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Abstract: In order to address the limited scale and insufficient diversity of research datasets for maize
leaf diseases, this study proposes a maize disease image generation algorithm based on the cycle
generative adversarial network (CycleGAN). With the disease image transfer method, healthy maize
images can be transformed into diseased crop images. To improve the accuracy of the generated
data, the category activation mapping attention mechanism is integrated into the original Cycle-
GAN generator and discriminator, and a feature recombination loss function is constructed in the
discriminator. In addition, the minimum absolute error is used to calculate the differences between
the hidden layer feature representations, and backpropagation is employed to enhance the contour
information of the generated images. To demonstrate the effectiveness of this method, the improved
CycleGAN algorithm is used to transform healthy maize leaf images. Evaluation metrics, such as
peak signal-to-noise ratio (PSNR), structural similarity (SSIM), Fréchet inception distance (FID), and
grayscale histogram can prove that the obtained maize leaf disease images perform better in terms of
background and detail preservation. Furthermore, using this method, the original CycleGAN method,
and the Pix2Pix method, the dataset is expanded, and a recognition network is used to perform
classification tasks on different datasets. The dataset generated by this method achieves the best
performance in the classification tasks, with an average accuracy rate of over 91%. These experiments
indicate the feasibility of this model in generating high-quality maize disease leaf images. It not only
addresses the limitation of existing maize disease datasets but also improves the accuracy of maize
disease recognition in small-sample maize leaf disease classification tasks.

Keywords: cycle-consistent adversarial networks; attention mechanism; maize leaf disease identification;
feature recombination; computer vision

1. Introduction

Crop diseases pose a significant threat to the quality and quantity of global agricultural
production, leading to a substantial reduction in the economic productivity of crops. This
presents a major challenge to food security, with catastrophic crop diseases exacerbating the
existing global food shortage. Additionally, agriculture serves as a source of raw materials
for textiles, chemical products, and pharmaceuticals. From the 1960s to the early 21st
century, the amount of land utilized for agriculture increased by only 10%, and agricultural
production grew three-fold. Looking ahead, considering the limited availability of land for
agricultural use, the solution to food insecurity lies in enhancing the productivity of existing
farmlands. This will require the cultivation of high-yielding, faster-maturing, drought-
resistant, and disease-tolerant crop varieties. It is anticipated that these developments will
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result in a decline in the use of chemical substances in agriculture, replaced instead by an
emphasis on early and accurate detection of crop diseases and pests.

Maize, as a crucial component of our country’s grain cultivation, boasts the largest
planting area and highest overall yield. It serves as a vital source for both animal feed and
industrial raw materials, playing a significant strategic role in ensuring our national food
security. Consequently, the prevention and control of maize diseases are of paramount
importance. These diseases primarily affect the leaves of the corn plants. Attempting
to observe these diseases with the naked eye across vast planting areas or resorting to
preventive measures based solely on previous cultivation experiences not only fails to
provide a clear understanding of the disease situation but also results in a significant waste
of resources on disease prevention efforts. However, diseases such as maize rust, gray
leaf spot, and leaf spot have severely affected maize production [1]. Traditional disease
diagnosis heavily relies on agricultural experts or technicians who evaluate diseases based
on their expertise, leading to a time-consuming, labor-intensive, and inefficient process.
This method struggles to meet the requirements of real-time and accurate control and
prevention of diseases [2]. With the application of computer vision to agricultural disease
images, technologies for artificial intelligence image recognition have provided significant
assistance in the early detection of maize diseases [3]. In 2011, Kai S et al. [4] processed
and analyzed images of corn diseases. They utilized the YCbCr color space technique and
gray-level co-occurrence matrix in combination with texture features of corn disease to
segment and extract features of lesions. The accuracy of disease classification reached up
to 98% using a backpropagation neural network. In 2012, Kulkarni et al. [5] employed
artificial neural networks (CNNs) and several image processing techniques to introduce
a timely and precise method for plant disease detection. By leveraging Gabor filters for
feature extraction and neural networks for classification, they attained a recognition rate of
up to 91%.

