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Abstract: Precision agriculture (PA), management zone (MZ) strategies at the field level, soil analyses,
deficit irrigation (DI), and fertilizer Variable Rate Application (VRA) are management strategies that
help farmers improve crop production, fertilizer use efficiency, and irrigation water use efficiency
(IWUE). In order to further investigate these management strategies, the effects of four soil MZ
treatments, which were delineated using PA with fuzzy k-means clustering, two irrigation levels
[IR1:FI = full drip irrigation (>90% of θ f c), IR2:VDI = variable deficit drip irrigation (60–75% of θ f c)],
and four VRA fertilizations were studied on coriander yield and essential oil content in a two-year
research project in Greece. A daily soil-water-crop-atmosphere (SWCA) balance model and a daily
depletion model were developed using sensor measurements (climatic parameter sensors as well as
soil moisture sensors). Unbalanced one-way ANOVA (p = 0.05) statistical analysis results revealed
that correct delineation of MZs by PA with fuzzy k-means clustering, if applied under deficit irrigation
and VRA fertilization, leads to increased essential oil content of coriander with statistically significant
differences (SSD) and lower fruit yields; however, without SSD differences among management
zones, when appropriate VRA fertilization is applied to leverage soil nutrient levels through the
different fuzzy clustered MZs for farming sustainability. Moreover, VDI compared to full irrigation
in different MZs yields 22.85% to 29.44% in water savings, thus raising IWUE (up to 64.112 kg m−3),
nitrogen efficiency (up to 5.623), and N-P-K fertilizer productivity (up to 5.329).

Keywords: management zones and deficit irrigation; precision agriculture and MZ fuzzy k-means
clustering; VRA fertilization; coriander yield and oil content; soil and hydraulic analyses

1. Introduction

Approximately 70% of our planet’s area is occupied by water [1–3]; however, just
2.5% is fresh water [4]. The Earth’s most confined freshwater resources are valued at
35,000,000 km2. Low proportions of these fresh water supplies are directly accessible to
mankind in river bodies, reachable lakes, groundwater, soil moisture (SM), or precipi-
tation [5]. Humanity is overusing confined freshwater resources [3], resulting in water
scarcity that endangers several regions of the world, with approximately 800 million
humans not having adequate access to portable water and 2,500,000 million lacking ap-
propriate sanitation, indicating that the problem is expected to intensify in the coming
years [6]. Agriculture is the biggest freshwater user on earth, absorbing almost two-thirds
of overall withdrawals [3,7]. The agricultural segment represents 70% of the earth’s fresh-
water abstractions [3,8,9], 59% of overall freshwater usage in Europe (EU), and around
284,000 million m3 are pumped yearly in order to serve EU requirements [10]. Presently,
a lot of nations across the world are confronted with a shortage of fresh water [3,6–11]
for drinking and irrigational purposes. The planet’s water requirements are foreseen to
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grow by 55% over the period 2000–2050, from 3500 to 5425 km3. Data analysis has revealed
that climate change will have detrimental consequences for the earth’s water supplies,
food productivity, and yields, resulting in a high extent of inter-regional variation and
deficit [12–14]. This situation is predicted to escalate the pressures on the world’s existing
freshwater reserves, with a concurrent growth of 70–90% in irrigation water demands by
2050 [15,16]. The quantity of irrigation water has consistently been the principal driver
constraining plant yields in the world’s majority, where precipitation is inadequate to match
plant water demands [3,9,14]. Global cropping productivity has considerably risen in the
last century, boosting the irrigated land by a factor of almost six and raising the pressure
on the irrigation water requirements [14]. The frantic rising and growing demand for the
world’s diminishing water reserves and the continuously escalating consumption of agricul-
tural products, the challenge of enhancing the effectiveness and capacity of irrigation water
consumption by crops, guaranteeing the future security of food and crop commodities, and
addressing the ambiguities arising from climate change have never seemed so critical [17].

A promising way forward to relieve the growing worldwide water shortage could be
to exploit existing irrigation water supplies (precipitation, surface and subsurface water,
and effluents) in a more viable, wise, and eco-friendly manner [18]. The above objectives
could be accomplished by optimizing farm, soil, irrigation, and crop zone management.

In the coming decades, the world will be faced with the challenge of boosting crop
yields using less water [18]. Precision agriculture (PA) and deficit irrigation (DI) are
agricultural and irrigational management practices that assist growers in increasing the
yield of their crops and optimizing water effectiveness and capacity, soilbed, farm supplies,
and other inputs (pesticides, grains, manures, chemical fertilization products, etc.).

The PA industry is projected to increase from € 8.1 billion in 2022 to € 14.8 billion by
2030 as a result of the increasing acceptance of technologies such as auto-steering, posi-
tioning systems, remote sensing, various sensoring devices, GIS, agrodrones, PA computer
programs, smart phone apps, and VRA applications [18]. The DI is an irrigation strategy
that implements less water than the quantity used for complete watering. VDI is recognized
as a core component as it helps to enhance irrigation IWUEs [3,18–21]. The consequences of
DI on plant productivity, water uptake, and IWUE were investigated for many agricultural
plants, legumes, vegetables, herbs, and spices [14,18–28].

Aromatic plant and spice sectors have been undergoing rapid expansion for many
decades due to rising consumption in developing economies in conjunction with their
rising importance for health and gastronomic benefits [14,29]. The global herb and spice
market with miscellaneous products nowadays represents a multi-billion-dollar industry
that is thriving thanks to global sales and the spread of production areas [29]. An extremely
valuable aromatic herb-spice is coriander (Coriandrum sativum L.), or cilantro. It is a mem-
ber of the Apiaceae (Umbellifera) family, which is recognized as an indigenous plant to
Mediterranean countries, Western Europe, and Asia. This herb has been utilized since
the ancient ages for cooking, pharmaceutical treatment, and perfumery [14,30–35]. The
essential oil that is being extracted from the coriander berries (usually called seeds) has
multiple usages [14,30–36] and it is normally removed from the fruits, generally either
by steam distillation, hydro-distillation, or the new microwave-assisted hydrodistillation
methodology [37]. The essential oil content was reported to range from 0.125 to 1.90%
(v·w−1), including 60–70% of linalool, the substance that produces the pleasant, distinctive
aroma [14,30,32,33,36–44]. It is noteworthy that out of 60 essential oil crops, coriander herb
had the largest yearly harvest (710 tons) and the greatest market value (USD 49.7 million)
among 21 of the 60 crops [31]. The cilantro has numerous healing effects, such as anti-
inflammatory, analgesic, antispasmodic, blood pressure reducer, high cholesterol reducer,
anti-oxidant, anti-diabetic, anti-metabolic, calming-sleeping, protector against lead poison-
ing, and heavy metal detoxicant [14,32,45]. The presence of soil moisture (SM) is regarded
as vital for the recycling of nutrients, a precondition for prime plant growth [3] so the
hydraulic parameters of the soil that affect water movement, infiltration, and SM retention
are regarded as key components to plant growth and should be considered as important
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factors in management zone delineation. In addition, SM influences evapotranspiration,
which is a fundamental mechanism in the climatic cycle and a link between the water,
energy, and carbon chains [9,11,14,17,18,46–48], and also influences a range of different
procedures associated with crop growth and agro-food production, including a number of
soil functions [3,17,48–52].

Precipitation and irrigation provide SM, and they are utilized for crop yields; however,
moisture would be depleted more and more in mid-latitudes as a result of climatic and
land usage alterations [51]. As is obvious, limited water reserves often constrain plant
yields in semi-arid soils. Water resources decline and shortages due to many environmental
impacts and overuse of irrigation systems are significant environmental concerns around
the world [11,20,47]. In terms of new agricultural practices, PA refers to a managerial
strategy that collects datasets utilizing a variety of modes, tools, and procedures, parses
them in time, space, and single geodata, and synthesizes them with various other digital
or analog inputs to support appropriate crop farming decisions based on assessed field
diversity to improve resource utilization efficiently, improve yields, quality, profitability,
and sustainability [14,18]. On the contrary, the conventional practice employs the entire-
field management method, in which every farmfield is managed as a homogeneous crop
area (but in reality, it is not) and does not take into account the variability of soil hydraulic,
chemical, and granular parameters, the field’s topography, land use practices, or local
prevailing climatic conditions. The various field inputs (irrigational water or wastewater,
agrichemicals, fertilizers, etc.) are evenly spread over the entire field. This method is
considered appealing to farmers for being quite fast and simple to operate, yet it leads
to poor input efficiency, increased cultivation costs, and various inherent environmental
costs. In addition, inadequate irrigational water and fertilizer application negatively affect
crop growth and, consequently, yield. Regarding management zones, using classification
algorithms [53–67] is considered an appropriate counterpart to correlation and regression.
Soil data may be classified together or apart from additional data, such as spectral or yield,
to “cluster” these data into feasible MZs. Towards this goal, grouping methods are widely
adopted in PA, especially the fuzzy k-means algorithms and their variations [53–61,63–66],
which create classes (MZs) with much better homogeneous performance in each MZ that
can be considered functional management zones [63–67].

The two-year research aim was to study the effects of homogeneous management zones
properly delineated using PA with fuzzy k-means clustering, variable deficit irrigation, and
VRA fertilization on coriander fruit and essential oil yields.

2. Materials and Methods
2.1. Study Area and Climatic Conditions

The two-year trial was undertaken on a farm located in the municipal unit of Kran-
nonas (39◦33′54.0′′ N and 22◦21′48.4′′ E) of the Kileler Municipality, in the valley “Thessaly”
in the Central Greece region. The climatic data were obtained from the local weather
station. The area studied is dominated by a standard Mediterranean climate with a mild
autumn with medium to high precipitation, a cold winter with high precipitation, a mild
spring with low to medium precipitation, and a hot and dry summer with frequent hot
temperatures and poor rainfall [3,9,11,14,21]. In the recent 10-year period, the mean annual
rainfall was measured with sensors to an amount of 456.91 mm, the mean air temperature
(AT) was 17.36 ◦C, the average maximum AT was 30.10 ◦C, the maximum AT was 45.50 ◦C,
the average minimum AT was 7.39 ◦C, and the minimum AT was −12.70 ◦C. The average
daily climate data for the 3-year climatic analysis, which is two growing seasons (g.s.) are
depicted in Figure 1. Temperatures during the 2 g.s. varied as follows: average AT was
14.20 ◦C (±6.74), average maximum air temperature was 19.81 ◦C (±7.99), maximum AT
was 40.20 ◦C, average minimum AT was 9.47 ◦C (±5.97), and minimum AT was −3.70 ◦C.
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Figure 1. Various mean daily climatic data for the 3-year (two growing seasons) analysis (a) Diagram
of precipitation and reference evapotranspiration (penman-monteith), (b) Diagram of average air
temperature, min and max air temperature, (c) Diagram of air’s relative humidity, solar radiation and
wind u2.

