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Abstract: When it comes to seawater desalination in the small- to medium-electricity ranges, the
organic Rankine cycle (ORC) powered by solar energy stands out as the most energy-efficient
technology currently available. Various solar techniques have been developed to capture and absorb
solar energy. Among them, the parabolic trough collector (PTC) has gained recognition as a low-
cost solar thermal collector with a long operating life. This study investigates the thermodynamic
performance and economic parameters of a PTC-powered ORC using Dowtherm A and toluene as
working fluids for the solar cycle and ORC cycle, respectively. Thermo-economic multi-objective
optimization and decision-making techniques are applied to assess the system’s performance. Four
key parameters are analyzed for their impact on exergy efficiency and total hourly cost. Using TOPSIS
decision-making, the best solution from the Pareto frontier is identified, featuring an ORC exergy
efficiency of 30.39% and a total hourly cost of 39.38 US$/h. The system parameters include a mass
flow rate of fresh water at 137.7 m3/h, a total output net power of 577.9 kJ/kg, and a district heating
supply of 1074 kJ/kg. The cost analysis reveals that the solar collector represents approximately 68%
of the total hourly cost at 26.77 US$/h, followed by the turbine, thermoelectric generator, and reverse
osmosis (RO) unit.

Keywords: techno–economic optimization; exergy efficiency; ANN; NSGA-II; TOPSIS

1. Introduction

The pressing global potable water crisis has swiftly risen to the forefront of our con-
cerns, propelled by a confluence of factors, including rapid population expansion [1],
burgeoning industrial progress [2], surging demands for freshwater resources [3], and
the alarming depletion of our vital reserves [4]. According to the United Nations, more
than 2.7 billion people are projected to face water scarcity challenges by the middle of this
century. As civilization and industrialization advance, freshwater scarcity worsens, with
predictions that two-thirds of the world’s population will lack access to clean drinking
water by 2025 [5]. In light of this situation, desalination—the process of converting seawater
into potable water—has emerged as a viable solution, considering that over 97% of the
Earth’s water resources are seawater. However, the process of desalination demands a
substantial amount of energy. To produce 22 million cubic meters of freshwater per day, ap-
proximately 203 million tons of oil are consumed annually [6]. Despite the unsustainability
and significant environmental and public health risks associated with fossil fuels, they still
contribute significantly to global energy consumption [7].

To address the challenge of greenhouse gas emissions, it is crucial to investigate alterna-
tive energy sources that can replace fossil fuels in the global energy supply [8]. Renewable
energy options, such as solar, geothermal, and wind power, offer effective solutions for
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reducing greenhouse gas emissions. The European Union (EU) has set ambitious targets
for its economy, aiming to achieve “zero-emissions” by 2050 and work towards energy
independence, as outlined in the European Green Deal policy introduced in 2019 [9].

Solar energy, with its advantages of being a free and limitless source while reducing
the consumption of non-renewable primary energy, is an excellent option for achieving
zero emissions [10]. Solar energy can be broadly categorized into two main types: solar
photovoltaic (PV) technology, which directly converts solar energy into electricity, and
solar thermal collectors, which concentrate solar energy to generate heat [11]. Within the
realm of solar thermal collector diversity, parabolic trough collectors (PTC) stand out as a
widely adopted choice, especially well-suited for scenarios necessitating a moderate level
of temperature concentration (up to 500 ◦C) [12]. Their inherent cost-effectiveness and
remarkable efficiency make them a compelling option for such applications [13]. PTCs can
be easily integrated with traditional power plants, such as steam turbines (Rankine cycle)
or gas turbines (Brayton cycle), to enhance overall system efficiency while minimizing
environmental impact [14].

An effective technique for converting heat into power is the organic Rankine cycle
(ORC) below 400 ◦C [15]. The ORC operates on the same principles as the conventional
Rankine cycle but utilizes organic fluids with lower saturation temperatures as the working
fluid (WF) instead of water [16]. Considering sustainable development as a paramount
factor, the potential WF for ORC systems encompass a range of options, including natural
refrigerant choices such as carbon dioxide and hydrocarbons. Alongside these, there are
hydrofluorocarbons and various combinations of WFs that also warrant consideration [17].
The ORC system consists of four essential components: the evaporator, turbine, pump,
and condenser [18]. The efficiency of the ORC system is profoundly impacted by both the
operational parameters and system coupling factors. These include crucial elements such
as integration crucial temperature and pressure [19].

Reverse osmosis (RO) and thermal procedures, such as multi-stage flash (MSF) and
multi-effect distillation (MED), are the two main classes of membrane technology that have
been proposed as water desalination techniques [20]. The commercialization of MSF and
MED technologies is constrained by their substantial energy requirements, encompassing
two key components: thermal energy for the evaporation process and electricity to power
pumps and other plant operations [21]. For each cubic meter (m3) of produced water, MSF
desalination facilities operating at temperatures exceeding 110 ◦C require approximately
3.5 kWh of electricity and around 12 kWh of thermal energy. In contrast, MED plants
operating at temperatures below 70 ◦C exhibit reduced power requirements, with about
1.5 kWh of electrical energy and 6 kWh of thermal energy [22].