Traditional methods for plant disease recognition are based on image processing and
computer vision techniques, typically involving the extraction of features such as the shape,
texture, and color of disease lesions. These methods heavily rely on the domain expertise
within the field of agricultural diseases, resulting in relatively low recognition efficiency.
In recent years, the rapid development of deep learning has attracted many researchers to
conduct relevant studies aimed at improving the accuracy of plant disease identification.
These technologies are based on deep learning with convolutional neural networks as
their core. However, deep learning relies on data, and the size of the dataset significantly
impacts the quality of the training outcomes [6]. Obtaining a sufficient amount of data is an
essential requirement for successfully accomplishing tasks and creating a neural network
model that is capable of learning possible distributions [7]. Currently, the scarcity of data
remains a significant obstacle in the development of deep learning technology. Building the
necessary dataset takes time to accumulate, and consequently, the inadequacy of training
samples significantly impacts the accuracy of maize disease recognition [8].

The traditional data augmentation methods typically include undersampling, over-
sampling, and image transformations [9–11]. While they can—to some extent—adjust the
inter-class distribution of samples, they fail to take into account the overall distribution
characteristics of the samples. However, maize leaf diseases are often characterized by
their color distribution and contrast. Currently, data augmentation through geometric
transformations and cropping [12] can suffice for most recognition tasks. However, in
practical applications, due to factors such as the small infection area of plant diseases
and varying degrees of severity, conventional data augmentation methods often struggle
to accurately capture information about disease regions. The generated images may not
exhibit distinct disease features and could potentially even degrade the performance of
plant disease recognition.
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In recent years, there have been significant breakthroughs in computer vision re-
search [13,14], enabled by the rise of deep learning. One notable advancement is the
proposal of a variational autoencoder (VAE) by Kingma et al. [15] in 2014. VAE is a gen-
erative network structure based on variational Bayes (VB) inference, which estimates the
distribution of samples to generate similar ones. However, due to its pixel-level supervision
of images, the VAE is limited in its ability to capture global information. This limitation
often results in the overall blurriness of generated images. Another significant development
in the field came in 2014, when Goodfellow et al. [16] introduced generative adversarial
net (GAN). GAN consists of two players, a generator and a discriminator. The generator
aims to generate fake samples that cannot be distinguished from real ones, whereas the
discriminator’s task is to correctly differentiate between real and generated samples [17].
By engaging in a game between the two, the final generated data are made to be indis-
tinguishable from reality [18]. This method has found broad applications [19], such as
data augmentation [20,21], image style transfer [22,23], image super-resolution [24,25], and
text-to-image generation. GAN adopts an unsupervised learning approach, automatically
learning from the source data to produce astonishing results without the need for manual
labeling of the dataset [26–29]. However, the current GAN game process [30] indirectly
establishes a relationship with real data through the discriminator, which fails to utilize
the prior knowledge about the composition of input data. This leads to instability during
training, poor quality of generated images, and potential mode collapse problems [31]. In
2016, Isola et al. [32] presented Pix2Pix, a GAN-based framework for supervised image-
to-image translation. Pix2Pix utilizes conditional GAN (CGAN) [33] to guide the image
generation process using conditional information. The model employs U-Net [34] as the
generator and PatchGAN as the discriminator, successfully transforming labeled paired
data while maintaining image structure consistency. However, Pix2Pix’s reliance on paired
training data poses challenges for tasks like artistic style transfer and object conversion [35].
In 2017, Zhu et al. [36] introduced the cycle generative adversarial network (CycleGAN) by
combining GAN with the concept of dual learning. CycleGAN utilizes two generators and
two discriminators to achieve cyclic image transformation, preserving content information
using cycle consistency loss. This method, benefiting from the joint use of adversarial
networks and a cycle-consistent structure, has demonstrated improved performance in
image processing. Furthermore, CycleGAN does not require one-to-one pairing of data
during training, making it widely applicable in image translation, style transfer, image
enhancement, and related problems. Zhang et al. [37] enhanced the feature extraction
capability of the traditional CycleGAN in 2023 by incorporating a self-attention module
and atrous convolution multi-scale feature fusion module. They introduced a perceptual
loss function into the model’s loss function to enhance the texture perception of generated
images. In 2022, Lu et al. [38] addressed the dataset imbalance issue using CycleGAN and
improved the network performance by adding an efficient channel attention module. Hu
et al. [39] proposed an improved CycleGAN framework for translating shortwave infrared
face images to visible light face images, effectively overcoming the image modal differences
caused by varying spectral characteristics and improving image observability. Additionally,
Li et al. [40] enhanced the CycleGAN loss function by incorporating strong edge structure
similarity, leading to color correction and the enhancement of underwater images.