A careful reading of climatic variables shows that air temperature (average, higher,
and lower), relative humidity, and wind speed have permissible values that are suitable
for the appropriate development of the coriander plant. In contrast, the volume of precip-
itation and its timing in the four growth stages of the coriander (November to June) do
not adequately meet the crop’s water demand; therefore, irrigation is necessary to achieve
good yields. Indeed, the cumulative precipitation that fell throughout the coriander’s
growing season was recorded as a mean precipitation of 290.90 mm, and it was found to be
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360.20 mm and 221.60 mm in the 1st and 2nd growing seasons, respectively. The evapotran-
spiration of the crop (computed using the Penman-Monteith methodology [3,18,19,23,28])
in the various MZs of the field was found to be between 558.77 and 564.44 mm in the
1st g.s., whereas in the 2nd g.s. was found to be between 519.43 and 521.97 mm. The
aforementioned data on the local climate are crucial because they have a direct impact
on crop growth, evapotranspiration, and plant water demands. However, apart from air
temperature and precipitation, there are a number of other climate parameters that affect
the water demand of crops. The most influential parameters are the air’s relative humidity,
wind speed, and solar radiation.

2.2. Experimental Design and Variants

The coriander’s experimental design was a four management soil zones unbalanced
design since the four MZs were the de facto treatments (MZx where x = 1. . .4) (Table 1)
obtained by PA with a fuzzy k-means clustering algorithm. Moreover, every MZ had two
irrigation levels [MZx-IR1: full irrigation (>90% of θ f c) where x = 1. . .4, MZx-IR2: variable
deficit irrigation (60–75% of θ f c) where x = 1. . .4, using a surface drip irrigation system].

Table 1. Experimental variants (factors and levels) in 1st and 2nd cultivation season.

Trial Season Factors

1st cultivation
season 1st MZ 2nd MZ 3rd MZ 4th MZ

Percentage of
field’s cultivated
area

23.61% 24.31% 23.61% 28.47%

Irrigation levels IR1:FI * IR2:VDI ** IR1:FI * IR2:VDI ** IR1:FI * IR2:VDI ** IR1:FI * IR2:VDI **

VRA mean
Nitrogen levels
(kg·ha−1)

518.985 518.985 593.528 593.528 548.310 548.310 572.270 572.270

VRA mean P2O5
levels (kg·ha−1) 28.648 28.648 45.290 45.290 49.929 49.929 25.168 25.168

2nd cultivation
season 1st MZ 2nd MZ 3rd MZ 4th MZ

Irrigation levels IR1:FI * IR2:VDI ** IR1:FI * IR2:VDI ** IR1:FI * IR2:VDI ** IR1:FI * IR2:VDI **

VRA mean
Nitrogen levels
(kg·ha−1)

612.402 612.402 611.334 611.334 594.916 594.916 595.160 595.160

VRA mean P2O5
levels (kg·ha−1) 44.404 44.404 40.761 40.761 39.943 39.943 44.799 44.799

(*) IR1:FI = Full Irrigation (>90% of θ f c), (**) IR2:VDI = Variable Deficit Irrigation (60–75% of θ f c).

Additionally, nitrogen and phosphorous P-Olsen VRA (Variable Rate Application)
fertilization were applied in MZs. In the 1st and 2nd cultivation seasons (c.s.), VRA
fertilizations of N-P-K = (518.985 to 593.528)-(25.168 to 49.929)-(0) kg·ha−1 and N-P-K =
(594.916–612.402)-(39.943–44.799)-(0) kg·ha−1 were applied, respectively. The field’s overall
cultivated area was 546.72 m2, which was divided into 48 irrigational trial plot units with
dimensions of 1.70 m width × 6.70 m length (11.39 m2). Moreover, the field was divided
into 144 sampling sub-plot units with dimensions of 1.70 m width× 2.23 m length (3.80 m2).

2.3. Crop, Cultivation Technology and Field Management

Crop: The Cilantro (Coriandrum sativum var. microcarpum L.) variety seeds were used.
The cilantro herb is a tender, glabrous plant with varied-shaped leaves, widely oblique at
the bottom of the stem and thin and winged higher up on the flower stalks.
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The florets are produced in little umbrellas (umbels), which are white or light pink
and asymmetric, with the petals directed away from the center of the umbrella (5–6 mm
in length) than those directed towards it (1–3 mm in length). The fruit is a spherical, xeric
schizocarpium with a diameter of 1.5–3 mm. The optimum period for planting the cilantro
is the latter week of October to the early week of November [14]. So, the seeding for both
years took place on the first week of November with the application of 20 kg·ha−1 of
Cilantro seeds at a distance of 40 cm between rows and 10 cm between plants.

Soil-Crop Management, Farm machines, Irrigation pipeline system: In both years, the
field was plowed in early October with a four-row reversible mounted plow. A row of
spring-steel tine cultivators (with inverting points and wheels with floating wings) was
deployed into the field in late October. This particular kind of cultivator is engineered to
cultivate the soil between crop rows, aerating the topsoil, uprooting, and destroying any
existing weeds. In addition, the wheels with floating wings create a clear, neat, uniform,
and stable finish on the seedbed for maximal seed germination and crop establishment.

The irrigation pipeline system was composed of a header module with (a) a hydrocy-
clone; (b) a screening water filter; (c) a fertigation device; (d) several fittings; (e) a master water
supply pipeline; (f) a main pipeline with branch aluminum pipelines (Φ = 90 mm/16.21 bar);
and (g) polyethylene drip lateral pipelines (Φ = 20 mm/3.8 L·h−1/0.40 m) having integrated
pressure compensation drippers. Prior to their use in the field trials, the drippers were
thoroughly checked in the laboratory to guarantee their adequate functionality. The drip-
pers had an outflow rate of 3.8 L·h−1 at a test pressure of 253.31 kPa, in accordance with
I.S.O. standards [68]. The watering system managed moisture after seeding, and favorable
climatic factors (appropriate air and soil temperatures) in the subsequent days allowed the
seeds to emerge with a population of 2304 plants per area unit−1 (area unit = 11.39 m2) or
2,021,691 plants·ha−1. No herbicides were applied to the crop; therefore, weed control was
carried out by hand. Finally, in both cultivation years, the coriander plants were harvested
in late June at the full maturity phase, when there were only brown-colored fruits.

2.4. Observations and Determinations

(a) Soil parameters and soil laboratory analysis: Effective coriander roots grow at 0–30 cm [14],
at which point in a standard water extraction scheme the roots uptake approximately
90.00% moisture and the beneficial nutrients present in the soil-water solution. Thus, to
define the soil’s chemical, physical, and hydraulic characteristics in the actual root zone
(0.00–30.00 cm deep), systematic sampling was conducted in the 144 sampling sub-plot
units. A GPS detector was employed to locate the geolocations of the 144 soil samples
collected and then analyzed in the department’s applied soil science laboratory. The
144 samples were cleaned from root residues, air-dried, and sieved through a grid (2 mm)
in order to define texture (sand, silt, and clay contents) [48,50,69] using the Bouyoucos
hydrometer method [69]. Soil samples from the field, after laboratory analysis, were found
to be Sandy Clay Loam (SCL) soil [50,69]. The soil and crop data for the analysis were
collected in two cultivation seasons from the field’s cultivated area (0.055 ha).

Soil pH was assessed in a 1:2 soil/water solution using a glass H+ sensing (indicator)
electrode paired with a reference electrode connected to a pH monitor metering device.

The organic matter (OM) was assayed with chemical oxidation of 1 mol·L−1 K2Cr2O7
and by residual reagent titration with 0.5 mol·L−1 FeSO4 [57,58,70]. Inorganic nitrogen soil
content was retrieved with 0.5 mol L−1 of CaCl2 and assessed by means of distillation in
the presence of MgO and Devarda alloy, correspondingly. Available phosphorus P (Olsen
method) was retrieved with 0.5 mol L−1 of NaHCO3 and measured with spectroscopy [48].

The exchangeable forms of potassium K+ were extruded by 1 mol L−1 of CH3COONH4
and quantified using a flame spectrophotometer. The exchangeable magnesium Mg++ and
calcium Ca++ cations were obtained by displacement of those elements from the soil
colloids with ammonium (NH4) by shaking the soil sample with 1.0 N ammonium acetate
(NH4OAc) adjusted to pH 7.0 with ammonium hydroxide (NH4OH) and determined by
an atomic absorption spectrophotometer (AAS Spectroscopy Varian-Spectra-AA-10plus,
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Victoria, Australia) using a flame and air-acetylene mixture [48,49]. The calcium carbonate
was determined with a Bernard calcium meter. The assay consisted of the quantification
of the CO2 liberated when the specimen was processed using 6N HCL. In a sealed unit,
the amount of CO3

2− is strictly proportional to the increasing volume that results from the
liberation of CO2 [49]. The θfc (field capacity) and θwp (wilting point) were both obtained
with the ceramic porous plate process, with 0.33 Atm for θfc and 15 Atm for θwp [3]. Dry
bulk soil density has been determined by weighting soil volumetric samples (taken with
a 45 mm diameter hydraulic undisturbed soil core sampler), drying them at 105 ◦C (dry
time = 48 h), and estimating the results in dry soil g·cm−3 (overall undisturbed soil bulk
volumes).

(b) Crop productivity parameters: At the completion of every growth stage (Lini
(seedling), Ldev (flowering), Lmid (fruiting), and Llate (ripening)), three typical cilantro
plants from every plot were destructively picked, and their fruits, if any, were counted.
Additionally, the date for all plots when plants went into every phenological growth stage
was logged. Measurements of plant height and the plant’s umbel heights were obtained
with a tape meter (accuracy = 1 mm). The weights of the cilantro fruits were measured
with a digital balance to the nearest 0.01 g. Cilantro (Coriandrum sativum var. microcarpum
L.) fruits were harvested in late June (maturation phase), when in the plantation there were
only brown-colored fruits. The results of postharvest treatment showed that the average
diameter of the fruits was Df < 3 mm, whereas the average mass of 1000 Cilantro fruits was
9.47 g.

Following the fruits’ air drying in a shaded spot (8–9% humidity) in the lab, a two-
rotary roller grain mill was employed to smash the coriander’s fruits, which were then
sieved through a 2.0 mm metal grid prior to distilling. The ethereal oil concentration
was obtained using hydro-extraction and hydro-distillation of cilantro seeds by means
of a Clevenger distillation apparatus. A mass of 12.5 g of dehydrated cilantro seeds was
immersed in 250 mL of distilled water with a hydrodistillation time period of 105 min. The
hydro-extraction process was replicated in 3 repetitions for each fruit sampling, and the
ethereal oil concentration was quantified as the dried weight (DW) base of the cilantro seed
material (ml·100 g−1).

(c) Moisture Monitoring and Modelling: Soil moisture readings were taken daily us-
ing time domain reflectometry (TDR), a nonradioactive method that relies on directly mea-
suring the soil’s dielectric constant and converting it into water volumetric content [3,18,25],
and has been reported to be fast and robust, regardless of soil type, apart from exceptional
cases [20,71–73]. The TDR has been employed since it provides accurate readings with a
margin error of ±1% [18–20,25,72,73]. a TDR device and probes engineered in five sensors
each at depths of 0–15, 15–30, 30–45, 45–60, and 60–75 cm [18–21,25] that were deployed for
measuring soil water content (θvi, . . ., θvn) with i = 1, 2, . . ., n, and n = 5, of the cilantro root
area for n soil layers. SM-data readings have been entered daily into a geodatabase using
PA for modeling, and they were also integrated into the SWCA model, and the mean daily
θv(TDR) has been assessed by means of interpolating the day-to-day SM records at several
depths assigned to the various soil layers according to [18].