Compared to other techniques, RO currently dominates the industry due to several
reasons. Firstly, RO can accommodate a wide range of production capacities, ranging
from small standalone installations to large-scale operations capable of producing up
to 500,000 m3 per day. Secondly, RO plants can operate continuously and reliably for
extended periods without the need for shutdowns. Lastly, RO exhibits low specific energy
consumption, typically ranging from 2 to 4 kWh/m3, which approaches the thermodynamic
limit of 1 kWh/m3 for seawater desalination. In terms of environmental impact, the CO2
emissions of RO range from 1.7 to 2.8 kg/m3, making it the most environmentally friendly
option compared to other techniques [23]. Hence, the optimal approach for seawater
desalination is employing the RO technique.

The commercialization of parabolic trough collector (PTC) based systems encounters
notable constraints, primarily centered around the aspects of elevated total costs and inter-
mittent operation. Addressing the intermittency concern, the integration of storage tanks
has been introduced as a strategic measure within the system. In addition, to evaluate the
performance of the system, a more advanced model is created based on machine learning.
The main focus of this work is to design an advanced heat and power multi-generation ORC
system. To significantly enhance energy efficiency, the integration of the heat exchanger
(HE) and thermoelectric generator (TEG) into the system has been successfully achieved.
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Additionally, the power generated by this setup is effectively utilized by the RO system
to produce clean water. The ORC system modeling has been accomplished by leveraging
the working fluid properties and considering the thermodynamic constraints using the
Engineering Equation Solver (EES). Artificial Neural Network (ANN) technology functions
akin to the human brain. In contrast to thermodynamic modeling, the utilization of ANN
can significantly reduce optimization time. By employing ANN, intricate optimization
challenges can be simplified, streamlining the process and concurrently enhancing the
ANN’s structural parameters. After modeling, the stochastic data generated by EES is
inputted into the ANN, further streamlining the optimization process. This approach
significantly contributes to the innovation of this article, and the following factors highlight
its uniqueness and novelty:

• The integration of EES with ANN has demonstrated a remarkable reduction in opti-
mization time. Additionally, the incorporation of HE and TEG measures has led to
substantial enhancements in the exergy efficiency of the system. These advancements
collectively underscore the significance of coupling advanced methodologies for opti-
mizing energy systems and underline the potential for achieving superior performance
and efficiency. The thermodynamic processes involved in the ORC system, such as
compression, expansion, evaporation, and regeneration, are modeled using an ANN.
This advanced modeling technique utilizes the properties of the WF to accurately
predict and evaluate the system’s performance during each process. This approach
significantly enhances the accuracy and reliability of performance predictions in the
ORC system.

• The utilization of NSGA-II, a powerful multi-objective optimization technique, allows
for the achievement of optimal design and operating setpoints in the ORC system. This
integration is pivotal in enhancing the system’s economic viability while optimizing
its exergy efficiency.

• The Technique for Order Preference by Similarity to Ideal Situation (TOPSIS) method
is employed as the decision-making tool to determine the best solution for the multi-
generation system. This approach aids in selecting the most optimal configuration
by considering various criteria and evaluating the system’s performance against
ideal solutions.

• The optimization process focuses on increasing the exergy efficiency, reducing the
production cost of desalinated water, and enhancing the co-generation capabilities.

2. Literature Review

The principal objective of the proposed system is twofold: to curtail the overall costs
and enhance operational efficiency. Within the realm of efficiency augmentation, the inte-
gration of HE and TEG emerges as a particularly potent strategy. These measures represent
a compelling avenue for elevating system performance, exemplifying a paramount ap-
proach among the spectrum of available enhancement techniques. Jafary et al. proposed a
trigeneration system based on PTC and organic Rankine cycle (ORC) and investigated the
impact of an internal heat exchanger in detail. The results demonstrated that the inclusion
of an internal heat exchanger increased the exergy efficiency of the system from 6.641% to
12.69% [24]. Aliahmadi et al. conducted a comparative analysis involving three distinct
plants, revealing a compelling correlation between the highest plant efficiency and the
greatest power output derived from the TEG unit [25].

An additional efficacious approach for enhancing system efficiency involves the selec-
tion of the optimal WF. Yu et al. introduced a design system that combines solar energy
with the ORC. Four different WFs were thoroughly investigated, and under optimal con-
ditions toluene exhibited the best performance among them, resulting in a system exergy
efficiency of 24.8% [26]. Li et al. also presented an ORC driven by waste heat recovery,
exploring cyclohexane, benzene, and toluene as the WFs. According to their findings,
toluene outperformed the other high-temperature WFs [27]. A PTC-based hybrid system
was proposed by Razmi et al. [28]. To select the optimal working fluid and ideal operating
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conditions for solar installations, five WFs were compared in detail. The results showed
that DowthermA was the best choice.

For achieving optimal cost reduction, cogeneration stands out as the most efficient
approach. Rostami et al. explored a PTC-based electricity storage system for trigeneration,
which produced 22.5 kW of power, 140.8 kW of heat, and 97.3 g/h of hydrogen [29].
Furthermore, Alotaibi et al. conducted a comparison between a PTC-based power plant
and an equivalent photovoltaic solar plant. The study revealed that the PTC solar plant
had a 45% lower ideal aperture area and a 44% lower Levelized Cost of Energy (LCOE)
compared to the photovoltaic solar plant [30].

