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Abstract: This paper presents an empirical investigation of the factors contributing to freeway crashes
on weekdays and weekends, using a Bayesian spatial logistic model. The crash data from Kaiyang
Freeway, China, in 2014 are used for the empirical investigation. The deviation information criterion
(DIC) values indicate that the proposed spatial logistic model is clearly superior to a logistic model
in analyzing weekday and weekend crashes. Additionally, significant spatial effects are found in
adjacent freeway segments for both weekday and weekend crashes, which demonstrate the reason-
ableness of the proposed model. The results of parameter estimation suggest that: traffic volume,
roadway segment length, and the proportions of vehicles in Classes 2 and 4 have significant effects
on weekday and weekend crash incidences in the same direction; horizontal curvature, presence of a
ramp, and average daily precipitation impact weekday crash incidence only; and the proportion of
vehicles in Class 3 and vertical grade impact weekend crash incidence only. Some countermeasures
from the perspectives of roadway design and traffic management have been proposed to reduce
freeway crashes on weekdays and weekends, respectively.

Keywords: freeway crash; weekday and weekend; spatial logistic model; Bayesian estimation

1. Introduction

Freeways play a pivotal role in roadway transportation and economic development. By
the end of 2022, the total length of the freeways in China had reached 177,000 km, ranking
first place in the world since 2011. Freeways provide the convenience of long-distance
travel for motor vehicles, while leading to high crash rates and mass causalities, which
have attracted great concern from transportation management agencies and the public.

To develop effective countermeasures for reducing the number of freeway crashes, it
is of great importance to achieve a good understanding of the factors contributing to crash
occurrences. In the past decade, there have been a number of studies that have focused
on modeling crash frequency on freeways in China. For instances, Ma et al. [1] proposed
a random-effects negative binomial (NB) model for examining the crash frequency of a
50 km freeway in China, and found that the roadway’s width, vertical grade, and its ratio
of horizontal curvature were significant factors in crash frequency. Zeng et al. [2] advocated
Bayesian hierarchical models for the analysis of monthly crash counts on Kaiyang Freeway
and confirmed significant temporal effects among them. Hou et al. [3,4] applied random-
effects and random-parameters NB models to the analysis of the traffic crash frequency of
eight freeways in China. The model estimation results indicated that factors pertaining to
roadway geometric design (median barrier offset, horizontal curvature, vertical grade, and
presence of a climbing lane); traffic composition (truck proportion); pavement conditions
(distress ratio, rutting depth, and international roughness index); and weather conditions
(hours of clear skies and average wind speed) have significant effects on crash frequency.
Wen et al. [5] revealed the interactive effects of certain roadway and weather attributes on
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crash frequency, using a Bayesian spatio–temporal approach. However, none of them have
considered the differences in crash risk between weekdays and weekends.

Significant variations of time (e.g., time of day and day of the week) are usually ob-
served in travel activities and driving behaviors. Dangerous driving behaviors (and related
traffic crashes) may be more frequent on weekends than on weekdays. A few previous
studies [6–8] have investigated the risk factors associated with crash occurrence/injury
severity between weekdays and weekends. Specifically, Adanu et al. [6] found that crashes
involving drivers under the influence of alcohol or other drugs are more likely to result
in severe injuries on weekends than on weekdays. Yu and Abdel-Aty [8] conducted a
macro-level analysis of weekday and weekend crash frequencies which were aggregated
by year, and a micro-level analysis of real-time crash risk on weekdays and weekends. The
results were generally consistent and indicated that weekday crashes are more likely to
occur under congested traffic conditions while weekend crashes are more likely to occur
under free-flow conditions. Qu et al. [7] investigated the effect of points-of-interest (POI)
on weekday and weekend crashes at a community level, using a multi-scale geographically
weighted regression. The results suggested that more transportation POIs were associated
with more crashes in the entire investigation area on weekdays and in only several com-
munities on weekends. While the above findings have demonstrated the differences in the
risk/severity of weekday and weekend crashes, to the best of our knowledge, there is no
reported research that examines the factors contributing to freeway crashes on weekdays
and weekends in China. Additionally, a macro-level analysis, where crashes are aggregated
by years, may not provide a precise estimation of the safety effects of time-varying factors
(e.g., traffic and weather conditions), and the high-resolution real-time traffic data necessary
for a micro-level analysis are usually unavailable for most freeways in China. Thus, a
weekly analysis (which is named a meso-level analysis) of weekday and weekend crash
occurrences may be more suitable.