(d) Net Irrigation Requirements, Evapotranspiration, Soil–Water–Crop–Atmosphere
(SWCA) Model, Soil Moisture Depletion Model: Day-to-day climate inputs (air tempera-
ture, relative humidity, atmospheric pressure, wind force, precipitation, and solar radiation)
were acquired from sensor readings from a weather station located near the field. Net
irrigation requirements (NIR) were computed by applying a daily SWCA (soil-water-
crop-atmosphere) model [17,18,25]. The reference evapotranspiration ETo was calculated
according to the F.A.O. Penman-Monteith methodology [3,17,18]. The crop evapotran-
spiration (ETc) and the actual crop evapotranspiration (ETa) were computed according
to [14,17,18] and based on crop coefficients derived from field readings of vegetation growth
and index [17,18,25]. The effect of water stress on the crop transpiration coefficient (Ks) was
assessed according to [18]. The value of the Kcb coefficient was adjusted for local climate
and prevailing conditions [17,18]. The exhaustion of SM in the root zone was assessed by
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applying a daily Available Soil Moisture Depletion model (ASMD) [17,18,25] at the MZs
scale.

(e) Fertilizer’s use productivity, and irrigation water use efficiency (IWUE): The fertil-
izer’s nitrogen partial factor productivity (N_pfp) was calculated according to [18,25,74,75].
The N-P-K (Nitrogen–Phosphorus–Potassium) fertilizer’s partial factor (pf) productivity
(NPK_pfp) was calculated according to [18]. The Irrigation Water Use Efficiency (IWUE)
[kg m−3], was estimated according to [18].

2.5. Data Preparation, Exploratory Geostatistics Analysis-Modelling, Interpolation, and Models
Validation Measures

The sampled, measured, and analyzed lab soil data were digitized, modeled, geo-
mapped in a GIS environment, and stored in a digital geodatabase according to the samples’
locations and attributes. To obtain the several GIS soil parameter variability maps of the
field (20 parametric maps), spatial interpolation was applied using several OKr geostatisti-
cal models in order to assess an approximate estimate of the unknown location rate based
on the observed values using exploratory geospatial analyses, geostatistical analysis, and
modeling. The existence of a univariate pattern of normality can be verified graphically
with the use of normal QQ plots and boxplots and numerically with the use of skewness
and kurtosis statistic measures [76–78]. After normalizing the distribution of data points,
several semivariogram models were tested and evaluated from a library of mathematical
models featuring spatial relationships in geostatistical modeling. For the interpretation
of spatial soil variation, semivariogram analysis and interpolation methods are mainly
used. The kriging methodology is built on the presumptions that parameters’ attribute
rates (soil’s chemical, granular, and hydraulic parameters; cilantro’s yields and ethereal
oil concentrations; pf nitrogen fertilizer productivity; pf N-P-K fertilizer productivity; and
IWUE of MZs) in the non-sampled areas are a well-weighted mean of the values in the
sampled areas.

Furthermore, the validity of the outputs of geostatistical models necessitates statistical
analyses of residual errors, the differences that exist within the forecasted and the observ-
able values, and the classification of the forecast among overestimates and underestimates
as outlined by previous studies [3,9,18,20,21,25,76–82]. These statistical metrics are the
MPE (mean prediction error), the RMSE (root-mean-square error), the RRMSE (relative root
mean square error) as a metric of prediction accuracy between parameters with different
formats, the MSPE (mean standardized prediction error) as a metric of unbiased forecasts,
the RMSSE (root-mean-square standardized error) as a benchmark for a proper assessment
of the forecast variability [9,76–82], and the ASE (average standard error) as a measure of
the accuracy of the true population mean [3]. MSPE and RMSSE metrics are employed
to evaluate unbiasedness and uncertainty accordingly. MPE and MSPE metrics should
approximate zero values for an optimum forecast; RMSSE should be close to 1, the lower
the RMSE value, the better for an optimum forecast; the lower the RRMSE, the higher the
accuracy; and a lower ASE indicates higher accuracy of the model.

2.6. Factor and PCA Analysis, Delineation of Management Zones with Fuzzy k-Means Clustering

In multivariate statistics, factor analysis is a powerful explanatory mechanism that can
be employed to uncover and explain relationships between interacting parameters [3,9,76,80].
In our case, first multivariate factor analysis and then rotated (R-mode) factor analy-
sis [9,76,80–85] were performed to extract the factors (components) governing the soil’s
chemical, granular, and hydraulic parameters in the field. The extraction method used was
the PCA [76,80–86] and the rotation method was the varimax method with Kaiser Nor-
malization [3,9,76,84,85] by utilizing the measured and analyzed lab data (soil’s chemical,
granular, and hydraulic parameters) on GIS parametric maps in order to extract the compo-
nents (MZs). PCA analysis was conducted to group the data sets of soil chemical, granular,
and hydraulic parameters into statistical components and generate linear independent
variables that eliminate multicollinearity and provide a description of the spatio-temporal
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information obtained. The field’s MZs optimal number was obtained based on factor and
PCA R-mode analyses of the various soil parameters, eigenvalue diagrams, 3-D and 2-D
component diagrams in rotated space, and the realistic potential of MZs application in
the trial pattern. Then, Fuzzy k-means clustering [51–65] was performed with the FuzME
3.5c software [62] and the Management Zone Analyst (MZA) 1.01 software [63] in order to
cluster the soil parametric data into potential factors (MZs).

Firstly, grouping was carried out with the soil’s chemical parameter data (“soil chemi-
cal group”), then with the soil’s granular data (“soil granular group”), then with the soil’s
hydraulic data (“soil hydraulic group"), and finally with all the soil data. An exploratory
Fuzzy k-means clustering [53–62] analysis was conducted to clarify which distance metric,
fuzziness exponent ϕ, and maximum iterations were best used with the available field soil
data. Multiple runs of the software were performed in order to evaluate the results and
select the final best distance metric, fuzziness exponents ϕ, and maximum iterations.

The final step was termed the “soil All parameters” group data and was regarded as the
“reference” for MZs maps. The output MZ map of the “soil All parameters” (20 parameters)
data clustering was compared with the generated MZ maps of “soil All parameters”
with various fuzziness exponents. The “soil chemical group” map (8 parameters), the
“soil granular group” map (6 parameters), and the “soil hydraulic group” map (6 soil’s
hydraulic parameters) were compared with the generated MZ maps’ clustered outputs
with various fuzziness exponents in order to determine the introduced fuzzy metric of the
Percentage of Management Zones Spatial Agreement (PoMZSA) (%) between the reference
(All parameters) map and the rest of the MZ output goal (target) maps, i.e., the percentage
of map cells that belong to the same clade in the reference map and the goal maps. This
method gives a percentage approximation of the spatial correlation of each MZ of the
goal map with the corresponding zone of the reference (‘All parameters’) map, and the
percentage of cells summarizing the agreement of each MZ and all the zones in the goal
map gives a percentage approximation of the spatial correlation of the compared maps.

2.7. Statistical Analyses

The MZs of the field were the de facto “treatments”, and since they were not equal
in magnitude, unbalanced one-way ANOVA statistical analysis was conducted using
the statistics software IBM SPSS v.27 (IBM, Armonk, NY, USA). The outcomes reflect
the averages of the sampled and measured data. The means were separated using the
Tuckey and Games-Howell statistic tests as a control criterion when significantly different
scores occurred (p = 0.05) between treatments [3,18,76]. The descriptive statistics were
calculated [76–80], while ANOVA [3,9,78,79] was applied to examine how adequately the
variability of fruit yield and essential oil is attributed to the various MZ soil maps.

3. Results
3.1. Results and Discussion of Soil’s Chemical, Granular and Hydraulic Analyses

The complete data analytics results as descriptive statistical measures are reported in
Table 2. The soil properties of the experimental field differed widely, and a closer examina-
tion of the outcome of the chemical, granular, and hydraulic analysis of the soil in the labora-
tory showed that the field’s soil was appropriate for the growth of coriander [14,17,48]. The
calcium Ca++ (mg·kg−1), magnesium Mg++ (mg·kg−1), potassium K+ (mg·kg−1), nitrogen
inorganic (mg·kg−1), saturation θsat (m3·m−3), sand pr (size: 0.2–2 mm) (%), and field
capacity θfc (m3·m−3) presented high average values (≥27.66), while the other attributes
had low average values (<27.66). Soil texture, which affects nearly any aspect of soil man-
agement and especially tillage, was classified as sandy clay loam (SCL) [17,48]. The mean
calcium Ca++ level was classified as high [3,48,50]. The mean calcium carbonate, CaCO3,
was classified as medium-level [3,48]. The mean magnesium Mg++ in accordance with the
clay percent content of the soil is considered a high Mg++ level [3,48,50].
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Table 2. Descriptive statistics of main soil chemical, granular, and hydraulic parameters of the
144 sampling sub-plot units.

SN Parameter Minimum Maximum Mean Std.
Deviation * Variance CV (%) Range

1 Calcium Ca++ (mg·kg−1) 1190.84 3472.84 2236.16 427.38 182,653.09 19.11 2282.00
2 Calcium carbonate CaCO3 (%) 0.37 4.22 1.57 0.83 0.68 52.58 3.85
3 Magnesium Mg++ (mg·kg−1) 1100.82 2876.33 1900.58 304.55 92,753.40 16.02 1775.51
4 Nitrogen inorganic(mg·kg−1) 47.50 101.00 68.09 10.34 106.98 15.19 53.50
5 Organic matter (%) 1.33 4.07 1.79 0.33 0.11 18.49 2.74
6 pH [1:2 soil/water solution] 7.45 8.13 7.82 0.09 0.01 1.22 0.68
7 Phosphorus P-olsen (mg·kg−1) 8.96 21.43 15.95 2.29 5.24 14.35 12.47
8 Potassium K+ (mg·kg−1) 238.50 758.51 409.43 81.04 6566.86 19.79 520.01

9 Clay (size: <0.002 mm) (%) 22.18 28.72 24.83 1.13 1.28 4.55 6.54
10 Gravel (%) 0.01 0.25 0.08 0.03 0.00 43.66 0.23
11 Sand pr (size: 0.2–2 mm) (%) 30.13 35.69 33.37 1.32 1.74 3.95 5.57
12 Silt (size: 0.002–0.02 mm) (%) 13.61 22.31 19.66 1.69 2.87 8.61 8.70

13 Soil Erodibility [Kfactor]
(Mg·ha·h·ha−1·MJ−1·mm−1) 0.02 0.03 0.03 0.00 0.00 4.73 0.01

14 Vfs sand (size: 0.02–0.2 mm) (%) 20.72 23.06 21.94 0.16 0.03 0.74 2.34

15 Bulk density (g·cm−1) 1.31 1.66 1.41 0.05 0.00 3.90 0.35
16 Field capacity θfc (m3·m−3) 25.12 30.47 27.66 0.92 0.85 3.34 5.34
17 Plant available water (cm·cm−1) 0.08 0.13 0.11 0.01 0.00 6.11 0.05
18 Saturation θsat (m3·m−3) 37.29 50.55 46.68 2.21 4.90 4.74 13.25

19 Sat. Hydraulic conductivity Ks
(mm·h−1) 4.66 22.94 16.27 4.22 17.85 25.96 18.28

20 Wilting point θwp (m3·m−3) 13.36 17.97 15.98 0.67 0.45 4.20 4.61

* Std. Deviation or SD = standard deviation of the data points.

