44 2873.98 6 3232.39 2919.63 0 2.74 −1.59

Average 7.08 3541.30 2738.73 5.67 3407.49 2731.95 −1.42 3.73 0.23
G11-1 8 4244.35 4034.49 9 4004.65 4192.62 1 5.65 −3.92
G11-2 7 4292.42 3828.00 7 4109.59 3897.50 0 4.26 −1.82
G11-3 9 4259.87 3842.76 7 4009.14 3815.91 −2 5.89 0.70
G11-4 8 4240.42 3942.30 8 4104.30 3872.29 0 3.21 1.78
G11-5 7 4340.97 3970.11 9 4152.57 3893.76 2 4.34 1.92
G11-6 12 4404.21 4192.80 7 4175.79 4190.37 −5 5.19 0.06
G12-1 8 4264.23 4143.12 8 4001.83 4198.96 0 6.15 −1.35
G12-2 9 4220.73 4002.33 8 4034.52 3767.74 −1 4.41 5.86
G12-3 11 4262.31 3812.34 6 4081.85 3790.96 −5 4.23 0.56
G12-4 9 4303.10 4399.95 5 4127.78 4330.71 −4 4.07 1.57
G12-5 14 4384.50 3819.82 9 4201.81 3909.99 −5 4.17 −2.36
G12-6 13 4299.18 3989.83 7 4108.00 4234.72 −6 4.45 −6.14

Average 9.58 4293.02 3998.15 7.50 4092.65 4007.96 −2.08 4.67 −0.26
1 NR: the number of recharging or swapping times. 2 TC: total cost. 3 CPU: running time. 4 ∆N:
the differences between the numbers of charging or swapping times. 5 Gapc =

TCPre−ALNS−TCALNS
TCPre−ALNS

× 100.
6 Gapt =

tPre−ALNS−tALNS
tPre−ALNS

× 100.



Sustainability 2023, 15, 13752 27 of 29

Appendix C. Further Comparisons of the Sensitivity Analysis of the Three Strategies

The further comparisons of the sensitivity analysis of the three strategies are presented
in Tables A3–A5.

Table A3. Comparison of results under full charging strategy and partial charging strategy.

Instance ∆TC ∆DC ∆NV ∆NC ∆NB

G1-6 −3.87 298.39 −1 1 1
G2-1 −51.46 0 0 1 0
G3-4 −49.23 0 0 2 −1
G4-1 0 0 0 0 0
G5-5 −109.84 0 0 3 −1
G6-5 −45.84 0 0 3 −1
G7-5 −101.44 1.88 0 5 −2
G8-2 −144.97 12.01 0 3 −2
G9-5 −170.46 −81.75 0 1 0
G10-1 −93.39 0 0 1 −1
G11-4 −245.77 11.17 0 7 −4
G12-5 −175.31 1.07 0 7 −3

Average −99.30 20.23 −0.08 2.83 −1.17

Table A4. Comparison of results under linear and nonlinear function.

Instance ∆TC ∆DC ∆NV ∆NC ∆NB

G1-6 85.68 84 0 0 0
G2-1 0 0 0 0 0
G3-4 9.88 0 0 0 0
G4-1 0 0 0 0 0
G5-5 10.69 0 0 0 0
G6-5 19.43 0 0 0 0
G7-5 29.41 1.88 0 2 0
G8-2 11.31 12.01 0 0 0
G9-5 14.45 0 0 −2 1
G10-1 38.11 0 0 −4 1
G11-4 6.59 11.17 0 1 0
G12-5 53.2 1.07 0 0 1

Average 23.23 9.18 0.00 −0.25 0.25

Table A5. Comparison of results without and with battery swapping strategy.

Instance ∆TC ∆DC ∆NV ∆NC ∆NB

G1-6 −3.87 298.39 −1 1 1
G2-1 −39.72 −11.08 0 −1 1
G3-4 0 0 0 0 0
G4-1 −15.92 0 0 −3 1
G5-5 −122.21 −14.34 0 −1 1
G6-5 −112.59 −14.76 0 −1 1
G7-5 −73.81 −1.83 0 −3 2
G8-2 −321.28 12.01 −1 1 1
G9-5 −46.63 −56.14 0 −4 1
G10-1 −250.85 −11.41 0 −7 3
G11-4 −354.15 0.53 −1 1 1
G12-5 −210.08 1.07 −1 1 2

Average −129.26 16.87 −0.33 −1.33 1.25
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