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Abstract: The installation of large-scale solar (LSS) photovoltaic (PV) power plants continues to
rise globally as well as in Malaysia. The data provided by LSS PV consist of five weather stations
with seven parameters, a 22-unit inverter, and 1-unit PQM Meter Grid as a big dataset. These big
data are rapidly changing every minute, they lack data quality when missing data, and need to be
analyzed for a longer duration to leverage their benefits to prevent misleading information. This
paper proposed the forecasting power LSS PV using decision tree regression from three types of input
data. Case 1 used all 35 parameters from five weather stations. For Case 2, only seven parameters
were used by calculating the mean of five weather stations. While Case 3 was chosen from an index
correlation of more than 0.8. The analysis of the historical data was carried out from June 2019 until
December 2020. Moreover, the mean absolute error (MAE) was also calculated. A reliability test
using the Pearson correlation coefficient (r) and coefficient of determination (R?) was done upon
comparing with actual historical data. As a result, Case 2 was proposed to be the best input dataset
for the forecasting algorithm.

Keywords: large-scale solar PV; decision tree regression; forecast; PV plant output; global
irradiance; energy

1. Introduction

Malaysia has a potential for solar power plant development due to the high average
daily solar radiation, with a range of 4-8 h daily [1]. Based on this, Malaysia’s government
has set a target of 20% renewable energy by 2025 [2]. PV systems range from small systems
to large-scale PV plants, such as Pico PV systems, off-grid domestic systems, off-grid non-
domestic systems, hybrid systems, grid-connected distributed systems, and grid-connected
centralized systems [3]. The most popular types of hybrid power generation are grid-
connected photovoltaic (GCPV) systems. The LSS PV system needs to be installed near
the grid electricity network offered by the local power provider to be linked to as GCPV)
systems. Thus, if the GCPV is frequently unstable, the main advantage of having a GCPV
system becomes unachievable [4].

Solar radiation, cloud covering, temperature, humidity, atmospheric pressure, wind
speed, and other elements all have an impact on solar power generation [5]. Because
of the chaotic nature of the Earth’s weather system, these environmental parameters can
change substantially at any time, making dependable and precise forecasting of solar power
difficult [6]. So far, various studies on solar power prediction have been completed, which
may be separated into physical models, statistical approaches, regression methods, and
their hybrid methods [7]. Among these, the artificial intelligence (Al) algorithm serves
as the foundation for the present solar power forecast systems. Al is a field of computer
science and developing technology that uses computer simulation to study human logical
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thinking, reasoning, and group behaviors [8]. Machine learning (ML), expert systems, fuzzy
logic, and heuristic optimization are some of the most extensively used Al methods [9].

Accurate LSS PV power forecasting is important when connected to the grid for an
effective plant [10]. Hussein et al. [10] publish a time series forecasting of solar power
generation for large-scale photovoltaic plants to predict PV power output by using statistical
methods based on artificial intelligence. They mentioned the time series forecasting for
PV power plants is only reliable for one hour ahead prediction. Planning and procedures
must adjust according to these changes in the forecast LSS PV condition [11]. Several
writers have explored the forecasting of PV output power based on the classifications of
meteorological factors [12-16]. By using a support vector machine for weather classification,
Shi et al. [12] established a unique prediction model to estimate the power output of a PV
plant with a 30 MW capacity for a 24 h time horizon. Mellit et al. [14] used two artificial
neural networks to predict the power produced by a 50 MW PV plant using more than one
year of data. Dahlan et al. [17] forecasting power generation model of an LSS PV farm using
Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) technique of
50 MW as a case study. Nguyen et al. [18] propose a new model for short-term forecasting
power generation capacity of large-scale solar power plant (SPP) in Vietnam considering
the fluctuations of weather factors when applying the Long Short-Term Memory networks
(LSTM) algorithm. They add new features to improve the selected LSTM model precision
and cope with the problem of error due to weather forecast data. The meteorological data
and historical power output can map the relationship using a correlation coefficient to
predict the output energy in the future [19].

According to [20], the highly correlated variables with PV power are solar irradiance,
air temperature, and dew point, while relative humidity and cloud type are somewhat
negatively correlated with it. However, the fast fluctuation of PV power with a high time
resolution makes it difficult to forecast the output energy. Thus, this situation is necessary
to explore the reasons behind the power changes [21].