The majority of information on nitrogen fertility is addressed to agronomic crops. In
principle, 112 to 336 mg·kg−1 should be considered adequate for proper grass growth [50].
An oversupply of nitrogen causes a delay in ripening, triggers growth, increases insect
infestations, and promotes diseases. The mean Nitrogen inorganic found in the field is
characterized as a low to medium level of nitrogen [3,14]. An adequate amount for proper
coriander growth would be 150 to 250 mg·kg−1 [14]. It is necessary and environmentally
friendly to implement nitrogen based on the needs of the crop in such a way as to minimize
the residual soil nitrogen at the close of the growing season and ensure that there is
minimal nitrogen left for losses. Therefore, it is significant to study the amount of nitrogen
application that gives an economically viable yield without the negative side effects of
scarcity. Thus, we chose VRA fertilization under full and deficit irrigation and statistically
investigated the coriander yields of the different MZs results. The applied fertilizer VRA is
a promising method in precision agriculture that can reduce nitrogen and other fertilizer
amounts, decrease economic costs, and reduce nitrogen leaching.

Soil organic matter (OM) results were classified as low to high, with a mean that is
classified as a moderate OM level [3,20,48] indicating average structural conditions and av-
erage structural stability in soil. These results could be attributed to the high temperatures
that occurred in the spring and summer in this study area, the low vegetation cover, and
probably to the lack of organic manure utilization. OM is broadly recognized as a funda-
mental element of soil fertility due to its significant contribution to the chemical, physical,
and biological activities that occur throughout the growing stages and provide plants with a
variety of nutrients. The mean pH at 1:2 soil-water extract was categorized as alkaline. The
optimal pH rate for cilantro is 7.0 [14] and is regarded as a well-tolerated limit [3,14]. The
mean phosphorus P-Olsen level was classified as moderate [3,14]. Regarding phosphorus
in soil, there is limited mobility, and the risk of leaching phosphorus is not regarded as a
concern [3,18,28,48]. In contrast, the root mobility of phosphorus is the primary constraint
on uptake methods. Due to the low mobility of phosphorus, coriander’s root uptake is
the primary uptake method, independently of the soil’s pH. The exchangeable potassium
K+ reached high concentration levels. The mobilization of potassium in soils is at the
intermediate level; however, it is not leached out because it has a positive charge (K+);
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therefore, it is attracted to the negatively charged colloids in the soil [3,14,48]. The coriander
plant requires potassium at the fruit-filling growth stage; to be accessible at this time, the
K+ should be in soil-water solution where the late-season root system is dormant.

The hydraulic conductivity of the soil is helpful for forecasting water runoff from
precipitation, drainage of the soil’s root horizons, irrigation amounts, and deep drainage,
which is contributing to salinity [3,87,88]. The saturated hydraulic conductivity results
were classified as slow to moderate. The mean soil erodibility of the field was categorized
as moderate based on the USLE (Universal Soil Loss Equation) [89–92]. It is remarked that
the results for θfc and θwp obtained from the hydraulic analysis of the soil are within the
normal limits given by Allen et al. [17]. Furthermore, Allen et al. [17] propose that the depth
of the topsoil evaporation layer Ze (m) should be between 0.10 and 0.15 m. In the current
project, a value of Ze = 0.10 m was selected in the computations. The standard deviations
of the considered attributes varied widely (Table 2). A small SD indicates that the data
values are close to the mean, whereas a big SD indicates that the data values are scattered
over a wide spread, as in the case of calcium Ca++ (mg·kg−1), magnesium Mg++ (mg·kg−1),
potassium K+ (mg·kg−1), and nitrogen inorganic (mg·kg−1). Soil property variability as
a number is depicted by the coefficient of variation (CV), and it is categorized into three
main classes [93]: (a) low CV (CV < 15%), (b) moderate CV (CV = 15–35%), and (c) high
coefficient of variation (CV > 35%). The CV percentages revealed that the variability
classification attributed 12 out of 20 examined soil properties as low class (CV < 15%).
Anthropogenic and/or environmental drivers, such as farming management, soil texture,
soil chemical, granular, and hydraulic properties, soil processes, and climate change effects,
could potentially all be contributors to the moderate and high variability.

3.2. Results and Discussion of Exploratory Data Analysis

An exploratory data analysis was performed prior to geostatistical modeling. Two
important statistical measures of the examined soil properties in the experimental plots are
skewness and Kurtosis [94]. After evaluating the skewness and kurtosis scores, a similarly
occurring outcome for both statistic measures indicated that 8 out of a total of 20 parametric
datasets of soil chemical, granular, and hydraulic properties needed to be transformed in
order to verify that their datapoints were normally spread and that the assumption of vari-
ance equality of the data values was satisfied [84,95]. Taking into consideration the above
findings, these datasets were transformed using a logarithmic transformation [79,95]. The
transformed parameters were bulk density (g·cm−1), calcium Ca++ (mg·kg−1), gravel (%),
magnesium Mg++ (mg·kg−1), nitrogen inorganic (mg·kg−1), organic matter (%), potassium
K+ (mg·kg−1), and soil erodibility (Mg·ha·h·ha−1·MJ−1·mm−1).

3.3. Results and Discussion of Precision Agriculture Geostatistical Modelling of Soil’s Chemical,
Granular and Hydraulic Parameters

In agroecosystems, geostatistical analysis and modeling are important tools to assess
the spatial variability of soil characteristics [3,18,20,21,25,87,88].

The most broadly applied interpolation model for predicting the spatial allocation pattern of
soil, water, and crop features is the ordinary kriging (OKr) interpolation [3,18,20,21,70,76,95–103].
The choice of the Kriging model to be applied is dictated by the properties and statistical
measures of the data and the preferred spatial model.

The field pattern with the sampling subplot units’ number (sn = 1. . .144) is depicted in
a PA sampling subplot units map of OM (Figure 2a), along with the diagram of soil’s organic
matter semivariogram model (Figure 2b) and the normal QQ Plot diagram of soil’s OM with
Log transformation (Figure 2c). The Ordinary Kriging modeling method was used to predict
the soil characteristic parameters for the non-sample areas [3,18,21,79,82,94,103–105] of
the experimental field. This geostatistical method, due to its straightforwardness and
precision [104], was employed in the present research.
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The modeled PA spatial variability maps of the soil’s chemical, granular, and hydraulic
parameters are depicted in the various final maps in Figure 3a–r. The created PA spatial
variability maps of soil “Chemical Group” parameters revealed that calcium carbonate
CaCO3, inorganic nitrogen, and pH were similar in their spatial variability. Such consistent
spatial variability occurs because those soil attributes are associated with each other and
have high and moderate positive correlations. In addition, the southwestern and northeast-
ern parts of the PA maps of pH (Figure 3b), nitrogen inorganic (Figure 3d), and calcium
carbonate CaCO3 (Figure 3h) showed the highest values of these parameters, while the
central-northern and central-southern regions showed the lowest, plus the northern part in
the case of CaCO3. Likewise, the modeled PA maps revealed that organic matter (Figure 3a)
and potassium K+ (Figure 3f) had matching spatial variability patterns throughout the field
area because they are associated with each other with a high positive correlation. The PA
map of soil magnesium Mg++ (Figure 3c) presented an almost identical pattern (r = 0.953) of
spatial variability with the calcium Ca++ (Figure 3g), a relatively high similarity (r = 0.548)
with CaCO3 (Figure 3h), and a partly similar pH pattern. An agronomist can be greatly
assisted in recognizing and locating field sites of low, medium, and high soil fertility by
studying and analyzing precision agriculture’s spatial variability maps of soil “Chemical
Group” parameters (Figure 3) and comprehending the effect of each parameter on crop
growth.

The accurate prediction of these soil parameters is therefore driven by the presence of
spatial dependence among the field’s sample observations, as estimated by the correlogram
or semivariogram [104]. The various modeled spatial variability maps of soil’s “Hydraulic
Group” parameters are depicted in Figure 3m–r. The generated map of saturation θsat
(Figure 3o) depicted a highly congruent spatial variability pattern with the plant available
water PAW (Figure 3r) map pattern (r = 0.867) and saturated hydraulic conductivity Ks
(Figure 3p) map pattern (r = 0.825), whereas it presented a highly negative correlation
(r = −0.991) similar pattern with the soil’s bulk density (Figure 3q).

The developed map of plant available water (Figure 3r) presented a highly congruent
spatial variability pattern with θsat (Figure 3o) and saturated hydraulic conductivity Ks
(Figure 3p) (r = 0.768), whereas it presented a highly similar negative correlation (r = −0.866)
pattern with soil bulk density (Figure 3q). The generated PA field maps of the soil’s
chemical, granular, and hydraulic parameter groups illustrate the spatial variability of each
soil parameter, identifying which field’s areas are appropriate for cropping without major
restrictions and which ones need cautious management and can be utilized on site-specific
MZ farming.
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3.4. Results and Discussion of Best Fitted Semivariogram Models, and Cross-Validation

Aiming to explore and assess the spatial variability of a field’s soil parameters, semi-
variograms were computed within the ordinary Kriging interpolation method. The final PA
field maps of the soil’s chemical, granular, and hydraulic parameter groups (Figure 3a–r)
were modeled and developed using the best-fit semivariogram models, which described
the spatial patterns of the various soil properties. For each soil parameter dataset, seven
semivariogram models were evaluated. These models were the Stable, Exponential, Circu-
lar, Pentaspherical, Tetraspherical, Spherical, and Gaussian, mirroring the varying spatial
variability induced by the nature of soil parameters, which was also associated with the
field’s prevailing environmental conditions. Based on the modeling results, the best-fitted
semivariogram models found for the chemical-nutrient parameter group were the Gaussian,
Circular, and Exponential. Table 3 presents the chemical, granular, and hydraulic groups’
best-fitted models, the percentage of the group’s best-fitted model, the group’s parameter
list, the N:S ratio (N:S), spatial dependence, and RRMSE modeling results.

Table 3. Group’s best fitted models, percentage of group’s best-fitted model (%), group’s parameters
list that was best-fitted, N:S ratio, spatial dependence, and RRMSE.