To enhance the feature extraction capability of disease images, we introduce the class
activation map (CAM) attention mechanism proposed by Zhou et al. [41] into the generator
and discriminator of the CycleGAN, respectively. The CAM is a technique used to interpret
deep learning models. In image classification tasks, CAM can help understand which
regions of an image the model is focusing on during prediction. By generating class
activation maps, it is possible to visualize the image regions that contribute to the model
making specific classification decisions. This is highly useful for explaining the model’s
decision-making process and enhancing its interpretability. Typically, CAM is generated by
multiplying globally average-pooled feature maps with the model’s weights, emphasizing
image regions relevant to specific classes. The CAM attention mechanism can enhance the
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feature extraction capability of specific regions. In addition, a feature recombination loss
function is used in the discriminator to optimize the edge information of the generated
maize disease leaf images, thus improving the quality of the generated images. This method
significantly improves the accuracy of maize disease classification in the maize leaf disease
identification task.

2. Materials and Methods
2.1. The Principle of CycleGAN

CycleGAN is a variant of the GAN network that utilizes two transformation networks,
denoted as F and G, to facilitate data transformation between different domains. Disco
GAN [42] and dual GAN [43] employ similar ideas, which partially alleviate the demands
placed on the data. Each transformation network is trained by a separate GAN network
with its respective generator. The primary objective of the discriminator is to distinguish
between the generated data and real data. The optimization objective function of CycleGAN
is depicted in Equation (1):

LCycleGAN = Lgan(G, DY, X, Y) + Lgan(F, DX , X, Y) + µLcyc(G, F) (1)

where DY represents the discriminator from domain Y to domain X, and is used to dis-
tinguish the differences between images generated from domain Y and real images from
domain X. DX represents the discriminator from domain X to domain Y, and is used to
distinguish the differences between images generated from domain X and real images
from domain Y. X signifies the input image, which can be a real image from domain X.
Y represents the target image, which can be a real image from domain Y. The purpose
of this loss function is to prompt the generator G to transform input image X into target
image Y, and then generator F transforms the target image Y back to the original image X.
Cycle consistency loss ensures the consistency of the cycle transformation by comparing
the differences between generated images and original images. µ is a weighting parameter
used to balance the importance of cycle consistency loss and adversarial loss. Moreover,
Lgan(G, DY, X, Y) and Lgan(F, DX , X, Y) represent the losses for two generative adversarial
networks, while Lcyc(G, F) represents the loss for the cycle-consistent network.

2.2. Improvements to the CycleGAN Model

By incorporating attention mechanisms into the CycleGAN, an improved maize dis-
ease image generation model was constructed. Additionally, a feature recombination loss
function was introduced to enhance the model’s performance. The model comprises two
generators and two discriminators. Generator G transforms healthy maize leaf images into
diseased maize leaf images, while generator F operates in the reverse direction, converting
diseased maize leaf images into healthy ones. The discriminators evaluate the authenticity
of the input healthy maize images and diseased maize leaf images, respectively. The overall
structure of the model is shown in Figure 1. During training, a cycle consistency loss func-
tion is incorporated to support the performance of generator Gs, ensuring that the network
achieves a closed-loop training state. Attention mechanism modules are incorporated into
generator Gs and discriminator Ds in Figure 1 to enhance the conversion of healthy maize
leaf images into maize disease leaf images. The network architectures of Gs and Ds will be
discussed in detail in Sections 2.2.2 and 2.2.3.

2.2.1. Introduction of Attention Mechanism

The attention mechanism employed in the generator and discriminator is the class
activation map (CAM) soft attention method. This method calculates the spatial average
values of individual neurons from the feature maps obtained through convolution and
global average pooling. These average values are then linearly weighted to generate the
required class activation map. The localization of CAM within the image is achieved by
utilizing category information and weight information specific to the image. Upsampling
CAM produces a feature map of the same size as the input image, determining the position
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region relevant to the label category. The calculation of the CAM feature map adopts a
global approach, encompassing the entire feature map. The generation process based on
the CAM attention feature map is illustrated in Figure 2.
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Figure 1. Improved CycleGAN model structure.
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Figure 2. Generation process of the attention feature map based on CAM.