Richard’s team has made significant strides in the field of renewable energy-powered
membrane technology. Their efforts have been particularly directed towards studying the
impact of fluctuating solar irradiance. The system can function effectively with a variable
energy source, especially if extra power is made available to kick-start it after a period of
shutdown [31]. Boussouga et al. conducted a thorough investigation into the properties
of RO membranes [32]; in terms of permeate quality, tight nanofiltration/RO membranes
display a strong resilience. Li et al. [33] additionally highlight that, by employing a motor
power rating of less than 1.5 kW, it is conceivable to achieve a specific energy consumption
ranging from 1.5 to 3 kWh/m3, as estimated. The average specific energy consumption
has also experienced a significant decrease. For instance, in 2005, Schäfer and Richard
conducted a case study in an Australian remote national park, where the specific energy
consumption was measured at 5 kWh/m3 [34]. In 2016, Shen et al. presented a case study
in Tanzania, in which the specific energy consumption was 1.6 kWh/m3 [35].

In a study by Amin et al., an analysis of three cascade power plants connected to an
RO desalination unit driven by a solar pond was presented. The study concluded that,
for the proposed system, June is the most cost-effective month with a product cost of
$72.42/kWh [36]. Dong et al. introduced a pioneering hybrid solar–geothermal system
with an RO subsystem. The system exhibited remarkable exergy efficiency, achieving
an impressive 3%. Additionally, the unit exergy cost was determined to be $19.77/GJ,
showcasing its economic viability [37].

In the field of ORC, machine learning techniques have garnered increasing attention
due to their self-learning capabilities, ability to handle nonlinearity, and capacity to ap-
proximate arbitrary functions. ANN technology, renowned for these attributes, has been
frequently utilized in developing prediction models [38]. Zhou and colleagues undertook
an extensive study comparing optimization times between ANN and mechanistic models.
The findings reveal that ANN achieves an optimization time of approximately 0.135 s,
whereas mechanistic models require over 10 h. Notably, the accuracy rate of ANN im-
pressively reaches 99% [39]. By leveraging an ANN-based model, remarkable levels of
optimization and design detail were attained by Chen et al., the results demonstrating that
the model reduces calculation time by more than 50% [40]. The primary purpose of ANN
is to expedite calculations, and it is frequently employed in conjunction with optimization
algorithms to enhance their performance.

The Non-Dominated Sorting Genetic Algorithm (NSGA-II) is an influential decision
space exploration engine that is based on the Genetic Algorithm (GA) framework. It
is specifically designed for effectively solving Multi-objective Optimization Problems
(MOOPs) [41]. NSGA-II was originally proposed by Deb et al. [42] and has since proven
to be a powerful and widely utilized approach in the field. The NSGA-II algorithm was
utilized to conduct a multi-objective thermo–economic optimization of biomass retrofit
for an existing solar ORC power plant to identify the most efficient and cost-effective
solutions [43]. Xu et al. employed NSGA-II to explore the optimal configuration of a
standalone wind/PV/hydrogen system to identify a set of Pareto solutions [44]. The Pareto
front provides a series of equivalent solutions for the multi-objective problem, each offering
a balanced trade-off between the objectives being considered. In this work, the final Pareto
frontier solution is selected through the utilization of the TOPSIS approach, which was
originally developed by Hwang and Yoon in 1981 [45]. It is a statistical technique that aims
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to optimize the selection process by increasing the gap from a negative ideal solution and
decreasing the gap from a positive ideal solution, ultimately identifying the most favorable
choice among a given set of alternatives. Additionally, the proximity to the positive ideal
solution serves as a significant criterion for evaluating the top-ranked option [46].

Based on the aforementioned literature survey, it becomes evident that the co-generation
of heat and power offers a potent avenue for substantially diminishing the overall invest-
ment costs within the system. Furthermore, the integration of a seawater desalination
component remarkably enhances the economic viability of the entire setup. The proposition
entails a co-generation system founded on PTC technology, harmoniously integrated with
an RO subsystem. For the PTC cycle, DowthermA was judiciously selected as the WF,
while toluene assumed its role within the ORC cycle. Thermodynamic modeling was
conducted using EES to showcase the optimal performance of the proposed system. To
further enhance this performance, a dual optimization approach employing ANN and
NSGA-II was employed. Additionally, the TOPSIS decision-making method was applied
to identify the most favorable solution.

3. Materials and Methods

The schematic diagram depicting the integration of the solar collector cycle, the ORC
system, and the RO unit is shown in Figure 1. This coupling arrangement showcases the
interconnectedness and interplay of these components within the overall system. The
WF of the solar cycle is Dowtherm A. The WF is heated by a solar collector during the
daytime when there is sunshine. It then flows into the hot tank (HT). After undergoing
heat exchange with the evaporator and economizer, the WF, now at a lower temperature,
returns to the cold tank (CT), where it awaits reheating once again by the solar collector. In
the ORC, the WF used is toluene. The WF is preheated at point 8 by the economizer, and
subsequently undergoes heat exchange in the evaporator. As a result of this heat exchange
process, the WF transforms into vapor, which is observed at point 10. The vapor expands
through the turbine to generate power. A portion of the vapor is extracted and directed
towards the open feed organic fluid heater (OFOH), while the remaining WF flows towards
the HE. At point 14, the WF undergoes heat exchange before proceeding to the TEG to
further enhance system efficiency and generate power. Subsequently, the two portions of
the WF are mixed again at the OFOH and, after passing through pump 3, return to the
economizer to complete the cycle. The power generated by the turbine and TEG are utilized
in the RO system for the production of desalinated water.