SN Parameter
Group’s

Best-Fitted
Model

Percentage of
Group’s

Best-Fitted
Model (%)

Group’s Parameters List
That Was Best-Fitted N:S Ratio Spatial

Dependence RRMSE

1 Chemical group

Exponential 62.50

Calcium Ca++ (mg·kg−1), 0.007

Strong

6.000
Magnesium Mg++ (mg·kg−1), 0.077 7.237
Nitrogen inorganic (mg·kg−1), 0.003 6.181
Organic matter (%), 0.015 12.821
pH [1:2 soil/water solution] (-). 0.009 0.350

Gaussian 25.00
Calcium carbonate CaCO3 (%), 0.090 Strong 19.033
Phosphorus P-olsen (mg·kg−1). 0.276 Medium 8.218

Circular 12.50 Potassium K+ (mg·kg−1) 0.110 Strong 12.496

2 Granular group

Exponential 50.00
Silt (size: 0.002–0.02 mm) (%), 0.387 Medium 5.901
Kfactor (Mg·ha·h·ha−1·MJ−1·mm−1), 0.756 Strong 3.548
Vf sand (size: 0.02–0.2 mm) (%). 0.024 Weak 0.686

Pentaspherical 33.33
Clay (size: <0.002 mm) (%), 0.048 Strong 2.107
Sand pr (size: 0.2–2 mm) (%). 0.173 2.615

Spherical 16.67 Gravel (%) 0.472 Medium 39.481

3 Hydraulic group

Circular 50.00
Field capacity θfc (m3·m−3), 0.166

Strong
1.833

Plant PAW (cm·cm−1), 0.132 3.514
Sat. Hydr. Cond. Ks (mm·h−1) 0.061 3.950

Gaussian 33.33
Saturation θsat (m3·m−3), 0.188 Strong 6.370
Wilting point θwp (m3·m−3). 0.180 2.476

Exponential 16.67 Bulk density (g·cm−1). 0.029 Strong 1.986

In Table 4, the validation of modeling is presented with the results of prediction
errors. Taking into consideration the modeling results and the criterion that the N:S ratio
is a metric of the parameters’ spatial dependence, much of the change in variance of
the overall 20 parameters of the chemical, granular, and hydraulic parameter groups is
integrated spatially. According to [105], a N:S ratio ≤ 0.25 designates the parameter as
having a strong class of spatial dependence; a N:S ratio that is within the range of 0.25 to
0.75 designates the parameter as having a medium class; and a N:S ratio ≥ 0.75 designates
the parameter as having a weak class of spatial dependence. The modeling results of
the soil’s chemical parameters group revealed a trend with strong spatial dependence
among calcium Ca++ (Figure 3g), calcium carbonate CaCO3 (Figure 3h), magnesium Mg++

(Figure 3c), nitrogen inorganic (Figure 3d), organic matter (Figure 3a), pH (Figure 3b), and
potassium K+ (Figure 3f), and medium spatial dependence only for phosphorus P-Olsen
(Figure 3e).
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Table 4. Validation of modeling results with prediction errors for soil parameters.

SN Parameter Model ASE MPE RMSE MSPE RMSSE

1 Calcium Ca++ (mg·kg−1) Exponential 212.201 3.262 134.166 0.031 0.675
2 Calcium carbonate CaCO3 (%) Gaussian 0.310 0.000 0.299 −0.001 0.948
3 Magnesium Mg++ (mg·kg−1) Exponential 161.583 −0.590 137.540 0.005 0.862
4 Nitrogen inorganic (mg·kg−1) Exponential 4.761 0.062 4.209 0.013 0.823
5 Organic matter (%) Exponential 0.164 −0.002 0.230 −0.017 1.254
6 pH [1:2 soil/water solution] Exponential 0.040 0.000 0.027 0.002 0.671
7 Phosphorus P-olsen (mg·kg−1) Gaussian 1.422 0.007 1.311 0.002 0.917
8 Potassium K+ (mg·kg−1) Circular 48.916 −0.037 51.164 0.012 0.982

9 Clay (size: <0.002 mm) (%) Pentaspherical 0.492 0.003 0.523 0.005 1.050
10 Gravel (%) Spherical 0.034 0.001 0.030 −0.019 1.003
11 Sand pr (size: 0.2–2 mm) (%) Pentaspherical 0.816 −0.002 0.873 −0.002 1.064
12 Silt (size: 0.002–0.02 mm) (%) Exponential 1.205 −0.015 1.160 −0.012 0.960

13 Soil Erodibility [Kfactor]
(Mg·ha·h·ha−1·MJ−1·mm−1) Exponential 0.001 0.000 0.001 −0.011 1.027

14 Vfs (size: 0.02–0.2 mm) (%) Exponential 0.138 −0.001 0.151 −0.008 1.079

15 Bulk density (g·cm−1) Exponential 0.031 0.000 0.028 −0.007 0.899
16 Field capacity θfc (m3·m−3) Circular 0.553 0.000 0.507 −0.002 0.909

17 Plant available water PAW
(cm·cm−1) Circular 0.004 0.000 0.004 0.024 0.938

18 Sat. Hydraulic conductivity Ks
(mm·h−1) Circular 2.676 0.082 1.844 0.016 0.983

19 Saturation θsat (m3·m−3) Gaussian 1.148 0.021 1.037 0.014 0.886
20 Wilting point θwp (m3·m−3) Gaussian 0.393 −0.005 0.396 −0.011 1.007

Taking into consideration the overall 20 soil parameters, 80.00% of the analyzed
soil parameters exhibited strong spatial dependence, 15.00% presented medium spatial
dependence, and only 5.00% were attributed to weak spatial dependence. Semivariogram
models designated a strong spatial dependence for 16 out of the overall 20 soil parameters
examined. Parameters that are classified as having strong spatial dependence may be
driven by intrinsic variations in soil properties, such as textures and minerals [105]. In
order to check the performances and validity of the outputs of the various geostatistical
models, it was necessary to perform statistical analyses of residual errors, the differences
that exist between the forecasted and observable values, and the classification of the forecast
among overestimates and underestimates. The various model performances tested with
the OKr methodology were evaluated employing cross-validation and the calculation of
statistical metrics (prediction errors) outlined by previous studies [3,9,18,20,21,25,70,79,80].
These statistical metrics are the MPE (mean prediction error), the RMSE (root mean square
error), the MSPE (mean standardized prediction error) as a metric of unbiased forecasts,
the RMSSE (root mean square standardized error) as a benchmark for a proper assessment
of the forecast variability [3,9,18,21,25,79–81], and the ASE (average standard error) as a
measure of the accuracy of the true population mean [3]. MSPE and RMSSE metrics were
employed to evaluate unbiasedness and uncertainty accordingly. Lower MSPE values
indicate that the predicted values of soil parameters are closer to the estimated values.
MPE and MSPE metrics should approximate a zero value for an optimum forecast; RMSSE
should be close to unity; the lower the RMSE value, the better for an optimum forecast; a
lower RRMSE shows higher accuracy between parameters of different formats and with
different ranges of variation; and a lower ASE indicates higher accuracy of the model. In the
ongoing research, the models that generated the best results were selected and characterized
as the best-fitted semivariogram models, and they are presented in Tables 3 and 4 along
with the modeling results of prediction errors for soil’s chemical, granular, and hydraulic
parameters. Out of the 7 semivariogram models tested for each soil parameter, not one
unique model was found to be suitable for all soil characteristics; nevertheless, the final
model selected as the best-fitting model varied depending on the soil parameter. In addition,
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Table 4 also uncovers how different models can produce better insights into several soil
characteristics. In conclusion, the results demonstrated that the chosen semivariogram
models are the best-adapted ordinary kriging models for the prediction and mapping of
the spatial variability of the measured soil parameters.

3.5. Factor Analysis Results and Discussion of Soil’s Chemical, Granular and Hydraulic Groups

Factor analysis endeavors to discover a way to detect the hidden parameters that
may explain the correlational structure of a set of initial (observable) parameters. This
modeling approach is commonly employed to compact the existing information within
the initial parameters and further decrease the set of parameters in a dataset with minimal
information losses; however, it may equally be deployed to investigate the latent structure
of parameters in a raw data stream [9,83]. In our study, first multivariate factor analysis and
then multivariate R-mode (rotated) factor analysis were performed to extract the factors
governing the soil’s chemical, granular, and hydraulic parameters in the experimental field.

The R-mode multivariate factor analysis [9,76,78,83] was performed using as an extrac-
tion method the principal components analysis (PCA) [76,78,83] and as a rotation method
the varimax method with Kaiser normalization [3,9,83–85] by utilizing the measured and
analyzed lab data (soil’s chemical, granular, and hydraulic parameters) on GIS parametric
maps in order to extract the factors or components (management zones) of the experimental
field. The data matrix of 20 parameters and 144 data observations for each parameter was
utilized in this factor analysis. The results of the statistical PCA analysis for the “soil All
Parameters group” are reported in Table 5 and depicted graphically in a three-dimensional
(3-D) component diagram (Figure 4a) in rotated space, aiming to uncover and explain
relationships numerically and graphically between the 20 interacting soil parameters and
to show trends of soil data in rotated 3-D space. Similarly, the results of the statistical
PCA analysis for the “soil Chemical parameters group” are depicted graphically in a
three-dimensional (3-D) component diagram (Figure 4b) in rotated space.

Table 5. Factors, description of the component, variance (%), cumulative variance (%) results of the
Principal Component Analysis (n = 144 for each parameter).

SN Factor (PCA) Description of Component Variance (%) Cumulative Variance (%)

1 Factor 1 ‘Mg-Ca-CaCO3-Sand-pH-K factor-Vfs-Clay’ 28.798 28.798
2 Factor 2 ‘θwp-silt-θfc-nitrogen inorganic-Polsen’ 22.725 51.523
3 Factor 3 ‘θsat-PAW-Ks-BD’ 17.693 69.216
4 Factor 4 ‘organic matter and potassium K’ 9.976 79.192
5 Factor 5 ‘gravel’ 5.815 85.006

The results of the statistical PCA analysis for the “soil Granular parameters group”
and the “soil Hydraulic parameters group” are depicted graphically in two-dimensional
(2-D) component diagrams in rotated space (Figure 4c,d), respectively. The 3-D component
diagram in rotated space (Figure 4a) depicts the spatial distribution and loadings of the
20 examined parameters in rotated three-dimensional space, showing the trends and
loadings of the data centroids of the primary three PCs (factors) that account for 69.216% of
the overall variance in the data matrix.
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The initial determination of the optimum total of components (factors) was found to
be the number of five components, or in our case, management zones.

• Factor-1 contains significant loadings of 8 parameters, and it can be considered a ‘Mg-
Ca-CaCO3-Sand-pH-K factor-Vfs-Clay’ component that explains the synergistic soil
chemistry interactions between the 8 parameters as the dominating chemical processes
in the field’s soil. The presence of high levels of calcium Ca++ (0.838) and magnesium
Mg++ (0.852) loadings and concentrations in the soil is associated with the intensive
farming activities taking place in the area. The soil of the trial field was categorized as
alkaline, with pH values between 7.45 and 8.13.

• Factor-2 as a ‘θwp-silt-θfc-nitrogen inorganic-Polsen’ component explains hydraulic
and chemical interactions between the above-mentioned five parameters. This factor is
mainly represented by positive high loadings of θwp (0.920), silt (0.872), θfc (0.855), and
nitrogen inorganic (0.803), and a negative loading of phosphorus (−0.419). Inorganic
nitrogen does not have a significant lithologic origin at the site and may be related to
the agricultural activities of the region and the surface runoff of nitrogen fertilizers.

• Factor-3 is considered a ‘θsat-PAW-Ks-BD’ component that exhibits a negative loading
of bulk density (−0.984) relative to the saturated hydraulic conductivity Ks (0.838), as
would be expected, and high positive loadings of PAW (0.894) and θsat (0.985).