The CAM attention mechanism operates on convolutional feature maps obtained
through convolution. Let H(xi) represent the feature map obtained after convolution, and
fk(x, y) denote the activation of unit k in the last convolution layer at spatial location (x, y).
Subsequently, global average pooling is applied to compute the result Fk. This result is then
classified using softmax to obtain the score SC for a given category c. Finally, the region
relevance Pc is calculated using the following formula:

Pc =
exp (Sc)

∑c exp (Sc)
(2)

Sc = ∑
k

wc
k ∑

x,y
fk(x, y) (3)

Fk = ∑
x,y

fk(x, y) (4)

Qc =
N

∑
i=1

PcH(xi) (5)

The attention on the region of category c is denoted by Pc, while the class activation
heatmap obtained through global average pooling and softmax applied to the convolutional
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feature map in the region of category c is represented by S. The weight information wc
k

corresponds to Fk, and the output of the CAM attention module is denoted by Qc.

2.2.2. Generator Network Architecture

In the original CycleGAN model, the generator comprises an encoder, a transformer,
and a decoder. The original CycleGAN utilized six ResBlock structures in its transformer.
Upon integrating the CAM soft attention mechanism, the six ResBlock structures in the
transformer were subdivided and added to the encoder and decoder of the generator
network, respectively. Furthermore, classifier A was included between the encoder and
decoder of the generator. Figure 3a depicts the generator structure based on the attention
mechanism. In the enhanced generator, as depicted in Figure 3a, the input images are
sourced from both the source domain X and target domain Y. The generator’s encoder
generates low-dimensional feature vectors. Classifier A determines whether the input
image belongs to the source domain X by evaluating the feature maps generated from
both the input source domain and target domain images after they have been encoded
by the generator. Additionally, the class activation map (CAM) technique can calculate
the weight values W for each channel in the encoded feature map using global pooling.
By employing the principles of CAM, the feature map with an attention mechanism can
be obtained by multiplying and summing the weights of each channel with the encoded
feature map. Subsequently, this feature map with an attention mechanism is fed into the
generator’s decoder, where it is upsampled to restore its dimensions to match those of the
input image. Classifier A within the generator serves as a binary classifier, discerning the
feature maps generated from both the input source domain and target domain images.

Sorter A

Encoder Convolution 
feature map

Attention 
profile map DecoderCAM attention 

mechanism 
module

Downsample Upsampling area

(a)

Sorter B

Encoder Convolution 
feature map

Attention 
profile map

CAM attention 
mechanism 
module

Downsample

Sorter C [0,1]

(b)

Figure 3. Improved generator and discriminator structure: (a) improved generator structure,
(b) improved discriminator structure.

2.2.3. Discriminator Network Architecture

The input of the discriminator consists of both real maize disease leaf images and gener-
ated ones. Following downsampling by the encoder, the input undergoes one-dimensional
convolution, combined with a bias vector, and is subsequently passed through a sigmoid
function to accomplish the binary classification task utilizing probability values. A dis-
criminator output value of 1 signifies the identification of the input maize disease image as
real, while a value of 0 denotes the classification of the maize disease image as generated.
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Figure 3b displays the network structure of the discriminator after integrating the CAM
soft attention mechanism module into the original model.

The discriminator incorporates the soft attention mechanism module of CAM. As
illustrated in Figure 3b, the discriminator receives input images from both the generated
image G(X) and the target domain images Y. The discriminator is equipped with two
binary classifiers: classifier B and classifier C. Classifier B determines whether the input
image is a generated image or an image from the target domain by processing the feature
maps that are extracted from the input-generated image and the target domain image,
both encoded by the discriminator Ds. The output of classifier B is the probability of the
input image being a generated image. Classifier C, on the other hand, determines the
same by processing the attention mechanism feature map generated via CAM. This feature
map is obtained from the input-generated image and the target domain image after being
processed by CAM. The output of classifier C also represents the probability of the input
image being a generated image. Both classifiers B and C aim to determine whether the
input image originates from a generated image or an image from the target domain.