A comprehensive analysis of the proposed system is imperative to assess its perfor-
mance thoroughly. This analysis should encompass energy, exergy, and economic aspects,
taking into account the baseline values and design conditions specified in Table 1.

Table 1. Design parameters and input values for the suggested system’s parts.

Subsystem Parameters Symbol Value Unit

PTC [28]

Absorptivity of receiver α 0.96 -
heat loss coefficient UL 3.82 W/m2·◦C

Correction factor for diffuse radiation γ 0.95 -
Effective transmissivity τp 0.94 -

Heat transfer coefficient inside the receiver h f i 300 W/m2·◦C
Receiver inside diameter Di,r 0.066 m

Receiver outside diameter Do,r 0.07 m
Single collector length L 12.27 m
Single collector width W 5.76 m

Thermal conductivity of the receiver K 16 W/m2·◦C
Transmissivity of the cover glazing τc 0.96 -

Direct normal irradiance Gb 850 W/m2
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Table 1. Cont.

Subsystem Parameters Symbol Value Unit

membrane permeability resistance Km 8.03 × 10−11 m2·s/(kg·Pa)
total number of membranes n 600 -

RO [47] the number of trains bn 7 -
Number of pressure vessels NP 42 -

Recovery ratio RR 0.3 -
Seawater salinity X20 45 g/kg
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3.1. Energy Analysis

The following are the presumptions taken into account when simulating the sys-
tem configurations:

• For modeling all the components, a steady-state condition is taken into consideration;
• Kinetic and potential energy changes are disregarded;
• 298.15 K and 101.3 kPa are the ambient temperature and pressure, respectively;
• Pump and turbine isentropic efficiency are 80% and 85%, respectively.

3.1.1. Parabolic Trough Collector (PTC)

During the daytime, the solar collector absorbs the heat from the sun, and the heat
transfer rate is [48]:

.
Qu = N·FR·[(SAR·Aa)− (Ar·UL·(Tin − T0))] (1)

.
Qu =

.
m2(h2 − h1) (2)

where N is the number of collectors, and Aa and Ar represent the areas of the aperture
and receiver, respectively. Additionally, UL denotes the heat loss coefficient of the collector,
while Tin and T0 refer to the inlet temperature of the collector and room temperature,
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respectively. FR represents the heat loss factor, The absorbed solar radiation, denoted as
SAR, can be calculated as follows [49]:

SAR = Gb·τc·τp·γ·α (3)

While the heat loss factor is:

FR =

.
mCL·Cp,CL

Ar·UL
·
(

1− exp

(
−Ar·UL·FCL

.
mCL·Cp,CL

))
(4)

where the
.

mCL represents the mass flow rate of the WF, and FCL denotes the efficiency
factor of the PTC, which is determined by the following calculation:

FCL =
U−1

L

U−1
L + Do,r

h f i
+
(

Do,r
2k ·ln

Do,r
Di,r

) (5)

where k represents the thermal conductivity of the receiver, D denotes the diameter, and the
subscripts i and o represents the inside and outside, respectively. The area of the aperture
can be determined as follows:

Aa = LCL·(W − Do,r) (6)

where LCL and W are the length and width of the receiver.

3.1.2. Thermoelectric Generator (TEG)

Through the implementation of the Seebeck effect, TEGs have demonstrated their
ability to directly convert thermal energy into electric power. A TEG consists of three
essential components: a heat exchanger, thermoelectric modules, and a heat sink. The
functioning of a TEG is governed by the temperature disparity between the two sides of the
generator [50]. In order to achieve optimal efficiency in thermoelectric energy conversion,
the thermoelectric figure of merit (ZTM) is typically employed. Enhancements in the ZTM
value led to a corresponding increase in thermoelectric efficiency. ZTM can be calculated
as [51]:

ZTm =
ψ2Tm

KR
(7)

where K denotes the thermal conductivity, Tm is the mean temperature, and R is the
resistance within the TEG, ψ is the Seebeck coefficient, which is defined as:

ψ = −∆V
∆T

(8)

Tm =
1
2
(TH + TL) (9)

TH =
1
2
(T14 + T15) (10)

TL =
1
2
(T18 + T19) (11)

Here, T and V denote the temperature and voltage, respectively. The subscript H and
L represent the high temperature and low temperature of the TEGs. The efficiency of the
TEG is:

ηTEG = ηC

√
1 + ZTm − 1

√
1 + ZTm + TL

TH

(12)
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ηC = 1− TL
TH

(13)

where ηC is the Carnot efficiency, and the energy balance of the TEG unit can be shown
as [52]:

.
m14h14 +

.
m18h18 =

.
m15h15 −

.
m19h19 +

.
WTEG (14)

ηTEG =

.
WTEG

.
m14(h14 − h15)

(15)

3.1.3. Reverse Osmosis (RO)

The mass conservation equation for each component, along with the recovery ratio, is
utilized to determine the water mass flow rate in each pipe and its corresponding salinity.
The recovery ratio is defined as the proportion of feed water to fresh water [53]:

RR =

.
mFW

.
m f eedwater

=

.
m22
.

m20
(16)

The energy balance equation can be described as [54]:

.
WRO = bn(

.
WHPP −

.
WHPT) (17)

.
WHPP =

∆P
.

m20

ρ20ηHPP
(18)

.
WHPT =

∆P
.

m22ηHPT
ρ22

(19)

where
.