• Factor-4 may be considered an ‘organic matter and potassium K’ component that
exhibits high loadings of OM (0.918) and potassium K+ (0.891).
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• The factor-5 is less significant and accounts for only 5.815% of the overall variance in
the data matrix. This factor is considered a ‘gravel’ component that exhibits a high
loading of gravel content (0.784), indicating that this factor is rock weathering.

The primary four main factors accounted for 79.192% of the overall variance in the data
matrix and dominated against the rest of the components in the control of soil chemistry in
the trial field. The remaining one main factor accounts for 5.815% of the variance, and the
overall five-factor loadings, summed together, explain 85.006% of the total variance in the
data matrix. The field’s optimal number of management zones was obtained based on factor
and PCA R-mode analyses of the various soil parameter groups, 3-D and 2-D component
diagrams in rotated space (Figure 4a–d), and the realistic potential of MZs application in
the trial pattern. The factor analysis results (Table 5) of the “soil All parameters” group
data indicated that the suggested optimum total of components (factors) was initially five,
or in our case, five management zones.

The factor analysis outcomes of individual “soil Chemical parameters group," “soil
Granular parameters group,” and “soil Hydraulic parameters group” data indicated that
the suggested optimum total of components (MZs) were found to be three, two, and two,
respectively. Since factor-5 is less significant than the others and accounts for only 5.815%
of the overall variance, and for reasons of the realistic potential of MZs application in the
trial field, it was finally chosen to apply four management zones in the trial field.

3.6. Delineating Field’s Management Zones Results and Discussion

The widespread diversity of soil nutritional, granular, and hydraulic parameters justi-
fies the classification of these parameters into various categories so as to detect and delineate
homogenous field zones (MZs) for their proper management. They were clustered into vari-
ous categories based on their extent, represented by their magnitude, and the extent of each
category was assessed. Fuzzy k-means clustering [51–65] was performed initially with the
FuzME 3.5c software [62] and with the Management Zone Analyst (MZA) 1.01 software [63]
in order to cluster the various soil parametric data into potential factors (MZs) and compare
them. Finally, it was chosen to use the FuzME 3.5c software [62] because of its better options.
First, an exploratory Fuzzy k-means clustering [51–65] analysis was conducted to clarify
which distance metric and fuzziness exponent ϕ were better to use with the available field
soil data. Multiple runs of the software were performed in order to evaluate the results
of various cases and select the best distance metric and fuzziness exponents ϕ for further
use in the analysis. Based on the nature and characteristics of the field data, the results
of the software’s multiple runs, and the structure of each variance-covariance matrix, the
Mahalanobis similarity distance metric was selected for multivariate clustering. Then,
multiple runs of the Fuzzy algorithm [51–65] with varying fuzziness exponent ϕ from
1.10 to 2.00 were performed. Based on the multivariate clustering results, the calculated
indices of fuzzy performance index (FPI), modified partition entropy (MPE) [51,55,62], Xie
& Benny’s k-means fuzzy index (FkM Xie & Benny’s index) [59] and Wilks lambda [3,62,78]
vs. the varying fuzziness exponent ϕwere utilized to identify the optimal ϕ and number
of MZs. The various indexes that result from the fuzziness exponent’s ϕ evaluation are
depicted in Figure 5a,b.

The results of the exploratory Fuzzy k-means clustering [51–65] analysis and the
various indexes reveal that the tested fuzziness exponent ϕ from 1.10 to 2.00 of the group
data “soil All parameters” was found valid only in the range between 1.10 and 1.21 (see
Figure 5a,b). Over this valid range of ϕ values, the optimal fuzziness exponent found was
ϕ = 1.14, and the optimal number of management zones found was k = 4.
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Similar results on the fuzziness exponent ϕ have been reported by other studies [58–60].
The Fuzzy k-means algorithm [51–65] was run with parameter settings as follows: Metric
distance: Mahalanobis similarity method for multivariate clustering, fuzziness exponent
ϕ = 1.14, maximum iterations = 500, stopping criterion = 0.0001, and random start with
membership variance = 0.1. Based on the Fuzzy algorithm results, the “soil All parameters
group” map with 4 MZs (Figure 6a) for the experimental field was produced, and the
extent (in %) of each MZ was assessed, along with the fuzzy clustering metric Percentage
of Management Zones Spatial Agreement (PoMZSA) (%) between soil groups.

Similarly, another Fuzzy k-means grouping in 4 MZs was carried out with soil’s
chemical and nutritional parameter data (“soil chemical group” consisted of 8 parameters)
using a fuzziness exponent ϕ = 1.14 (found to be the optimal ϕ for 4 MZs and the group’s
structure), and the output 4 MZs map and the extent (in %) of each MZ are depicted
in Figure 6b. Based on the soil’s “granular group” (6 parameters), the Fuzzy algorithm
grouping in 4 MZs was carried out with a fuzziness exponent ϕ = 1.26 (found optimal ϕ for
4 MZs and the group’s structure), yielding an output map with 4 MZs (Figure 6c). Finally,
based on the soil’s “hydraulic group” (6 parameters), the Fuzzy algorithm grouping in
4 MZs was carried out with a fuzziness exponent ϕ = 1.48 (optimal ϕ for 4 MZs and the
group’s structure), resulting in the output map with 4 MZs in Figure 6d.

Regarding evaluation indexes, the combination of the lower values of FPI and MPE [51,55,62],
is considered the best. Moreover, the lower values of Xie & Benny’s k-means fuzzy index
(FkM Xie & Benny’s index) [59] and Wilks’ lambda [3,62,78] are considered the best. By
analyzing the data, the MZ output maps of the field, and the various evaluation indexes,
we concluded that the four MZ output maps in the “soil All parameters group” (Figure 6a)
were supplying the higher clustering insight of the field’s soil data and nutrients. Based on
the exploratory fuzzy analysis results when FPI and MPE values were confusing for a final
decision, the FkM Xie & Benny’s index (lowest value) was proven to be robust and pointed
clearly to the optimal fuzziness exponent for the recommended MZs.

The 4 MZs field map based on the “soil All parameters group” (20 parameters) in
Figure 6a was regarded as the “reference map” for all maps. Moreover, a comparison
between the various soil parameters and fuzzy clustering results was performed. The
fuzzy algorithm comparison was conducted on 4 MZs maps outcomes between 6 groups
of various soil parameters (Table 6), using the fuzzy clustering metric: Percentage of
Management Zones Spatial Agreement (PoMZSA) (%) between soil group maps and MZs.

The results of the analysis showed that PoMZSA (%) between soil groups varied
greatly. Only the 4 MZs map of the “soil All parameters group” with 20 PCAs (output from
the principal components analysis) map (Figure 6e) resulted in 100.00% spatial agreement
of the 4 MZs with the “reference map” (Figure 6a). On the contrary, the 4 MZs map of the
“soil All parameters group” with 5 PCAs (output from the PCA analysis with 5 factors)
(Figure 6f), although that explained 85.006% of the total variance in the group data matrix,
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resulted in a low PoMZSA = 29.86% of management zone spatial agreement with the
“reference map” (Figure 6a).
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The outcome of fuzzy k-means clustering algorithm comparison of the developed
4 MZs maps of “soil chemical group” (8 parameters) in Figure 6b, “soil granular group”
(6 parameters) in Figure 6c, and “soil hydraulic group” using 6 parameters (Figure 6d)
resulted in 3 different low PoMZSAs, i.e., 41.67%, 29.17%, and 37.50%, respectively. Hereby,
it is worth noting that the 2nd MZ of each of the 3 soil groups presented the highest spatial
agreement with the 2nd MZ of the “reference map," with PoMZSAs of 74.29%, 57.14%, and
77.14%, respectively. On the contrary, the 4th MZ of each of the 3 group maps presented
a low spatial agreement with the 4th MZ of the “reference map," with low PoMZSAs of
2.44%, 14.63%, and 9.76%, respectively.
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Table 6. Fuzzy clustering Percentage of Management Zones Spatial Agreement.

SN Soil Parameters Group
Optimal

Fuzziness
Exponent ϕ

Fuzzy Clustering Percentage of Management Zones
Spatial Agreement (PoMZSA) (%) between Soil Groups

MZ 1 MZ 2 MZ 3 MZ 4 All MZs

1
“soil All parameters
group”
(20 parameters), 4 MZs

1.14 100.00 100.00 100.00 100.00 100.00

2
“soil All parameters
group”
(20 PCAs), 4 MZs

1.14 100.00 100.00 100.00 100.00 100.00

3
“soil All parameters
group”
(5 PCAs), 4 MZs

1.56 40.00 60.00 20.59 2.44 29.86

4 “soil chemical group”
(8 parameters), 4 MZs 1.14 35.29 74.29 61.76 2.44 41.67

5 “soil granular group”
(6 parameters), 4 MZs 1.26 11.76 57.14 35.29 14.63 29.17

6 “soil hydraulic group”
(6 parameters), 4 MZs 1.48 11.76 77.14 55.88 9.76 37.50

Based on the fuzzy k-means clustering algorithm comparison results between groups,
it was concluded that only the 4 MZs map of the “soil All parameters group” map
(Figure 6e), with 20 PCAs (output from the principal components analysis that explain
100.00% of the total variance in the group data matrix), resulted in 100.00% spatial agree-
ment of management zones with the “reference map” (Figure 6a). All the other soil
parameter groups presented low to medium PoMZSAs. Thus, in the k-means fuzzy cluster-
ing methodology, based on the results of our study, it is concluded that it is better to use
the full parameter dataset or the full PCAs dataset of variables in order to obtain insightful
and better field management zone maps with high PoMZSAs.