To this end, the current research aims to conduct a meso-level analysis of the factors
contributing to freeway crashes on weekdays and weekends in China. Crash data for one
year from Kaiyang Freeway, China, were collected for the empirical analysis, where the
crashes were aggregated by weeks. Due to the scarcity of crash occurrences during the
weekdays and weekends within a week, a binary outcome variable indicating whether
there was a crash occurrence was used as the response variable in the regression analysis,
which was consistent with the micro-level analysis of crash risk [8]. In addition, potential
spatial correlation may exist across freeway segments [5]. Thus, a Bayesian spatial logistic
model was proposed for the analysis. To demonstrate its strength, the proposed model was
compared with a traditional logistic model.

The rest of the paper is structured into four sections. We introduce the freeway crash
data used for the meso-level analysis in Section 2. We specify the formulations and Bayesian
estimation process of the traditional and spatial logistic models in Section 3. The model
estimation results are compared and illustrated in Section 4. Finally, some conclusions are
drawn and some guides for future research are provided in Section 5.

2. Data Preparation

A one-year crash dataset from Kaiyang Freeway in Guangdong, China, in 2014 was
collected for the meso-level transportation safety analysis. The freeway dataset was assem-
bled with data on crash incidence, roadway inventory, traffic flow, and weather conditions.
The length of Kaiyang Freeway is 125.2 km. We split it into 154 segments, mainly based
on the homogeneities in vertical and horizontal alignment within each segment, which is
consistent with the segmentation criteria used in many previous studies [2,5,9].

The crash data were derived from the Highway Maintenance and Administration
Management System, which is managed by Guangdong Transportation Group. According
to the system, 692 crashes occurred on Kaiyang Freeway in 2014. We mapped them to the
split freeway segments, according to the crash locations. As mentioned above, this research
aimed to investigate weekday and weekend crash risk via a weekly analysis. Thus, the
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whole year was divided into 52 weeks. The crashes on each freeway section were further
mapped to the weekdays or weekends of a certain week, based on the crash date.

We obtained the Kaiyang Freeway geometric profile from Guangdong Province Com-
munication Planning and Design Institute Co., Ltd. Following the standards specified in
the Design Specification for Highway Alignment [10], many roadway characteristics, such
as the number and width of lanes, were fixed along the freeway. As a consequence, five
roadway attributes, including length, vertical grade, horizontal curvature, and presence
of bridges and ramps, were extracted from the geometric profile and used as explanatory
variables for crash modeling.

The traffic data were derived from the Guangdong Freeway Network Toll System. In
the toll system, motor vehicles are grouped into five classes which are numbered from
1 to 5, based on their head height, axis number, wheelbase, and wheel number. Please
refer to Zeng et al. [2] for the specific criteria for vehicle classification. We drew the
daily traffic volume of each vehicle class in 2014 from the system. The normalized daily
traffic volume was calculated as the weighted sum of the daily traffic volumes of the five
classes. The weights for vehicle classes 1 to 5 were 1, 1.5, 2, 3, and 3.5, respectively, as
recommended by the Guangdong Transportation Department. The normalized daily traffic
volume was respectively summed up for weekdays and weekends within each week. To
represent the traffic composition, the proportions of each vehicle class during weekdays
and weekends were also calculated, respectively. Due to the perfect collinearity of the
vehicle-class proportions, that of vehicles in class 1, veh_1, was set as the reference case.

We collected the daily data on precipitation and wind speed along the freeway from
the Meteorological Information Management System which is managed by the Guangdong
Climate Center. Each freeway segment was assigned to the nearest weather station, in
reference to the Euclidean distances. The average daily precipitation and wind speed during
weekdays and weekends were calculated and employed as weather-specific explanatory
variables in this study.

Table 1 shows the description and descriptive statistics of the variables used for the
empirical analysis. We conducted a Pearson correlation test for the explanatory variables in
SPSS software (Version 22.0) and found that veh_4 and veh_5 were significantly correlated for
both weekdays and weekends. To avoid the potential adverse impact of significant correlation
on model estimation, veh_5 was not used as an explanatory variable for modeling crashes.

Table 1. Description and descriptive statistics of the variables for modeling crashes on weekdays.

Variable Definition
Weekday Weekend

Mean S.D. Min. Max. Mean S.D. Min. Max.