This paper aims to present a prediction of total kWh energy output from a GCPV
system using an Adaptive Decision Tree Regression modeling. The location of the oper-
ating system is the grid-connected PV systems at Pahang, Malaysia. Among the climatic
parameters being monitored were the Total Global Horizontal Irradiance (W/m?), Total
Horizontal Irradiance (Wh/m?), Global Irradiance on the Module Plane (W/m?), Total
Slope Irradiance (Wh/m?), Ambient Temperature (°C), PV Module Temperature (°C), and
Wind Speed (m/s). These datasets were trained by three cases. Case 1 uses all data from
five weather stations. Case 2 uses mean data of five weather stations, while Case 3 uses an
index correlation of more than 0.8. All these three datasets will be trained using the TDR
model to predict output power (KW) of LLS PV. The best case is identified by evaluating
the performance metric of the model.

This paper presents the comparison of various numbers of input weather stations to
predict total kWh energy LSS PV. Section 2 illustrates the LSS PV configuration, flowchart,
and Decision Tree Regression model. The performance of forecasting will also be evaluated
according to a mean absolute error (MAE) and the coefficient of the determinant (R?).
Section 3 comprises a comparison and discussion of the three cases tested utilizing the
Decision Tree Regression model to identify the best input variable for forecasting total kWh
LSS PV. Section 4 summarizes the paper’s conclusion.

2. Methodology
2.1. LSS Information

The UiTM 50 MW LSS PV in Pahang has been used as a case study. This location
was selected because the capacity is more than 30 MWac and it is called LSS PV. Figure 1a
presents the LSS PV power plant configuration from the PV panel to TNB-Grid Meter.
With a 50 MWac capacity and 290 acres of land, the LSS PV can supply power to up to
22,000 dwellings [12,13]. The area of the plant is 290 acres, with a total of 184,850 Poly-
crystalline PV modules installed. The plant is facing South, the tilt angle is 15°, and the
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shading angle due to the presence of parallel rows of PV modules is 20°. In addition, this
solar power plant has five weather stations.
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Figure 1. (a) Large-scale Solar photovoltaic configuration, and (b) schematic block diagram of the
considered PV plant (50 MWac).

This location has a tropical rainforest climate, and sunshine will start around 7:15 A.M.
until sunset around 7:20 PM. The ambient temperature ranges from 27 to 35 °C, and the air
temperature is 26.4 °C throughout the year. The high amount of cloud cover dominates the
atmosphere, with the occurrence of clear skies rarely going beyond the next day. According
to the Global Solar Atlas, the direct normal irradiation per year is 998.2 kWh/m?, Global
horizontal irradiation per year is 1715.9 kWh/m? and diffuse horizontal irradiation per
year is 955.5 kWh/m? [22].

Figure 1b shows the block diagram of the considered PV plant with a capacity 50 MWac.
The strings are made of 20 series-connected PV modules, while groups of 28 strings are
parallel-connected into a DC combiner box where fuses prevent overcurrents in the strings.
Fifteen units of DC combiner box are then connected to a DC side inverter that converts
the direct current produced by the PV strings into an alternating current compatible and
synchronized with the grid. Finally, the AC sides of the 22-unit inverters are connected to a
double primary transformer that converts the low voltage output of the inverters (33 kV)
up to 132 kV, corresponding to the nominal voltage of the electricity grid.

2.2. Historical Dataset

The dataset in this paper includes Total Global Horizontal Irradiance (W /m?), Total
Horizontal Irradiance (Wh/m?), Global Irradiance on the Module Plane (W/m?), Total
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Slope Irradiance (Wh/ m?), Ambient Temperature (°C), PV Module Temperature (°C), and
Wind Speed (m/s) by station EM04, EM11, EM12, EM17, and EM21 then an output Power
(kW) at the TNB-Grid Meter.

The dataset was created as a CSV file. A perfect date series with the following format
was created by combining the Year, Month, Day, Hour, and Minute columns: YYYY-MM-
DD HH: MM. The dataset chosen for training was June-December 2019 and the predicted
data was for January—December 2020. In the LSS PV plant, a full set of pyranometers was
installed at least one (1) for every 10 MWac of plant size at approximate locations within the
site [23,24]. In addition, according to Malaysia Standard, at least one (1) set of full weather
stations shall be installed for every 10 MWac of plant size [25].

Figure 2 shows a flowchart of the best data selection from weather stations using the
DTR model. Eighteen months of historical data were used in this study. The first part in-
volved data preprocessing corresponding to extraction and preprocessing operation. Then,
identifying the correlation between input and output variables data, and then checking
any hypothesis. Next, calculating the mean data from the 5-weather stations for mean
data. Three cases were developed to test the suitable input data for the machine learning
algorithm. Case 1 used all data provided by LSS PV, while Case 2 used mean data from five
weather stations, and lastly, Case 3 the weather data selection according to a correlation
index of more than 0.6. Therefore, the weather data was used are total global horizontal
irradiance(tghi), global irradiance on the module plane (gimp) and PV module temperature
(pvmt). All three cases implemented the DTR model to predict the power output LLS PV.
Lastly, we evaluated using evaluation metrics and presented the best input data suitable
for implementation with other machine learning algorithms.