3.7. Results and Discussion of Soil–Water–Crop–Atmosphere (SWCA) and ASMD Model, the
Deficit Irrigation and VRA Effects on Field’s Management Zones Yields and Essential Oil

VDI is described as an irrigation control operation strategy in which plants are watered
with a reduced amount that is usually lower than the total crop demands (actual evapo-
transpiration) for optimum crop growth in an effort to decrease the overall irrigation water
volume applied, enhance the plants’ responsiveness to water deficit in a beneficial way, and
thereby raise the crop’s IWUE. In the current research, we classify the water deficit accord-
ing to soil water level into six classes as they are defined in [18]: (1) Severe water deficit
(<50% of θ f c), (2) Moderate water deficit (50–60% of θ f c), (3) Mild water deficit (60.1–75% of
θ f c), (4) Light water deficit (75.1–90% of θ f c), (5) No deficit or full irrigation (>90% of θ f c),
and (6) Over-irrigation (>100% of θ f c). The length in days of the initial or seedling growth
stage (Lini) [14] lasted 30 days, extending from the seeding day (early November) until
almost 10% topsoil coverage of coriander. Over the Lini stage, the θpini of the SWCA-model
was fixed at 0.65, i.e., MAD (Management Allowable Depletion) = 65% [14,17,18,25]), for
coriander growing without water stress. MAD defines the amount of SM that can be
consumed prior to being renewed by irrigational water. The lifespan of the flowering stage
(Ldev) [14,17,25] was 105 days, with a trend from 10% topsoil cover of leafy greening to
complete topsoil covering. The actual full coverage of the crop typically happens at the
onset of flowering. The mid-season stage (Lmid) length [14,17] was 68 days, extending
from the actual topsoil total coverage to the onset of plant maturation. The late season or
maturation stage (Llate) [14,17] was 30 days, extending from the onset of plant maturity to
harvesting of the crop or complete senescence (Figure 7a,b). Soil moisture is the foremost
contributor to enhancing the development and productivity of crops under rainfed and
irrigated regimes. Considering the various growth stages, the reproductive stadia (Lmid
and Llate) are far more fragile than the vegetative.
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For the 1st cultivation season, the representative Figure 7a,b depict the results of the
day-to-day SWCA and ASMD models [3,14,17,18,25] by observing the day-to-day SM mon-
itor of θV(TDR) (obtained from a TDR instrument with multisensors [18,20,21,25,72,73]), the
precipitation, the variable deficit irrigation, the height progression and evapotranspiration
of coriander, the field capacity (θ f c), the saturation θS, the permanent wilting point (θwp),
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topsoil evaporation, and deep percolation (drainage water) throughout the 4 crop growth
stages of the first management zone for IR1:Full and IR2:VDI irrigation levels, respec-
tively), November’s prevailing climatic conditions during the coriander’s seedling growth
stage [14,17,25] were favorable in the 1st cultivation season, and limited water quantity
was needed to be supplied to IR1-MZ1:Full (21.07 mm) and in IR2-MZ1:VDI (15.80 mm)
and accordingly to the rest of the 3 MZs. In the IR1:Full and IR2:VDI irrigation of all MZs,
throughout the coriander’s Lini growing stage, a moderate to mild VDI (60–75%) was
applied, and plant observations were utilized. The prevailing climatic conditions of the
1st cultivation period (where frequent rainfall occurred) throughout the flowering stage
(Ldev) [14,17,25] (December to the middle of March) in the field area were favorably suited
since no irrigation was required in any management zone. This favorable situation is due
to Pef = 58.66 mm of Lini and Pef = 194.45 mm of Ldev lifespans. In fact, for the Ldev
stage, the effective rainfall turned out to be adequate to match the ETc and ETα, which
were determined using the SWCA model to be 99.00 mm for both the IR1-MZ1:Full and
IR2-MZ1:VDI and the other MZ treatments. In the IR1:Full and IR2:VDI irrigation levels of
all MZs, throughout the coriander’s Lmid growing stage, a moderate to mild VDI (60–75%)
was supplied, and plant observations were utilized (Figure 7a,b). The detailed SWCA and
ASMD model outcomes of the 1st growing season for the 4 management zones are reported
in Table 7.

Table 7. First cultivation season outcomes of SWCA and depletion (ASMD) models for the 4 manage-
ment zones of the experimental field.

Management Zones Results of the SWCA and the Depletion Models of Coriandrum sativum L. in 1st c.s.
Parameter 1st MZ 2nd MZ 3rd MZ 4th MZ
Season duration in days 233 233 233 233
Irrigation treatment IR1:Full IR2:VDI IR1:Full IR2:VDI IR1:Full IR2:VDI IR1:Full IR2:VDI
Water deficit [%] 100% 60–75% 100% 60–75% 100% 60–75% 100% 60–75%
ASMD average [%] 17.89 24.69 18.13 24.25 18.36 24.48 18.87 24.16
ASMD max [%] 75.77 80.24 83.71 83.72 84.80 84.80 80.76 80.76
Ks average [–] * 0.976 0.913 0.976 0.920 0.975 0.918 0.968 0.919
Ks max [–] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Ks min [–] * 0.355 0.269 0.366 0.240 0.361 0.236 0.287 0.259
Ks-weighted average [–] * 0.936 0.842 0.936 0.852 0.935 0.850 0.924 0.852
Number of days with Ks < 1 * 38 73 38 69 38 69 42 68
Percentage of days with
Ks < 1 * 16.31 31.33 16.31 29.61 16.31 29.61 18.03 29.18

Net Irrigation NIR [mm] 348.74 246.05 359.38 256.30 358.82 255.10 330.35 254.85
Effective rainfall Pe = P-RO
[mm] 344.28 344.28 344.28 344.28 344.28 344.28 344.28 344.28

TWI = (NIR + Pe) [mm] 693.02 590.34 703.66 600.59 703.10 599.39 674.63 599.14
ETc [mm/stage] 564.44 559.85 564.25 559.01 564.12 558.89 562.07 558.77
ETα [mm/stage] 546.28 474.46 546.24 479.03 545.27 477.19 537.36 478.74
Deep percolation DP [mm] 177.70 149.76 183.71 151.64 183.74 151.81 167.50 151.50
DP (% losses of NIR) 50.96 60.87 51.12 59.16 51.21 59.51 50.70 59.45
DP (% losses of TWI) 25.64 25.37 26.11 25.25 26.13 25.33 24.83 25.29
TWI-DP [mm] 515.32 440.58 519.95 448.95 519.36 447.58 507.13 447.64
Kcb average 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83
Kcb deviation 0.30–1.19 0.30–1.19 0.30–1.19 0.30–1.19 0.30–1.19 0.30–1.19 0.30–1.19 0.30–1.19
Kc average 1.15 1.14 1.15 1.14 1.15 1.14 1.14 1.14

(*) Ks < 1 indicates water stress to plants.

In the IR1:Full and IR2:VDI irrigation levels of all MZs, throughout the coriander’s
late or maturation stage [14,18], a mild DI (75%) was supplied, and plant observations were
utilized. In the entire 1st growth season, the daily SWCA and depletion model results of
each one of the 4 MZs and the SM results pointed to the overall water quantities supplied
to the 4 MZs in IR1: Full irrigation that ranged from 674.63 to 703.66 mm. The ETc ranged
from 562.07 to 564.44 mm, the ETα ranged from 537.36 to 546.28 mm, and drainage ranged
from 167.50 to 183.74 mm, demonstrating 24.83 to 26.13% losses to the supplied overall
water (full irrigation + effective precipitation). The SWCA model’s results for the 4 MZs
showed that, in IR1:FI, the Ks-average coefficient ranged from 0.913 to 0.920 and in IR2:VDI
from 0.968 to 0.976, respectively. If Ks-average present values are lower than unity, this



Sustainability 2023, 15, 13524 24 of 33

indicates that water stress is occurring on plants [3,17,18,25]. Regarding the various water
inputs applied to the 4 MZs in IR2:VDI irrigation (590.34 to 600.59 mm), the ETc, the actual
evapotranspiration, and drainage outcomes demonstrated 25.25 to 25.37% losses of overall
supplied quantity (VDI + effective precipitation) due to frequently high precipitations in
Lini and Ldev srages.

The detailed outcomes of the SWCA and ASMD models of the 2nd cultivation season
for the 4 management zones are reported in Table 8.

Table 8. Second cultivation season outcomes of SWCA and depletion (ASMD) models for the
4 management zones of the experimental field.

Management Zones Results of the SWCA and the Depletion Model of Coriandrum sativum L. in 2nd c.s.
Parameter 1st MZ 2nd MZ 3rd MZ 4th MZ

Season duration in days 233 233 233 233
Irrigation treatment IR1:Full IR2:VDI IR1:Full IR2:VDI IR1:Full IR2:VDI IR1:Full IR2:VDI
Water deficit [%] of θ f c 100% 60–75% 100% 60–75% 100% 60–75% 100% 60–75%
ASMD average [%] 20.99 28.17 19.57 27.30 19.51 27.42 19.29 27.11
ASMD max [%] 81.96 87.28 84.53 85.11 85.61 85.62 83.34 84.30
Ks average [–] * 0.960 0.904 0.954 0.906 0.953 0.906 0.957 0.908
Ks max [–] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Ks min [–] * 0.233 0.135 0.183 0.167 0.178 0.164 0.203 0.185
Ks-weighted average [–] * 0.918 0.825 0.910 0.831 0.909 0.830 0.913 0.834
Number of days with Ks < 1 * 41 81 43 78 43 78 43 76
Percentage of days with
Ks < 1 * 17.60 34.76 18.45 33.48 18.45 33.48 18.45 32.62

Net Irrigation NIR [mm] 308.54 225.25 315.39 236.43 314.19 236.43 319.75 236.39
Effective rainfall Pe = P−RO
[mm] 220.03 220.03 220.03 220.03 220.03 220.03 220.03 220.03

TWI = (NIR + Pe) [mm] 528.57 445.29 535.42 456.46 534.22 456.46 539.79 456.42
ETc [mm/stage] 521.97 520.57 521.46 519.50 521.38 519.43 521.42 519.46
ETα [mm/stage] 493.03 435.44 488.70 436.58 487.82 436.01 491.01 436.86
Deep percolation DP [mm] 70.36 47.57 78.05 51.61 77.24 51.64 81.23 52.49
DP (% losses of NIR) 22.80 21.12 24.75 21.83 24.58 21.84 25.40 22.21
DP (% losses of TWI) 13.31 10.68 14.58 11.31 14.46 11.31 15.05 11.50
TWI-DP [mm] 458.21 397.71 457.37 404.85 456.98 404.82 458.56 403.93
Kcb average 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83
Kcb deviation 0.30–1.18 0.30–1.18 0.30–1.18 0.30–1.18 0.30–1.18 0.30–1.18 0.30–1.18 0.30–1.18
Kc average 1.13 1.13 1.13 1.12 1.13 1.12 1.13 1.12

(*) Ks < 1 indicates water stress to plants.

In the entire 2nd growth season, the daily SWCA and ASMD model results of each
one of the 4 management zones and the SM results revealed that overall water quantities
supplied to the 4 MZs in IR2:VDI irrigation ranged from 445.29 to 456.46 mm, that is
75.43% to 76.00% of the first’s season total water inputs (590.34 to 600.59 mm), and the
ETc ranged from 519.43 to 520.57 mm, that is 92.95% to 92.98% of the first’s season ETc
(558.77 to 559.85 mm). In IR2:VDI irrigation, the actual evapotranspiration comparison of
the two cultivation seasons showed that the ETα of the second c.s. was 91.78% to 91.20%
of the first’s season ETα, and the deep percolation was 31.76% to 34.02% of the first’s
season deep percolation, demonstrating 10.68 to 11.50% losses to the supplied overall water
quantities (NIR irrigation + effective precipitation). Management zones and VDI irrigation,
if implemented prudently at critical development stages, could lead to significant water
savings improvements. The water savings results of VDI irrigation in comparison with
full irrigation application between the 2 growth seasons ranged from 22.85% up to 29.44%
in the 1st cultivation season and from 25.03% up to 26.99% in the 2nd cultivation season
of coriander. The results of water savings from VDI irrigation in comparison with full
irrigation in the various management zones for the 2 growing seasons were statistically
significant for all MZs and ranged for the 1st MZ from 26.99% up to 29.44%, for the 2nd MZ
from 25.03% up to 28.68%, for the 3rd MZ from 25.73% up to 28.90%, and for the 4th MZ
from 22.85% up to 26.07%.