Crash

At least one crash occurred on a freeway
segment during the

weekdays/weekends within a week = 1;
otherwise = 0

0.053 0.223 0 1 0.026 0.16 0 1

NTV The normalized traffic volume during
the weekdays/weekends (105 PCU a) 1.65 0.35 1.18 3.00 0.72 0.18 0.49 1.54

Veh_1 * The proportion of vehicles in Class 1 36.68 8.56 26.05 71.23 40.29 9.68 28.06 77.31
Veh_2 The proportion of vehicles in Class 2 2.59 0.53 1.55 5.50 2.49 0.57 1.44 5.57
Veh_3 The proportion of vehicles in Class 3 21.92 2.41 15.47 27.80 21.49 2.81 14.23 27.98
Veh_4 The proportion of vehicles in Class 4 6.81 1.28 2.32 9.21 6.29 1.42 1.82 9.36
Veh_5 The proportion of vehicles in Class 5 32.00 7.48 6.43 43.17 29.45 7.94 5.02 41.05
Length The length of a freeway segment 0.81 0.30 0.15 2.00 0.81 0.30 0.15 2.00

Curvature The horizontal curvature of a freeway
segment (0.1 km−1) 1.77 1.26 0 4.35 1.77 1.26 0 4.35

Grade The vertical grade of crash location (%) 0.74 0.57 0 2.91 0.74 0.57 0 2.91
Bridge Presence of bridge =1; otherwise = 0 0.5 0.5 0 1 0.5 0.5 0 1
Ramp Presence of ramp = 1; otherwise = 0 0.21 0.41 0 1 0.21 0.41 0 1

Wind speed Average wind speed during the
weekdays/weekends (m/s) 2.39 0.97 1.2 6.04 2.44 1.14 0.85 7.60

Precipitation Average daily precipitation during the
weekdays/weekends (mm) 4.70 8.91 0 64.08 3.90 8.98 0 54.1

* The reference category. a Passenger car unit.
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3. Modeling Framework

We proposed a spatial logistic model for analyzing the crash incidences during week-
days and weekends. To demonstrate the performance of the proposed model, we compared
it with a traditional logistic model. In this section, first, the formulations of the two models
are explicitly specified (Section 3.1). Then, their estimation processes and comparison
criteria are introduced (Section 3.2).

3.1. Model Specification
3.1.1. Logistic Model

Due to the binary outcome of the response variable (i.e., crash occurrence or not),
mathematically, the logistic model (also named the binary logit model) is an appropriate
approach for the analysis, which is consistent with real-time crash risk modeling [8]. As
shown in Table 1, denote crash occurrence = 1 and no crash occurrence = 0. For any
freeway segment i, denote πi,t as the probability of crash occurrence during the weekdays
(weekends) in week t. The logit function of πi,t is assumed to be linearly associated with
the explanatory variables:

logit(πi,t) = ln
(

πi,t

1− πi,t

)
= β0 + ∑J

j=1 β jxi,t,j, i = 1, 2, · · · , N, t = 1, 2, · · · , T, (1)

where xi,j,t is the observed value of the jth (j = 1, 2, · · · , J ) explanatory variable, xj, on
freeway segment i during the weekdays (weekends) in week t, and β j is the regression
coefficients corresponding to xj. β0 is a constant term. J, N, and T are the numbers of
covariates, freeway segments, and weeks in the dataset, respectively.

To measure the effect of a certain explanatory variable on the odds of crash occurrence
(i.e., πi,t/(1− πi,t)) during weekdays/weekends, its odds ratio is usually calculated [11].
For any variable xj, its odds ratio is expressed as:

ORj =

(
πi,t/(1− πi,t)

∣∣xi,1, · · · , xi,j + 1, · · · , xi,J
)(

πi,t/(1− πi,t)
∣∣xi,1, · · · , xi,j, · · · , xi,J

) = exp
(

β j
)
. (2)