[ 18 months database of 5 weather stations and an output AC power LSS ]
v
Data preprocessing
Data Data Batch Ly Standard
extraction Reshaping Normalization data
v
35 data input, 1 data output I
v
Correlation
- Case 2 1 Case 3"
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1 data <4—— mean data ——p> 1 data correlation more
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v
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Figure 2. Flowchart of the best data selection of weather station using the DTR model.

2.3. Training the Model Decision Tree Regression

A non-parametric supervised learning model called Decision Trees (DT) is employed
for both classification and regression analysis. This tree-structured classifier contains three
different types of nodes. The original node that represents the complete sample, known
as the root node, may be divided further into other nodes. Interior nodes represent the
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properties of a dataset, while branching represents its decision-making procedures. The
leaf nodes display the outcome in the end. This approach is quite beneficial for dealing
with problems concerning decisions. The model was trained using the DTR function from
the sklearn library [26-28]. Figure 3 shows the decision tree structure.

Root node

Interior node

Interior node

Interior node

Le Le
node noae

Le Le | Le Le
node node ‘ nodae nodae

Figure 3. Decision Tree Nodes, Root, Interior, and Leaf.

Purity is a statistic used to confirm the choice to divide at each node. A node is 100%
impure when it is split evenly in half, and the tree does not have a clear decision for the
output. When every piece of input information is paired with a single decision value,
the node is 100% pure. The accuracy will increase when the purity is highest. When the
splitting is finished, the tree is trimmed to make it less complex by using the average as the
final value for the target. In order to forecast the output, pruning looks for and eliminates
any tree branches that are redundant or non-critical.

Ni(s,t) =i(t) — Pi(tr) — Pri(tr) ¢y

where s corresponds to a potential split at any node ¢, which is divided by s into a left
(t) and right (tg) child nodes in proportion to P; and Pg, respectively. Here, i(t) is a
pre-defined impurity standard for splitting, and Ai(s, t) is the final measure of decreasing
impurity from split s.

The three impurity measurements that are most often employed are gain-ratio, Gini
index, and Chi-square. In this study, the algorithmic evolution of decision tree regression
inside the Scikitlearn package uses the Gini index, which might favor bigger partitions and
moderate computing. The Gini impurity index (I;) varies between 0 and 1, and it can be
formulated as

I (tx()) =1~ :Zlf (fxu,»)rk)z )

where f (t X(x;)r k) represents x; probabilities of each sample in the leave k at node ¢. The
splitting criterion on DT is derived from the determination of the feature with the lowest I.

2.4. Accuracy Assessment Methods

The mean absolute error (MAE), which calculates the mean absolute distance for a
model’s fitness in percentage terms, was used to validate the model. Using values between
0 and 1, the coefficient of the determinant (R%) measures the difference between the true and
predicted values [29]. Values that are closer to 1 show a collaborative link, whereas values
that are closer to 0 show a weaker correlation [30]. These markers are often employed to
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verify machine-learning algorithms. The formulas for determining the R? and MAE are
shown in Equations (1) and (2), respectively.

1 n
MAE = E;m—xﬂ ®)
R? = Y (Xi — Xn) (Yi — Vi) @

(06— %) (22 - Yo )

where 7 is the total number of data points or instances, X; and Y; are the actual and
predicted values, respectively, X;; and Yj, are the mean of the actual and predicted
values, respectively.

3. Results and Discussion

Figure 4a—h depicts the historical data of weather station EM04 and output power
from LSS PV. The dataset is presented in six-month duration for training DTR Model. From
the graph, we can see the appearance of the minimum and maximum values of the dataset.
It can be seen that the range of total global irradiance (tghi) is between 6 and 1408 W/m?,
total horizontal irradiance (thi) is between 6 and 6892 W/m?, global irradiance module
plane (gimp) from 9 to 1416 W/m?, total slope irradiance (tsi) is in the range 3 to 6923
W /m?, while ambient temperature (at) is between 22 and 36 °C, PV module temperature
(pvmt) is in the range 21 to 64 °C, and wind speed (ws) in the range 0.04 to 6 m/s, as shown

in Table 1.
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Figure 4. The dataset of (a) total global irradiance (tghi), (b) total horizontal irradiance (thi), (c) global
irradiance module plane (gimp), (d) total slope irradiance (tsi), () ambient temperature (at), (f) module
temperature (pvmt), (g) wind speed (ws), and (h) Output Power (kW) for weather station EM04.
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Table 1. The Statistical Data Analysis of June-December 2019 (training) and January-December
2020 (test).