WHPP and
.

WHPT represent the power of the pump and turbine in the RO unit, bn

refers to the number of trains, and
.

WRO denotes the net power required by the RO plant.
∆P refers to the transmembrane pressure, ηHPT and ηHPP denote the isentropic efficiencies
of the turbine and pump respectively, and ρ represents the density.

∆P = ∆π + JwKm (20)

Jw =

.
m22

ρ22nAmem
(21)

∆π = 8.051× 107CwR (22)

where Jw denotes volumetric permeate flow rate, Km represents the membrane permeability
resistance, ∆π denotes the transmembrane osmotic pressure, n is the number of membranes,
Amem is the area of membranes, and Cw is the membrane wall concentration, which can be
described as:

Cw =
e(

Jw
Kmass )x20

e(
Jw

Kmass )(1− RC) + RC

(23)

Kmass = 0.04Re0.75Sc0.33 Ds

d
(24)
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Here, Kmass is the mass transfer coefficient and RC is the membrane rejection. Further-
more, Sc and Re denote the Schmidt and Reynolds numbers, respectively. The Schmidt and
Reynolds numbers can be calculated as follows:

Re =
.

m20

NchLW NPµ20
(25)

Sc =
µ20

ρ20Ds
(26)

where NP and Nch represent pressure vessels and feed channel numbers, respectively.

3.1.4. Organic Rankine Cycle (ORC)

The WF of this cycle is toluene, and the heat transfer from the economizer can be
described as:

.
m8(h9 − h8) =

.
m5(h5 − h6) (27)

.
QEco =

.
m8(h9 − h8) (28)

where
.

m denotes the mass flow rate of the WF, and h represents the enthalpy of each state.
The equation presented below is utilized to ascertain the precise amount of heat that the
evaporator provides to initiate its cycle [55]:

.
m9(h10 − h9) =

.
m5(h4 − h5) (29)

.
QEva =

.
m9(h10 − h9) (30)

The following represents the output power generated by the turbine:

.
WTur =

.
m10h10 −

.
m11h11 −

.
m13h13 (31)

h11 = h10 − ηTur(h10 − h11s) (32)

where ηTur is the isentropic efficiency of the turbine. The heat transfer of HE also can be
described as: .

QIHE =
.

m13(h13 − h14) =
.

m16(h17 − h16) (33)

The energy balance based on the first law for OFOH is:

.
m12h12 =

.
m11h11 +

.
m17h17 (34)

The useful work and pump operation of the ORC are derived based on the follow-
ing equations:

.
WNet =

.
WTur +

.
WTEG −

.
WPump3 −

.
WPump4 (35)

.
WPump3 =

.
m12(h8 − h12) (36)

.
WPump4 =

.
m15(h16 − h15) (37)

3.2. Exergy Balance

Exergy serves as a reflection of the thermodynamic characteristics of a system, encom-
passing potential exergy, chemical exergy, physical exergy, and kinetic exergy as its primary
components. This present work only considers physical exergy aspects within the system.
The following equation is employed for quantifying the exergy content within each unit:

.
Exi =

.
m[(hi − h0)− T0(si − s0)] (38)
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where h0 and s0 represent the enthalpy and entropy of the WF at standard ambient pressure
and room temperature. Based on the second law of thermodynamics, the exergy balance
equation for each unit is expressed in the following form:

.
ExQ + ∑

.
Exi = ∑

.
Exe +

.
Exw +

.
ExD (39)

.
ExQ =

(
1− T0

T

)
Q (40)

.
Exw = W (41)

.
ExQ denotes the exergy resulting from heat transfer, while

.
Exw signifies the exergy resulting

from work, and
.
ExD represents the exergy destruction. The exergy efficiency of the ORC is

defined as:

ηEX =

( .
WNet +

.
Ex19

)
·tDay

.
ExSun ·tSun +

.
Ex18·tDay

(42)

where tSun and tDay denote the time of sun radiation (10 h) and one day (24 h). The exergy
balance equations for each component are presented in Table 2.

Table 2. The exergy balance equations of each component.