3.1.2. Spatial Logistic Model

Unobserved factors (such as terrain features, traffic sign layouts, and lighting condi-
tions in this research) may have similar effects on the crash risk of neighboring freeway
segments, leading to spatial correlation among them [5]. Neglecting spatial correlation
may result in biased model estimation. Aguero-Valverde and Jovanis [12] pointed out
three advantages of taking spatial correlation into consideration: (1) model estimation may
be improved, as site estimates are able to borrow strength from adjacent sites via spatial
correlation; (2) model misspecification may be reduced, because spatial correlation can
serve as a surrogate for unknown and related factors; (3) spatial correlation can provide
information for grouping sites for further analysis. To accommodate the spatial correlation,
a spatial logistic model was developed, via incorporating a residual term with CAR prior
into the logit function [13,14]. Specifically, the Equation (1) was modified as:

logit(πi,t) = ln
(

πi,t

1− πi,t

)
= β0 + ∑J

j=1 β jxi,t,j + ϕi, (3)

where the ϕi represents the spatial effect of freeway segment i, and is assumed to follow a
CAR Gaussian distribution, first proposed by Besag et al. [15]:

ϕi ∼ N
(

∑l 6=i ωi,l ϕl

∑l 6=i ωi,l
,

δ2

∑l 6=i ωi,l

)
, (4)

where ϕl represents the spatial effect of freeway segment l, ωi,l is the proximity weight
between segments m and n. The prevalent adjacency-based first-order proximity structure
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was adopted to define the proximity weights: if freeway segments m and n are adjacent
(i.e., sharing a common end), ωm,n = 1; otherwise, ωm,n = 0. δ is the standard-deviation
parameter of spatial correlation.

3.2. Bayesian Estimation and Comparison Criteria

Due to the complexity of the spatial logistic model, we estimated the models by
Bayesian methods. Specifying a prior distribution (implying the prior information) was re-
quired for each parameter/hyper-parameter. With reference to the previous studies [13,14],
we specified a diffused normal distribution, N

(
0, 104), as the prior of β j(j = 0, 1, 2, · · · , J);

and a uniform distribution, U(0.01, 10), as the prior of δ.
The Bayesian estimation was conducted via programming in the freeware Win-

BUGS [16]. We set a chain of 60,000 Markov chain Monte Carlo (MCMC) simulation itera-
tions for each model. The first 50,000 iterations were removed as burn-in, and the remaining
10,000 iterations were used to infer the posterior distribution of each parameter/hyper-
parameter. The convergence of the MCMC simulations was assessed by visually inspecting
the trace plots for the parameters of interest and monitoring if the Monte Carlo simulation
error was less than 5% of the posterior standard deviation for each parameter.

In order to compare the overall performance of the models, the deviance information
criterion (DIC), which can be directly and easily obtained in WinBUGS, was used. DIC pro-
vides as a combined measure of model fitting and complexity. According to the definition
in Spiegelhalter et al. [17], it is calculated as:

DIC = D + pD, (5)

where D denotes the posterior mean deviance that is used to measure model fitting, and
pD denotes the effective number of parameters that is used to measure model complexity.
Generally, the model with a lower DIC value is preferred. According to Spiegelhalter
et al. [18], empirically, more than 10 differences in DIC values suggest that the model with
a higher DIC can be ruled out.

4. Result Analysis
4.1. Model Comparison

The results of the Bayesian estimation and the DIC for the models are shown in
Table 2, where only the explanatory variables with significant effects (at least at the 90%
credibility level) on crash incidence during weekdays or weekends are included. For both
weekday and weekend crashes, the spatial logistic models yield lower D values than the
logistic models with differences over 30. The results suggest that the spatial logistic model
significantly outperforms the logistic model in approximating the relationship between
weekday/weekend crash incidence and factors related to traffic, roadway, and environment.
While the logistic models are more parsimonious, implied by their lower pD values, the fact
that the spatial logistic models are over 10 DIC points lower indicates their better overall
performance. These findings are in line with the previous studies on spatial modeling of
crash frequency [5,12,19]; capturing spatial effects across roadway entities via CAR prior
is able to improve model estimation and reduce model misspecification. In addition, the
Bayesian estimates of the spatial standard-deviation parameter δ are significant at the 95%
credibility level in both the weekday and weekend crash models. The results demonstrate
the significant spatial correlation among the split freeway segments and further justify the
reasonableness of the spatial logistic models.

Comparing the parameter estimations in the aspatial and spatial logistic models
for weekday crash incidence, we can see that there are certain differences within the set
of significant variables in the two models. Specifically, the parameter for grade is only
significant in the logistic model, and the parameter for curvature is only significant in the
spatial logistic model. Similar findings exist in the models for weekday crash incidence.
For example, the parameter for veh_4 is only significant in the spatial logistic model. A
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number of past studies [12,19] argued that accounting for spatial correlation is helpful in
recognizing real factors contributing to traffic crashes.