Data tghiMean thiMean gimpMean tsiMean atMean pvmtMean  wsMean

count Train 82,528 82,528 82,528 82,528 82,528 82,528 82,528
Test 134,940 134,940 134,940 134,940 134,940 134,940 134,940

Train 462.97 2778.03 478.08 2874.77 30.14 40.18 1.23
mean Test 487.53 2877.03 49291 2918.61 30.44 39.87 1.50
Train 297.25 1782.31 305.52 1835.16 2.50 8.67 0.56
s Test 297.98 1805.50 299.41 1823.98 2.39 7.71 0.58
. Train 6.40 6.11 9.40 3.22 22.58 21.92 0.04
o Test 5.00 477 6.60 2.55 22.84 21.78 0.14
Train 1408.40 6892.11 1416.40 6923.39 36.24 63.92 5.38
e Test 1416.80 7329.28 1441.40 7249.056 37.28 62.70 5.20

Table 1 shows the statistical data analysis of the datasets for June-December 2019
(Train) and January-December 2020 (Test). Train data have 82,528 for six months, while
test data have 134,940 for year duration. This dataset has a good standard deviation
value because it is a positive value. From the statistic maximum test data, we can see
the maximum yearly irradiance of the LSS PV. The maximum value recorded for total
global irradiance (tghi) is 1416.80 W/ m?, for maximum total horizontal irradiance (thi),
it is 7329.28 W/m?, while for maximum global irradiance module plane (gimp), it was
recorded at 1441.40 W/m?, and the maximum total slope irradiance (tsi) is 7249.056 W/ m?2.
However, as high temperature is not for a good PV module, it reduces the efficiency of the
PV module. The high temperature recorded at LLS PV is 37.28 °C.

The bar graph in Figure 5 shows a correlation between the historical 35 weather
datasets and the power (kW) for the June-December 2019 dataset. This paper uses Pearson’s
correlation coefficient (r) to test the statistical relationship or correlation between the
weather dataset and output power. The graph shows that data for the total global irradiance
(tghi), the global irradiance module plane (gimp), and the PV module temperature (pvmt)
indicate a very strong positive relationship (0.80 to 1.00) for all weather stations. However,
the ambient temperature (at) and the wind speed (ws) indicate a variety of relationships as
moderate positive (0.40 to 0.59) and weak positive (0.20 to 0.39). However, total horizontal
irradiance (thi) and total slope irradiance (tsi), with values ranging from 0.00 to 0.19, show
only a very weakly positive connection with power (kW). It is found that the output
power of the LSS PV is greatly affected by factor of total global irradiance (tghi), the global
irradiance module plane (gimp), and the PV mod-ule temperature (pvmt). Figure 6a-h
shows a day plot graph from 5:00 A.M. to 8:00 P.M. of the weather station in LSS PV. Data
preprocessing was applied to the dataset weather stations to improve the efficiency of
model building. In this step, abnormal data were removed to avoid interference during
training and model testing. Then, missing data were replaced or corrected by using
different methods so that the resulting dataset is of the size needed to serve the training.
However, this may lead to inaccurate data because the missing data range is large and the
characteristic of data in this range is not close to linearity.
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The correlation of 35-weathers data with power (kW) for Jun-Dec 2019
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Figure 6. A day plot graph data with (a) total global irradiance, (b) total horizontal irradiance,
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After data preprocessing, the dataset was split into two parts which are data training
and data test. The data training is used to train the model, while the data test is considered
as unknown observations to measure the accuracy of the model. The length of the data
train is 6 months, while the length of data test is 365 days to reflect full year context. The
input data are Meteorological data (tghi, thi, gimp, tsi, at, pvmt, and ws), while the output
data are the output power (kW).