The average amounts of soil properties for each management zone and the VRA mean
for the 1st and 2nd c.s. of the experimental field are presented in Table 9.
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Table 9. Mean values of soil parameters and nitrogen and phosphorus pentoxide VRA applications
per management zone of the experimental field.

SN Parameter 1st MZ 2nd MZ 3rd MZ 4th MZ

1 Calcium Ca++ (mg·kg−1) 2233.121 1896.783 2391.906 2399.249

2 Calcium carbonate CaCO3 (%) 1.862 0.968 1.700 1.742

3 Magnesium Mg++ (mg·kg−1) 1969.192 1660.571 1964.776 1995.331

4 Nitrogen inorganic(mg·kg−1) 76.151 59.622 75.192 62.752

5 Organic matter (%) 1.789 1.676 1.939 1.763

6 pH [1:2 soil/water solution] 7.878 7.744 7.851 7.813

7 Phosphorus P-olsen (mg·kg−1) 16.643 15.274 14.559 17.123

8 Potassium K+ (mg·kg−1) 405.655 403.556 409.28 417.689

9 Clay (size: <0.002 mm) (%) 25.349 25.052 25.317 23.814

10 Gravel (%) 0.083 0.093 0.077 0.057

11 Sand pr (size: 0.2–2 mm) (%) 32.367 34.386 32.728 33.873

12 Silt (size: 0.002–0.02 mm) (%) 20.357 18.545 19.441 20.229

13 Soil Erodibility (Mg·ha·h·ha−1·MJ−1·mm−1) 0.0309 0.0301 0.0301 0.0313

14 Vfs sand (size: 0.02–0.2 mm) (%) 21.868 22.010 21.903 21.981

15 Bulk density (g·cm−1) 1.386 1.411 1.469 1.397

16 Field capacity θfc (m3·m−3) 28.536 27.528 27.640 27.072

17 Plant available water PAW (cm·cm−1) 0.1146 0.1081 0.1066 0.1138

18 Sat. Hydraulic conductivity Ks (mm·h−1) 16.634 16.368 11.719 19.676

19 Saturation θsat (m3·m−3) 47.991 46.762 44.454 47.362

20 Wilting point θwp (m3·m−3) 16.257 15.989 16.364 15.426

21 Nitrogen (kg·ha−1) VRA mean (1st c.s.) 518.985 593.528 548.310 572.270

22 Nitrogen (kg·ha−1) VRA mean (2nd c.s.) 612.402 611.334 594.916 595.160

23 P2O5 (kg·ha−1) VRA mean (1st c.s.) 28.648 45.290 49.929 25.168

24 P2O5 (kg·ha−1) VRA mean (2nd c.s.) 44.404 40.761 39.943 44.799

The variable rate application (VRA) allows the spreading of a predetermined dose
of fertilizer to each management zone, depending on the results of the soil analyses. The
applied fertilizer VRA is a promising method in PA that can reduce nitrogen and other
nutrient amounts, such as phosphorus pentoxide and potassium oxide, decrease economic
costs, and reduce nitrogen leaching. Thus, we chose VRA fertilization under full (IR1:FI)
and variable deficit irrigation (IR2:VDI) for nitrogen and P2O5 in each MZ (Figure 8a,b)
and statistically investigated the coriander yields of the different management zone results
(4 MZs). As for the potassium oxide fertilization, it was decided not to apply it due to the
presence of elevated potassium K+ levels found in the laboratory analyses (see Table 1) and
reflected in field soil mapping results (Figure 3f).

Additionally, nitrogen and phosphorus pentoxide VRA (variable rate applications)
mean per management zone of the experimental field for the 1st and 2nd cultivation seasons
(c.s.) are presented in Table 9. In many of the soil parameters, significant differences are
observed between the four management zones of the experimental field.
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Examples of nitrogen and P2O5 variable rate application (VRA) prescription maps of
the first cultivation season are depicted in Figure 8a [nitrogen (kg·ha−1) VRA prescription
map] and in Figure 8b [phosphorus pentoxide (kg·ha−1) VRA prescription map]. Taking
into consideration the two cultivation seasons of the coriander, it is noticed that in the 1st
c.s., the nitrogen and phosphorus pentoxide variable rate application prescription maps
present a higher standard deviation and a higher range than those of the 2nd season.

Moreover, Figure 8c,d depicts the harvesting results of the fruit yield PA maps of
IR1: Full irrigation and IR2: VDI irrigation in the 1st cultivation season and the fruit yield
PA maps of IR1: FI and IR2: VDI irrigation in the 2nd cultivation season, respectively.
Additionally, in Figure 8e,f are depicted the essential oil production (% v·w−1) PA map of
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IR1:FI and IR2:VDI irrigation in the 1st c.s. and the essential oil production (% v·w−1) PA
map of IR1:FI and IR2:VDI irrigation in the 2nd c.s., respectively.

The unbalanced one-way ANOVA (p = 0.05) [3,9,67,76,78] revealed that the 4 manage-
ment zones—which have different soil nutrients and other soil parameters—as de facto
treatments obtained by PA with a fuzzy k-means clustering algorithm, with the 2 irrigation
levels [MZx-IR1: full irrigation, MZx-IR2: variable deficit irrigation], in the 1st cultivation
season significantly affected the coriander’s yield (kg·ha−1) and the essential oil production
(% v·w−1). On the contrary, in the 2nd cultivation season, the 4 MZs as de facto treatments
did not result in significant differences in coriander’s yield (kg·ha−1). The statistical analy-
sis for the 4 MZs effects and irrigation levels results for the coriander yield and essential oil
production of the 1st and 2nd c.s. are presented in Table 10.

Table 10. Statistical analysis (ANOVA (p = 0.05)) for MZs effects and irrigation level results for the
coriander yield and essential oil production.

Dependent Variable C.s. MZs Irrigation
Level

Management
Zones Effects

Sum of
Squares df Mean

Square F Sig.

coriander_YIELD1_FI 1st IR1:FI

Between Groups 235,792.892 3 78,597.631 21.296 0.000

4 Within Groups 516,711.442 140 3690.796

Total 752,504.333 143

coriander_YIELD1_VDI 1st IR2:VDI

Between Groups 219,431.814 3 73,143.938 20.471 0.000

4 Within Groups 500,228.460 140 3573.060

Total 719,660.275 143

coriander_YIELD2_FI 2nd IR1:FI

Between Groups 7959.955 3 2653.318 1.118 0.344

4 Within Groups 332,194.483 140 2372.818

Total 340,154.438 143

coriander_YIELD2_VDI 2nd IR2:VDI

Between Groups 7285.969 3 2428.656 1.069 0.364

4 Within Groups 318,066.413 140 2271.903

Total 325,352.381 143

Essential_Oil_1_FI 1st IR1:FI

Between Groups 0.103 3 0.034 36.645 0.000

4 Within Groups 0.132 140 0.001

Total 0.235 143

Essential_Oil_1_VDI 1st IR2:VDI

Between Groups 0.119 3 0.040 35.515 0.000

4 Within Groups 0.156 140 0.001

Total 0.275 143

Essential_Oil_2_FI 2nd IR1:FI

Between Groups 0.001 3 0.000 0.618 0.604

4 Within Groups 0.093 140 0.001

Total 0.094 143

Essential_Oil_2_VDI 2nd IR2:VDI

Between Groups 0.020 3 0.007 8.215 0.000

4 Within Groups 0.115 140 0.001

Total 0.135 143

The results of the 4 MZs treatments for various observed parameters for the 1st and
2nd seasons are presented in the 6 diagrams of Figure 9. Moreover, the unbalanced one-way
ANOVA (p = 0.05) [3,9,67,76,78] outcomes revealed coriander’s yields of 1st c.s. [means:
MZ1–MZ4 for IR1:FI = 2912.79 (±72.54) kg·ha−1, MZ1–MZ4 for IR2:VDI = 2848.61 (±70.94)
kg·ha−1], were affected significantly by management zone and by irrigation level. The
coriander’s yields of 2nd c.s. [means: MZ1–MZ4 for IR1:FI = 2889.50 (±48.77) kg·ha−1,
MZ1–MZ4 for IR2:VDI = 2845.15 (±47.70) kg·ha−1], were not affected significantly by either
management zone or irrigation level.
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It took two cultivation seasons for the different nitrogen and phosphorous pentoxide
fertilizer VRAs (Variable Rate Application) that were applied in the field to leverage the
nutrients in the soil levels and present homogenous coriander yields (kg·ha−1) between
the 4 MZs with statistically non-significant differences in the 2nd c.s. (Table 10).

Additionally, the unbalanced one-way ANOVA (p = 0.05) [3,9,67,76,78] results showed
that the essential oil production of the 1st c.s. [means: MZ1–MZ4 for IR1:FI = 0.967
(±0.041)% v·w−1, MZ1–MZ4 for IR2:VDI = 1.035 (±0.044)% v·w−1], was significantly
affected by management zone and by irrigation level. The coriander’s essential oil produc-
tion in 2nd c.s. [means: MZ1–MZ4 for IR1:FI = 1.0004 (±0.026)% v·w−1, MZ1–MZ4 for
IR2:VDI = 1.1088 (±0.031)% v·w−1], were not affected significantly by either management
zone or irrigation in full irrigation level (IR1:FI); however, were affected significantly by
MZ and irrigation in VDI level (IR2:VDI). It is worth noting that, in both cultivation seasons,
the essential oil production of the management zones was higher at the IR2:VDI level.

It was found that VDI leads to lower fruit yields but without significant differences
(p = 0.05) among MZs when appropriate VRA fertilization is applied to leverage soil nutri-
ent levels through different MZs, and also that VDI compared to full irrigation application
in different management zones yields 22.85% up to 28.90% in irrigation water savings.
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Regarding essential oil production, it is concluded that deficit irrigation (IR2:VDI)
leads to higher essential oil production, with significant differences among full and VDI
irrigation and management zones.

4. Conclusions

An agronomist can be greatly assisted in recognizing and locating field sites of low,
medium, and high soil fertility by analyzing the PAs spatial variability maps of soil’s
“Chemical Parameter Group” and comprehending the effect of each parameter on plants’
development. Moreover, in the k-means fuzzy clustering of the field’s management zone
delineation methodology, it is concluded that it is better to use the full parameter dataset or
the full PCAs dataset of variables in order to obtain more accurate MZs and insightful and
better management zone maps with high PoMZSAs for high spatial agreement.

The unbalanced one-way ANOVA (p = 0.05) statistical analysis results revealed that
correct delineation of management zones using precision agriculture with fuzzy k-means
clustering, if applied under variable deficit irrigation and VRA fertilization, leads to in-
creased essential oil content of coriander with statistically significant differences (SSD),
and to lower fruit yields; however, without SSD differences among management zones,
when appropriate VRA fertilization is applied to leverage soil nutrient levels through the
different fuzzy clustered MZs, for farming sustainability. Moreover, VDI compared to full
irrigation in different management zones yields 22.85% to 29.44% in water savings, thus
raising IWUE (46.833 to 64.112 kg·m−3), nitrogen use efficiency (4.655 to 5.623), and N-P-K
fertilizer productivity (4.361 to 5.329). Finally, a further course of action in research would
be the trial of more VDI levels and more VRA levels under all MZs.
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