Table 2. Results of Bayesian estimation and DIC for the weekday and weekend crash models a.

Weekday Weekend

Logistic Model Spatial Logistic Model Logistic Model Spatial Logistic Model

Constant −4.54 (0.74) b,** −7.48 (0.83) ** −2.88 (0.71) ** −9.78 (0.70) **
NTV 1.03 (0.17) ** 0.77 (0.16) ** 1.51 (0.54) ** 1.32 (0.56) **
Veh_2 −0.41 (0.12) −0.23 (0.12) * −0.39 (0.15) ** −0.39 (0.15) **
Veh_3 — — −0.09 (0.03) ** −0.08 (0.02) **
Veh_4 −0.09 (0.04) ** −0.12 (0.04) ** — −0.11 (0.06) *
Length 1.06 (0.16) ** 1.10 (0.19) ** 1.14 (0.20) ** 1.26 (0.24) **

Curvature — 0.09 (0.05) * — —
Grade 0.21 (0.09) ** — 0.42 (0.12) ** 0.38 (0.14) **
Ramp 0.29 (0.12) ** 0.27 (0.14) * — —

Precipitation 0.01 (0.004) ** 0.009 (0.005) * — —
δ — 0.52 (0.13) ** — 0.46 (0.18) **
D 3171 3117 1883 1845

pD 13 37 12 36
DIC 3184 3154 1895 1881

a Bridge and wind speed are not included, as their effects on crash injury severity are insignificant at the 90%
credibility level in the three models. b Posterior mean (posterior standard deviation). * Significant at the 90%
credibility level. ** Significant at the 95% credibility level.

4.2. Interpretation of Parameter Estimates

Due to the outperformance of the spatial logistic models for weekday and weekend
crashes, our meso-level analysis mainly focuses on the parameter estimates in them. To
quantitatively explain the effects of the significant factors, their odds ratios in the spatial
logistic models are displayed in Table 3. According to the parameter estimation results in
Table 2, some significant factors (including curvature, ramp, and precipitation) in weekday
crashes do not have significant effects on weekend crashes, while some significant factors
(including veh_3 and grade) in weekend crashes do not have significant effects on week-
day crashes. The significance levels of some common significant factors (e.g., veh_2 and
veh_4) are different. For some other common significant factors (e.g., NTV), the posterior
mean of the parameter in the weekday crash model is much smaller than the counter-
part in the weekend crash model. The apparent discrepancies in parameter estimates
justify the necessity of investigating the respective contributing factors to weekday and
weekend crashes.

Table 3. Odds ratios of significant factors in the spatial logistic models.

Weekday Weekend

NTV 2.16 3.74
Veh_2 0.795 0.677
Veh_3 — 0.923
Veh_4 0.887 0.896
Length 3.00 3.53

Curvature 1.094 —
Grade — 1.46
Ramp 1.31 —

Precipitation 1.009 —

Specifically, the traffic volume variable, NTV, has significant effects on crash inci-
dences on both weekdays and weekends. According to the parameter estimates, the crash
occurrence odds during weekdays would increase by 116% (=2.16 − 1) for a 105 PCU
increase in traffic volume, while the odds during weekends would increase by 274% for a
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105 PCU increase in traffic volume. The results are generally consistent with engineering
intuition and previous findings from crash frequency modeling [2–4]: more traffic brings
about higher crash exposure, and thus is more likely to result in crash occurrences.

Regarding traffic composition, veh_2, veh_3, and veh_4 have significantly negative
effects on the crash incidence on weekends, which indicate that vehicles in Classes 2, 3, and
4, relative to vehicles in Class 1 (the reference group), are less likely to result in freeway
crashes on weekends. According to their estimated parameters, specifically, the weekend
crash odds would decrease by 32.3%, 7.7%, and 10.4% respectively, with a 1% increase in
the proportions of vehicles in Classes 2, 3, and 4. Veh_2 and veh_4 also have negative effects
on the crash incidence on weekdays. The posterior means of their parameters suggest that
the weekday crash odds are expected to decrease by 20.5% and 11.3%, respectively, with a
1% increase in the proportions of vehicles in Classes 2 and 4.