Component Exergy Balance Equations

Solar collector
.
ExSun +

.
Ex1 =

.
Ex2 +

.
ExDSun

HT
.
Ex2 =

.
Ex3 +

.
ExDHT

CT
.
Ex6 =

.
Ex7 +

.
ExDCT

Pump1
.
Ex7 +

.
WPump1 =

.
Ex1 +

.
ExDPump1

Pump2
.
Ex3 +

.
WPump2 =

.
Ex4 +

.
ExDPump2

Evaporator
.
Ex9 +

.
Ex4 =

.
Ex5 +

.
Ex10 +

.
ExDEva

Economizer
.
Ex5 +

.
Ex8 =

.
Ex6 +

.
Ex9 +

.
ExDEco

Turbine
.
Ex10 =

.
Ex11 +

.
Ex13 +

.
WTur +

.
ExDTur

Pump3
.
Ex12 +

.
WPump3 =

.
Ex8 +

.
ExDPump3

OFOH
.
Ex11 +

.
Ex17 =

.
Ex12 +

.
ExDOFOH

HE
.
Ex13 +

.
Ex16 =

.
Ex14 +

.
Ex17 +

.
ExDIHE

TEG
.
Ex14 +

.
Ex18 =

.
Ex15 +

.
Ex19 +

.
ExDTEG

Pump4
.
Ex15 +

.
WPump4 =

.
Ex16 +

.
ExDPump4

3.3. Economic Analysis

A thorough understanding of energy systems can be obtained by taking into account
economic analyses, particularly hourly costs. The rates for plant investment costs, mainte-
nance costs, labor wages, plant overhead and administration costs, insurance costs, local
taxes, and royalty costs are added up to create the rate for plant development and operation.
The following formula could be used to calculate the investment cost rate [56]:

.
Ztot =

Z·CRF·ϕ
τ

(43)

where Z stands for the capital invested in the plant, CRF for the capital recovery factor
(0.11), ϕ for the maintenance factor (1.06), and τ for the number of working hours per year
(7446 h). The CRF is defined as:

CRF =
i·(1 + i)n

(1 + i)n − 1
(44)



Sustainability 2023, 15, 13602 11 of 20

where i is the interest rate (0.1) and n denotes the reactor duration (20 years). The pivotal
determinant influencing overall investment assessment lies within the heat transfer area,
a critical component particularly impactful in heat exchanger costing. One illustrative
depiction of the heat exchanger is as follows [57]:

Qi = ∆Tm AiUi (45)

where Qi is the flow rate of heat transfer, Ai denotes the heat transfer area, and Ui signifies
the coefficient of heat transfer. In addition, the Logarithmic Mean Temperature Difference
(LMTD), which may be mathematically defined as ∆Tm, is represented by [58]:

∆Tm =
∆T1 − ∆T2

ln ∆T1
∆T2

(46)

Table 3 provides the economic information that was used in the calculations.

Table 3. The investment cost rate of each component [47].

Component Capital Expense Function (US$)

Solar collector ZSC = 240Aa N
Evaporator ZEva = 276A0.88

Eva
Economizer ZEco = 276A0.88

Eco

Pumps ZPump = 3540
.

W
0.71
Pump

TEG ZTEG = 1500
.

WTEG

Turbine ZTur = 4750
.

W
0.7
Tur

HE ZIHE = 12000
(

AIHE
100

)0.6

OFOH ZOFOH = 145.315(
.

QOFOH)0.6

RO desalination ZRO = 0.98(
.

mFW)0.67

4. Results and Discussion

The thermodynamic properties of the system are analyzed using EES. The working
fluid for the solar cycle is DowthermA, known for its excellent heat transfer properties.
To expedite the calculation process, an ANN is incorporated into the simulation. ANN
is a well-established machine-learning algorithm, renowned for its simplicity, ease of
implementation, and exceptional performance across various applications [59]. Notably,
a three-layer backpropagation neural network can approximate a rational function with
remarkable precision. In this study, a three-layer BP network is employed to describe the
thermodynamic processes based on the working fluid parameters. These layers include the
input layer, hidden layer, and output layer.

Figure 2 illustrates the comprehensive system flowchart. The procedural sequence
unfolds as follows: initial data generated during EES modeling were seamlessly channeled
into the ANN framework to streamline the modeling procedure. Subsequently, the opti-
mization phase was orchestrated through NSGA-II to yield a Pareto frontier. Finally, the
judicious application of the TOPSIS decision-making approach culminated in the selection
of the most optimal solution for the system.

Upon concluding the entire modeling process, EES generated a dataset comprising
1000 random data points. These data points were derived from the optimization parameter
range. Table 4 presents the optimal parameters along with their respective ranges of
variation. In consideration of both the economic property and system performance, the
total hourly investment (

.
Ztot) and the exergy efficiency of the ORC (ηEX) were chosen as

the output optimization variables. To construct accurate ANN models for thermodynamic
processes, a substantial amount of data is necessary for network training. Thus, this study
utilized the 1000 random data points obtained from EES.
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Figure 2. The flowchart of the proposed system.

Table 4. The logical range of the operating parameters.

Parameters Upper Bond Lower Bond

T15 (◦C) 90 70
T2 (◦C) 400 370
T10 (◦C) 280 240
ATol (m2) 10,000 7000

The 1000 random data points were divided into three distinct parts for training, testing,
and validation purposes. Specifically, 70% of the data was allocated for training, while
15% was set aside for testing. The remaining 15% was utilized for validation. The model’s
validation results are illustrated in Figure 3. The accuracy of the ANN is evaluated using
the coefficient of determination (R). A higher value of R indicates a greater accuracy of the
neural network’s predictions. As the value approaches unity, the forecast of the neural
network becomes increasingly precise. This observation is depicted in Figure 3, confirming
the model’s exceptional accuracy.
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4.1. Validation

Recognizing the innovative nature of the proposed system, a rigorous validation of its
pivotal components was undertaken to uphold the accuracy of the analytical conclusions.
Subsystem validation was executed independently, utilizing published data from Yu [26]
and Yang [60]. In Table 5, a comprehensive comparison is presented between the outcomes
of the present investigation and the findings reported in these references concerning
the ORC cycle, revealing remarkable congruity with the conclusions elucidated in the
cited work.