Next, a Decision Tree Regression was used to predict the LSS PV output. This dataset
contains 82,528 data train, and 134,940 data test was recorded with the features of total
global irradiance (tghi), total horizontal irradiance (thi), global irradiance module plane
(gimp), total slope irradiance (tsi), ambient temperature (at), PV module temperature
(pvmt), wind speed (ws), and Power (kW). After training the models on the training
dataset, the test dataset, which included the real historical weather data from January to
December 2020 collected from the LSS PV is used to check the quality of the models. For
the machine learning model, we use a python library that is DecisionTreeRegressor of the
sklearn package. Here, we train our Decision Tree model as a regressor using the library in
python and then fitting the model with training data of features and labels. After that, we
can predict test values using test data of features, as shown in Figure 7. We have three case
studies to predict output power at LLS PV. The list of case studies it as follows:

Case 1: 35 input parameters of 5 weather station datasets with 1 output power data

Case 2: 7 input parameters of mean weather station dataset with 1 output power data
Case 3: 3 input parameters with a correlation index of more than 0.8 and with 1 output
power data

In [75]: from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_absolute_error
# DECISION TREE REGRESSION MODEL
model = DecisionTreeRegressor(random_state = 0)
model.fit(input_df2019, target_df2019)

Out[75]: DecisionTreeRegressor(random_state=0)

In [76]: predicted_data2019 = model.predict(input_df2019)
print("Predicted 2019 Power (All Data):\n",predicted_data2019)

Predicted 2019 Power (All Data):
[ 769.71 856.54 950.16 ... 2740.978516 2740.978516
2740.978516]

Figure 7. Using the sklearn library DTR Model to train dataset.

To verify the best input data suitable for machine learning to reduce complexity
and memory space, the performance comparison was tested using an accuracy score of
MAE, r, and R? for Case 1, Case 2, and Case 3 as shown in Table 2. Although the DTR
model performs very well with Case 1 and Case 2, when using Case 3, which is a dataset
with a correlation index of more than 0.8, the error increases significantly, with MAE being
1.4932 percent. It is obvious that there is a significant increase in error when using only three
parameters compared with seven parameters of weather station data due to insufficient
datasets for training DTR model. The results show that the MAE of Case 1 and Case 2 are
better compared with Case 3.

Table 2. Evaluation metrics of decision tree for Case 1, Case 2, and Case 3.

Case 1 Case 2 Case 3
Mean Absolute Error (MAE) 0.0414 0.0414 1.4932
The correlation coefficient (r) 0.7169 0.7332 0.6894

The coefficient of determination (R?) 0.4197 0.4413 0.3613
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However, the objective of this study is to propose a feasible solution that helps to
apply the best input data into the machine learning model for PV output power with good
results. Referring to the correlation coefficient (r), Case 2 is better than Case 1 and Case 3,
while a low coefficient of determination (R?) can be an indicator of imprecision predictions.
However, R? does not tell us directly whether the predictions are sufficiently precise for
our requirements. Still, Case 2 is found to be superior to Case 1 and 3.

Figure 8 presents a graph of the actual and predicted power for Case 1, Case 2, and
Case 3 using the DTR model for the year 2020, while Figure 9 shows the actual and
predicted power for a day. In comparison to the results from Table 2, Figures 8 and 9, it
can be concluded that Case 2 is found to be the best input data for machine learning in
all respects.

Output Power(kW) of LSS Gambang for year 2020

50000 A

Actual

0 -
50000 A

Case 1

0 |
50000 A

Case 2

0 -
50000 A
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Q
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Q
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Figure 8. Actual and predicted power result of the year 2020.
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Figure 9. The actual power compared with Predicted Power for a day (a) Case 1, (b) Case 2, and

(c) Case 3.
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4. Conclusions

The paper presents a comparison of various types of input data applying DTR algo-
rithm to forecast a LSS PV at Pahang. The meteorological variables considered in this study
are total global irradiance (tghi), total horizontal irradiance (thi), global irradiance module
plane (gimp), total slope irradiance (tsi), ambient temperature (at), PV module temperature
(pvmt), wind speed (ws) and Power (kW). The authors analyzed and evaluated 36 datasets
from five weather stations with seven parameters for each station, a 22-unit inverter, and
1-unit PQM Meter Grid as a big dataset were acquired from UiTM LSS PV. The exploratory
data analysis was employed to identify the pattern of the dataset and the correlation be-
tween input parameters with power (kW). Three cases were tested to find the best input
dataset using the machine learning algorithm. The results show that Case 1 and Case 2
have higher MAEs than Case 3. However, in terms of the correlation coefficient (r), Case
2 outperforms Cases 1 and 3, while a low coefficient of determination (R?) can be found
for Case 3, which gives an indication of imprecision predictions. Particularly, R?> does not
tell us directly whether the predictions are sufficiently precise for our requirements or
not. Thus, Case 1 and Case 2 are better compared with Case 3. Conversely, Case 2 can be
implemented in another machine learning algorithm. In future work, further tests will be
done to verify if a longer historical dataset can further reduce prediction errors. Moreover,
the model performance will be verified on other solar plant test cases.
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