Length has significantly positive effects on the crash incidences on weekdays and week-
ends. The estimates of the corresponding parameters suggest that: with a one kilometer
increase in the segment length, the weekday crash odds would increase by 200%, while the
weekend crash odds would increase by 253%. The results are also in line with engineering
intuition and the existing findings [2–4]: a longer roadway segment generally increases
the amount of exposure of vehicles on it to dangers, and thus is more likely to result in
crash occurrences.

Curvature and ramp are two roadway attributes that have significant effects on weekday
crash incidence only. The estimated parameter for curvature implies that the weekday
crash odds would increase by 9.4%, with a 0.1 km−1 increase in the horizontal curvature of
a freeway segment. Roadway sections with a greater horizontal curvature (i.e., a smaller
curve radius) lead to harsher transitions between tangent sections [20]. Stronger centrifugal
forces are necessitated for vehicles traveling on them than on those with a smaller curvature,
which would increase the likelihood of running-off-road crashes. The estimated parameter
for ramp indicates that the weekday crash odds of freeway segments with ramps are
1.31 times those without ramps, with other factors being equal. The results are reasonable,
because many vehicle interactions and conflicts appear when vehicles from ramps emerge
into the traffic stream on the main lanes [21].

Grade has a significant effect on the weekend crash incidence only. The posterior
mean of the parameter for grade is 0.38, which suggests that the weekend crash odds are
anticipated to increase by 46% with a 1% increase in the vertical grade of a freeway segment.
The result is generally consistent with those in the extant literature [20,22]: a high vertical
grade would lead to a shorter sight distance. Thus, less time is available for drivers to
perceive and properly respond to potential hazards. In addition, the speed variance of the
traffic flow would be significantly increased on steep upgrades. More frequent overtaking
maneuvers by vehicles with high speeds may lead to more traffic conflicts.

With regard to weather conditions, precipitation is found to have a significant effect
on weekday crash incidence. According to its parameter estimates, a 1 mm increase in the
average precipitation during the weekdays within a week is expected to increase the crash
occurrence odds by 0.9%. Similar findings can be found in Pei et al. [21], who argued that
precipitation makes the roadway surfaces slippery and thus reduces the skidding resistance.
Meanwhile, visibility is usually impaired by precipitation. Reduced skidding resistance
and lower visibility are linked to less time available for drivers to avoid crash occurrences.

5. Conclusions and Remarks

This research empirically analyzes the factors contributing to crash occurrence on
weekdays and weekends at a weekly level, using a one-year crash dataset from Kaiyang
Freeway, China. Due to the binary outcome of crash occurrence on weekdays/weekends,
a Bayesian spatial logistic model is proposed for the empirical analysis, which can also
account for the spatial correlation across adjacent freeway segments.

The results of DIC suggest that the overall performance of the spatial logistic model is
significantly better than that of the traditional logistic model, whether for the analysis of
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weekday or weekend crashes. Significant spatial correlation is found in the weekday and
weekend crash data. The parameter estimates in the spatial logistic models indicate that:
(i) NTV and length are positively associated with the crash incidences of both weekdays
and weekends; (ii) veh_2 and veh_4 are negatively associated with the crash incidences on
both periods; (iii) curvature, ramp, and precipitation have significant effects on weekday crash
incidence; and (iv) veh_3 and grade have significant effects on weekend crash incidence.

The above findings have practical implications for developing specific countermea-
sures for reducing freeway crashes on weekdays and weekends. For example, in the process
of freeway design, increasing the horizontal curve radius decreases weekday crash inci-
dence, and avoiding steep vertical grades decreases weekend crash incidence. Deploying
variable message signs along freeways and implementing variable speed limits on rainy
days may be helpful to reduce traffic crashes on weekdays.

Nonetheless, there are some limitations in this research. For example, only one year of
crash data, which are somewhat old and from one freeway, were used in the traffic crash
analysis, where some important roadway attributes (e.g., number and width of lanes) were
not included. We would like to investigate the effects of these factors on weekday and
weekend crash incidences and the transferability of the analysis results to other freeways,
if a more comprehensive crash dataset from recent years were to become available in
the future. Another limitation is that the proposed model does not account for some
other potential characteristics of crash data, such as unobserved heterogeneity [23–25] and
temporal correlation (including linear trend, seasonality, etc.) [26]. Developing a more
complicated (e.g., random parameters spatio–temporal logistic) model is advocated, when
these characteristics also exist.
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