Table 5. Validation detail for the proposed system.

THT (◦C) TCT (◦C) PEVA (bar) Tinlet
Tur (◦C) ηORC (%) ηsys (%)

Yang et al. [60] 375 71.7 37.12 311.5 22.2 14.9
This work 375 71.7 37.12 311.5 22.2 14.82
Yu et al. [26] 368 57.6 37.12 313.3 24.3 17.4
This work 368 57.6 37.12 313.3 24.3 16.3

4.2. Parametric Analysis

In this endeavor, the primary objective is to identify the design elements that exert the
most significant influence on the performance of the system. The impact of T15 and T10 on
the chosen performance goals of the suggested system is depicted in Figure 4. The range of
T15 is from 70 to 90 ◦C. Notably, in Figure 4a, it is evident that both ηEX and

.
Ztot exhibit a

decline as T15 increases. The variation range of ηEX is from 30.44% to 30.07%; meanwhile,
the maximum value of

.
Ztot is US$39.4/h, and the minimum value of

.
Ztot is US$39.09/h.

The inlet temperature of the turbine (T10) also has a great influence on the performance
of the system. Figure 4b reveals that both ηEX and

.
Ztot exhibit an increase as T10 rises.

Notably, at a T10 value of 280 ◦C, both ηEX and
.
Ztot reach their maximum values of 30.52%

and US$39.44/h, respectively. The desired minimum value of
.
Ztot, however, is attained at

T10= 240 ◦C, where it reaches US$38.11/h. The variables T15 and T10 are intricately tied to
the system’s heat absorption amount. Elevated T10 values coupled with lower T15 values
signify enhanced heat transfer, resulting in heightened exergy efficiency. It is important to
note that a larger heat transfer area corresponds to increased costs.
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Figure 4. Contribution of output temperature of TEG T15 (a) and inlet temperature of turbine T10 (b)
with the exergy efficiency and total cost of the system.

The performance of the system is greatly influenced by the total area of the solar
collector (Atot) and the temperature of the output WF (T2). Figure 5 illustrates the relation-
ship between ηEX and

.
Ztot with respect to Atot and T2. In Figure 5a, it is evident that ηEX

increases as Atot increases. The maximum value of ηEX , reaching 31.65%, is observed when
Atot equals 9000. Simultaneously,

.
Ztot also shows an increasing trend, with a minimum
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value of US$35.54/h. In Figure 5b, ηEX and
.
Ztot decrease as T2, the maximum value of

ηEX is 30.83% and, furthermore, the minimum value of
.
Ztot is US$39.06/h. Based on the

above analysis, achieving a higher ηEX can be accomplished by increasing Atot and T10

while decreasing T2 and T15. In contrast, lower
.
Ztot can be realized by increasing T2 and T15

while decreasing Atot and T10. In order to strike a balance between higher efficiency and
lower cost, it becomes apparent that both cannot be achieved simultaneously. Therefore,
the modeling process incorporates optimization techniques to find an optimal solution.
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Figure 5. The influence of the area of the solar collector Atot (a) and the outlet temperature of solar
collector T2 (b) on the exergy efficiency and total cost of the system.

4.3. Multi-Objective Optimization

The performance of the ORC is influenced by a wide range of factors. The performance
metrics or expenses typically increase or decrease in tandem with these parameters. For
this reason, the best design point should be discovered via multi-objective optimization.
Many challenging engineering optimization issues can be realistically modeled using
multi-objective optimization. Because minimizing cost and maximizing performance are
sometimes at odds with one another in real-world problems, using the single-objective
approach to optimize a particular state can produce unexpected outcomes when compared
to other objective functions. Two optimization goal functions for the ORC design have
been chosen for this work. The primary objective function is to increase the cycle’s exergy
efficiency, which is computed using ηEX , and the second objective function is to minimize
the initial hourly cost of the system

.
Ztot. Based on the parametric analysis, four design

variables were chosen to be the input parameter for optimization.
In the present study, the NSGA-II algorithm is employed to obtain the optimal solution.

Throughout the process, a population of distinct solutions is iteratively modified. At each
stage, individuals are randomly selected from the existing population to act as parents and
produce offspring for future generations. The population gradually adapts toward the best
solution across subsequent generations. For this study, the population size is 200, and the
maximum number of generations is 100. Details of the parameters are shown in Table 6.

Table 6. The control parameters during the optimal process in NSGA-II.