2.2.4. Designing Feature Recombination Loss Function

The task of generating images of diseased maize leaves can be considered as a re-
gression problem. To enhance the network’s feature extraction capability, the attention
mechanism module has been introduced. In order to achieve feature recombination, a
regression loss function is incorporated. The specific expression of this loss function is
as follows:

L = Lcyc + µLcyc(G, F) + λ(LA + LB) + βLk
f (6)

In the equation, the loss of the improved CycleGAN model is denoted by L. The
terms Lcyc and (LA + LB) represent the adversarial losses, which aim to enhance the
generative capability of the generator and the discriminative ability of the discriminator,
respectively. Lcyc(G, F) represents the cycle consistency loss, which is utilized to enforce
the generalization ability of the image translation and improve the fidelity of the generated
images. The term L f

k corresponds to the regression loss, employed to improve the quality of
the generated maize disease leaf images. The constants µ, λ, and β represent the respective
weights of these terms in the overall loss. Adjusting the values of these three parameters
during training can yield different outcomes.

The adversarial loss Lgan comprises two GAN network adversarial losses: Lgan(G, DY,
X, Y) and Lgan(G, DX, Y, X). These losses are essentially binary cross-entropy functions.
The specific expressions for these functions are illustrated in Equations (7) and (8):

Lgan(G, DY, X, Y) = Ey−Pdata(y)(log DY(y)) + Ex−Pdata(x)(log (1− DY(G(x))) (7)

Lgan(F, DX , X, Y) = Ex−Pdata(x)(log FX(x)) + Ey−Pdata(y)(log (1− FY(G(y)))) (8)

Equation (7) depicts the generation process from healthy maize leaf images to diseased
maize leaf images. In this equation, y represents the input real maize disease leaf image,
while x denotes the generated maize disease leaf image. DY(y) signifies the discriminator’s
probability of classifying the input as a real maize disease leaf image, whereas DY(G(x))
indicates the discriminator’s probability of classifying the input as a generated maize
disease leaf image.

Equation (8) illustrates the generation process from diseased maize leaf images to
healthy maize leaf images. In this equation, x refers to the input real healthy maize leaf
image, while y represents the input generated healthy maize leaf image. FX(x) represents
the discriminator’s probability of classifying the input as a real healthy maize leaf image,
while FY(G(y)) represents the discriminator’s probability of classifying the input as a
generated healthy maize leaf image.
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Adversarial loss (LA + LB) consists of two binary cross-entropy loss functions from
two classifiers, as shown in Equations (9) and (10):

LA = −(Ex−X(log A(x)) + Ex−Y(log (1− A(x)))) (9)

LB = Ex−G(x)(log (B(x))) + Ex−Y(log (1− B(x))) (10)

In Equation (9), classifier A conducts binary classification on real maize disease leaf
images and fake maize disease leaf images, thereby serving as a binary classification task for
the generator. On the other hand, in Equation (10), classifier B performs binary classification
on generated maize disease leaf images and real maize disease leaf images, acting as a
binary classification task for the discriminator.

Furthermore, the cycle consistency loss Lcyc(G, F) measures the mean distance between
predicted values and true values. This loss ensures the consistency of the translated images
from one domain to another. The specific expression for this function is depicted in
Equation (11):

Lcyc(G, F) = Ex−Pdata(x)(‖F(G(x))− x‖1) + Ey−Pdata(y)(‖G(F(y))− y‖1) (11)

In Equation (11), the following variables are defined: x represents the input image of a
healthy maize leaf, G(x) represents the image of a maize leaf with disease generated by
generator G, F(G(x)) represents the image of a healthy maize leaf generated by generator
F using G(x) as input. Additionally, y represents the input image of a maize leaf with
disease, F(y) represents the image of a healthy maize leaf generated by generator F using
y as input, and G(F(y)) represents the image of a maize leaf with disease generated by
generator G using the output of generator F as input.

The proposed feature recombination loss, denoted as Lk
f , measures the dissimilarity

between real and generated maize disease leaf images in the hidden layer of the discrimi-
nator. This loss is calculated based on the minimum absolute error for feature differences.
The specific expression for this function is presented in Equation (12):

Lk
f =

1
n

N

∑
i=1
‖Fk(yi)− Fk(D(xi))‖ (12)

In Equation (12), xi represents the input representation for the i-th healthy maize
leaf image, yi represents the representation for the i-th real maize disease leaf image, k
represents the corresponding hidden layer number, N represents the number of samples
for comparison, D represents the generator for maize plants, D(xi) represents the conver-
sion of the input healthy maize leaf image to a maize disease leaf image, Fk represents
the representation of image features on the k-th hidden layer, and Fk(yi) and Fk(D(xi)),
respectively, represent the feature representations that exist in the k-th hidden layer of the
discriminator for the real maize disease leaf image and the generated maize disease leaf
image. The magnitude of Lk

f reflects the similarity between the real maize disease image

and the generated maize disease image. That is, the smaller the Lk
f value, the closer the

generated maize disease image is to the real maize disease image, implying higher quality
of the generated maize disease image.