Parameters Value

Population size 200
Crossover fraction 0.7
Selection process Tournament
Migration fraction 0.4
Maximum generation 100
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The Pareto frontier solution for the proposed system obtained through NSGA-II is
shown in Figure 6, which amply illustrates the conflict between two objectives—ηEX and
.
Ztot. The

.
Ztot rises whenever a thermodynamic parameter boosts the ηEX . The highest ηEX

is present at design point A because this is where the
.
Ztot is highest. On the other side,

design point B has the lowest
.
Ztot and the lowest ηEX . When energy efficiency is a single

goal function, design point A represents the ideal circumstance, whereas design point B
represents the ideal situation when the hourly cost is a single objective function.
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All the solutions are the best choice for the proposed system, and the TOPSIS decision-
maker is used to choose the ideal point. Optimization result details are shown in Table 7.
The ideal point chosen by TOPSIS corresponds to the values of US$39.38/h for

.
Ztot and

30.39% for ηEX , respectively. Simultaneously, the system exhibits a total output power of
577.9 kJ/kg, a mass flow rate of fresh water of 137.7 m3/h, and a district heating supply of
1074 kJ/kg.

Table 7. Optimization details for the TOPSIS ideal point.

Parameters TOPSIS Value Point A Point B

T15 (◦C) 70.92 70.00 84.48
T2 (◦C) 371.89 370.63 379.11
T10 (◦C) 281.50 282.11 263.06
ATol (m2) 6671.55 9535.19 6668.21
ηEX (%) 30.39 31.93 28.58
.
Ztot (US$/h) 39.38 55.53 38.50
.

Wnet (kJ/kg) 577.9 869.5 516
.

mFW
(
m3/h

)
137.7 183.8 126.8

.
QDH (kJ/kg) 1074 1606 1090

4.4. Cost Analysis

The cost diagram, presented in Figure 7, provides a visual representation of the cost
breakdown, while Table 8 provides detailed information. Notably, the solar collector stands
out as the most expensive component, amounting to US$26.77/h, representing approxi-
mately 68% of the total cost. Following closely, the turbine incurs the second highest cost
at US$6.185/h, accounting for approximately 15.7% of the total cost. The third and fourth
most expensive units within the system are the TEG and RO, with costs of US$2.318/h and
US$2.256/h, respectively. These costs represent approximately 5.9% and 5.7% of the total
system cost, respectively. The ORC system is composed of several integral components,
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including an economizer, evaporator, HEX, OFOH, pump, and turbine. Notably, the in-
vestment cost of the ORC system amounts to US$8.0377/h, accounting for approximately
20.4% of the overall system cost.
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Table 8. The hourly cost of each element.

Elements Hourly Cost (US$/h) Percentage (%)

Economizer 0.4516 1.1
Evaporator 0.3365 0.9
HEX 0.2275 0.6
OFOH 0.2964 0.8
Pump 0.5407 1.4
Turbine 6.185 15.7
RO 2.256 5.7
TEG 2.318 5.9
Solar collector 26.77 68

The primary cost factor is associated with the solar cycle. Future efforts should
prioritize the reduction of solar collector costs and explore hybrid systems, such as a solar–
geothermal hybrid system, which could offer a more effective solution. Furthermore, in
contrast to prior studies, ANN is employed for optimization in this work. This approach
tackles complex calculation challenges and notably diminishes computation time. The
ANN plays a crucial role in streamlining the thermodynamic model. Both the HE and
TEG have been seamlessly integrated into the system, effectively enhancing the overall
efficiency of the ORC.

5. Conclusions

An investigation was conducted to compare the thermodynamic performance and eco-
nomic parameters of a PTC (Parabolic Trough Collector) powered ORC (Organic Rankine
Cycle) using DowthermA and toluene. The study employed thermo-economic multi-
objective optimization and decision-making techniques. Four key parameters, namely the
outlet temperature of the solar collector (T2), turbine inlet temperature (T10), TEG outlet
temperature (T15), and overall area of the solar collector (Atot), were analyzed to determine
their impact on the system’s exergy efficiency and hourly cost.

Through the application of TOPSIS decision-making, the Pareto-optimal solutions
were identified from the Pareto-optimal frontier. The investigation yielded several notable
findings, which can be summarized as follows:
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• The exergy efficiency (ηEX) and hourly total cost (
.
Ztot) exhibit a decrease when the

temperatures T2 and T15 increase. Conversely, an increase in ηEX and
.
Ztot is observed

with higher temperatures T10 and Atot.
• The NSGA-II algorithm is employed for the optimization process, resulting in a Pareto

frontier. From this frontier, the range of ηEX is found to be between 28.58% and 31.93%,
while the range of

.
Ztot spans from US$38.5/h to US$55.53/h.

• Utilizing TOPSIS decision-making, the best solution from the Pareto frontier is deter-

mined, with ηEX and
.
Ztot values of 30.39% and US$39.38/h, respectively. Additionally,

the system parameters include a mass flow rate of fresh water at 137.7 m3/h, a total
output net power of 577.9 kJ/kg, and a district heating supply of 1074 kJ/kg.

• A detailed breakdown of the cost rates for each component reveals that the solar
collector accounts for US$26.77/h, representing approximately 68% of the total hourly
cost. The subsequent components in terms of cost are the ORC, TEG, and RO units.

Moreover, it is essential to acknowledge several limitations within this research. No-
tably, the system optimization was exclusively performed under design conditions, with
off-design operations not being considered. To address this, extending the analysis to
encompass dynamic simulations would enable the capture of transient behaviors and
facilitate the evaluation of system responses across diverse operational scenarios. This
expansion will facilitate a deeper and more comprehensive understanding of the intricate
dynamics that are inherent to the system.
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