2.3. Type Training and Parameters

The training of the CycleGAN model is conducted using the TensorFlow deep learning
framework and accelerated using a GPU. Residual blocks are employed in the generator
to address the problem of degradation in deep neural networks, which simultaneously
enhances the convergence speed of the network. The training process of the model consists
of the following stages:
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(1) Pre-train the network parameters using a small custom dataset of maize disease.
(2) Train the model using a substantial amount of custom maize disease dataset. The

generator and discriminator’s network parameters are trained in a step-by-step man-
ner. Real-time monitoring of the training process is conducted using the TensorBoard
module.

(3) Fix the generator parameters and train the discriminator parameters. The discrimina-
tor is updated at a 3:1 ratio compared to the generator.

(4) The training is considered complete when both discriminators cannot determine the
source of the maize disease leaf image. This is reflected in an output value of 0.5,
indicating the Nash equilibrium.

Different learning rates are compared and analyzed to examine their effect on the
utilization degree of output errors. Therefore, different learning rates (0.01, 0.001, 0.0001)
are chosen and the loss function of both the training set and test set are used to study the
impact of the learning rate on the model.

The impact of different learning rates on the loss function is analyzed, as depicted in
Figure 4a. It is observed that the loss function decreases relatively smoothly after 15,000
epochs with a learning rate of 0.001. The value of the loss function is lower than those
corresponding to the learning rates 0.01 and 0.0001, suggesting that a learning rate of 0.001
is optimal for training the model. Figure 4b reveals that the loss function value exhibits
relatively large fluctuations when the learning rate is set to 0.01 and 0.0001. Initially, the loss
function value experiences instability but later stabilizes. However, when the learning rate
is set to 0.001, the overall decrease in the loss function is similarly smooth. This learning
rate also yields the optimal value for the loss function among the three learning rates
considered. Based on an analysis of the training and testing loss values, it is concluded that
the optimal initial learning rate for the model is 0.001. The comparison of learning rate
experiments revealed that beyond 80,000 rounds, the rate of decrease becomes insignificant,
and this decrease can be disregarded. Consequently, it is determined that the appropriate
number of training iterations is 80,000 rounds.

Lo
ss

Epoch

Learning rate 0.01
Learning rate 0.001
Learning rate 0.0001

Lo
ss

Epoch

Learning rate 0.01
Learning rate 0.001
Learning rate 0.0001

(a) (b)

Figure 4. Different learning rates correspond to the loss values: (a) training loss value, (b) test
loss value.

Both the input and output maize images in the experiment have dimensions of
256 × 256 pixels. For batch processing, a batch size of 50 is used, and the model is trained
for 80,000 rounds. The weights are saved at intervals of 1000 rounds. The initial learning
rate is set to 0.001 and gradually decreases linearly to 0 after 100,000 rounds. The model
employs rectified linear unit (ReLU) as the activation function for non-linear correction
and utilizes the Adam algorithm for gradient descent optimization. Table 1 presents the
parameters of each module in the network.
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Table 1. Improved CycleGAN parameters.

Network Module Area Input Dimension
→Output Dimension

Number and
Size of Core

Network Layer
Information

Generator

Subsampled

3*m*n
→64*m*n

7*7*64
Convolutional layer,

IN,ReLU,stride 1

64*m*n
→128*m/2*n/2

3*3*128
Convolutional layer,

IN,ReLU,stride 2

128*m/2*n/2
→256*m/4*n/4 3*3*256 Convolutional layer,

IN,ReLU,stride 2

Residual
network

256*m/4*n/4
→256*m/4*n/4 3*3*256 3 residual blocks,IN,

ReLU,stride 1

Attention

256*m/4*n/4
→512*m/4*n/4 3*3*512 Max pooling and average

pooling,stride 1
512*m/4*n/4

→256*m/4*n/4 3*3*256 Convolutional layer,
ReLU,stride 1

Residual
network

256*m/4*n/4
→256*m/4*n/4 3*3*256 3 residual blocks,

IN,ReLU,stride 1

Upsampling

256*m/4*n/4
→128*m/2*n/2 3*3*128 Convolutional layer,

IN,ReLU,stride 2
128*m/2*n/2
→64*m/2*n/2 3*3*64 Convolutional layer,

IN,ReLU,stride 2
64*m/2*n/2

→3*m*n
7*7*3

Convolutional layer,
Tanh,stride 2

Discriminator

Subsampling

3*m*n
→64*m/2*n/2 4*4*64 Convolutional layer,

AdaIN,ReLU,stride 2
64*m/2*n/2

→128*m/4*n/4 4*4*128 Convolutional layer,
AdaIN,ReLU,stride 2

128*m/4*n/4
→256*m/8*n/8 4*4*256 Convolutional layer,

AdaIN,ReLU,stride 2

256*m/8*n/8
→512*m/16*n/16 4*4*512 Convolutional layer,

AdaIN,ReLU,stride 2

Attention

512*m/16*n/16
→1024*m/16*n/16 4*4*1024 Max pooling and average

pooling,stride 1

1024*m/16*n/16
→512*m/16*n/16 4*4*512 Convolutional layer,

ReLU,stride 1

Classifier 512*m/16*n/16
→1*m/16*n/16 4*4*1 Convolutional layer,

ReLU,stride 1

3. Experimental Process

To verify the effectiveness of the improved CycleGAN model proposed in this study,
the following steps were taken: (1) First, the original dataset was constructed based on the
public dataset 2018 AI challenge. Structural similarity (SSIM) [44], peak signal-to-noise
ratio (PSNR), and Fréchet inception distance (FID) [45] were used as objective evaluation
indicators to assess the quality of the generated images, and grayscale histograms were
used as subjective evaluation indicators. (2) The stability of the improved model was
compared through multiple experiments to verify its generating capability and stability.
(3) An ablation experiment was conducted to evaluate the performance of the attention
mechanism and feature recombination loss function proposed in this study, comparing
them with the VAE and Pix2Pix image translation models. (4) The original CycleGAN
model, the improved model, and the Pix2Pix model were used to expand the original
dataset, and the average accuracy was compared on classification models, including VGG16,
VGG19, ResNet50, DenseNet50, DenseNet121, and GoogLeNet. Confusion matrices were
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established based on the accuracy of VGG16, ResNet50, DenseNet50, and GoogLeNet to
provide further insights into the experimental results.

3.1. Evaluation Metrics

To verify the improved model’s performance in generating images of diseased maize
leaves, this study utilized four evaluation indicators to analyze the quality of the generated
images. The evaluation indicators used included structural similarity (SSIM), the peak
signal-to-noise ratio (PSNR), and the Fréchet inception distance (FID).

SSIM assesses the similarity between the data distribution of a healthy maize leaf
image (X) and the generated diseased maize leaf image (Y).

SSIM =
(2µxµy + C1)(2σxy + C1)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(13)

where µx and µy are the means of images X and Y, σx and σy are the variances of images
X and Y, and σxy is their covariance. Moreover, C1 and C2 are introduced to prevent the
occurrence of division-by-zero exceptions in the formula. The range of SSIM is from −1 to
1, with higher values indicating greater similarity in the distribution structure between the
two images and higher image quality.

Peak signal-to-noise ratio (PSNR) is a metric utilized to compare the errors between
corresponding pixels in the healthy maize leaf image and the generated diseased maize
leaf image. The formula for PSNR is shown in Equation (14).

PSNR = 10 log10

(
Max ·W · H

∑H
i ∑W

j (X(i, j)−Y(i, j))2

)
(14)

Here, Max represents the maximum grayscale level of the image, which is 255. X(i, j)
refers to the pixel value of the original image, Y(i, j) refers to the pixel value of the generated
image, H represents the image height, and W represents the image width. The PSNR metric
is measured in dB, where a higher value indicates better image quality.

The Fréchet inception distance (FID) is a metric that quantifies the distance between
the high-dimensional data distributions of real and generated images. The FID result is a
numerical value that provides an intuitive measure of the degree of similarity between the
distributions. The formula for the FID is shown in Equation (15).

FID(x, y) =
∥∥ux − ug

∥∥2
2 + Tr

(
Σx + Σg − 2

(
ΣxΣg

)1/2
)

(15)

Here, Tr represents the trace of a matrix, which is the sum of its diagonal elements.
Variable u represents the mean, and Σx and Σg represent the covariances. The real sample
images are denoted as x, while the generated sample images are represented as g. The
tuples (ux,ug) and (Σx,Σg) represent the means and covariances calculated from the real
data and generated samples, respectively. A lower value of FID indicates a higher degree
of similarity between the images.

3.2. Experimental Data

The experimental data utilized in this study were constructed from the publicly avail-
able 2018 AI Challenge dataset (https://aistudio.baidu.com/datasetdetail/76075 accessed
on 3 September 2023). Within this dataset, images were selected from the 2018 AI Challenger
Plant Disease Degree Image Dataset, which consisted of various datasets, including healthy
maize leaf images, maize gray leaf spot images, maize rust images, and maize leaf blight
images. The diseased images were categorized into two levels of severity: mild and severe.
In order to obtain a training set, any images that were deemed unclear or indiscernible were
manually removed. The resulting training set consisted of 370 healthy maize leaf images,
191 mild and 167 severe maize gray leaf spot images, 309 mild and 227 severe maize rust
images, and 113 mild and 329 severe maize leaf blight images. To overcome the insufficient
number of images available for each type of maize disease, data augmentation techniques

https://aistudio.baidu.com/datasetdetail/76075
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were employed. These techniques included horizontal flipping, vertical flipping, clockwise
rotation by 45 degrees, and counterclockwise rotation by 45 degrees, thereby augmenting
the dataset and increasing the sample size. Subsequently, the dataset was divided into
training and testing sets using a 7:3 ratio. In order to ensure consistency, the images in the
public dataset, which possessed varying resolutions, were normalized and scaled to a fixed
pixel size of 224 × 224 RGB color images, as required by the model. This normalization
step was necessary to address the redundancy in the images caused by a high number of
pixels. Additionally, the images were further processed to create binary files for the image
dataset. The entire process of experimental data preparation was completed accordingly.

4. Experimental Results and Analysis
4.1. The Impact of the Improved Model on Model Performance

Both the generator and discriminator models employed in this study incorporated an
attention mechanism structure. Additionally, a feature recombination loss function was
introduced to the discriminator. The inclusion of these enhancements facilitated a deeper
network architecture and improved the network’s capability to extract features from deeper
layers, surpassing the performance of the original CycleGAN model. Figure 5 and Figure 6
present a visual comparison of the image quality between the original CycleGAN and the
improved CycleGAN for both mild and severe maize disease leaf images, respectively.

Epoch

Original CycleGAN network (gray spot)
Improving the CycleGAN network (gray spot)
Original CycleGAN network (rust)
Improved CycleGAN network (rust)
Original CycleGAN network (leaf spot)
Improving the CycleGAN network (leaf spot)

Epoch

(a) (b)

Figure 5. Comparison of the original and improved networks that generated leaf images of minor
maize disease: (a) the change in PSNR value, (b) the change in PSNR value.

Epoch Epoch

(a) (b)

Figure 6. Comparison of the original and improved networks that generated leaf images of severe
maize disease: (a) the change in PSNR value, (b) the change in PSNR value.

From Figure 5, it is evident that the two models generated three types of mild maize
leaf images. For the maize gray leaf spot image, the original CycleGAN yielded PSNR and
SSIM values of 35.91 dB and 0.92, respectively, while the improved CycleGAN achieved
values of 37.41 dB and 0.95, resulting in a 2.50 dB increase in PSNR and a 0.03 increase in
SSIM. Similarly, for maize rust leaf images, the original CycleGAN produced PSNR and
SSIM values of 36.91 dB and 0.91, respectively, while the improved CycleGAN achieved
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values of 37.82 dB and 0.94, representing a 1.71 dB increase in PSNR and a 0.03 increase in
SSIM. Lastly, for maize leaf blight images, the original CycleGAN yielded PSNR and SSIM
values of 37.11 dB and 0.92, respectively, while the improved CycleGAN achieved values
of 38.13 dB and 0.94, resulting in a 1.02 dB increase in PSNR and a 0.02 increase in SSIM.

From Figure 6, it is evident that the two models generated three types of severe maize
leaf images. For the maize gray leaf spot image, the original CycleGAN yielded PSNR and
SSIM values of 27.18 dB and 0.84, respectively, while the improved CycleGAN achieved
values of 30.19 dB and 0.86, resulting in a 3.01 dB increase in PSNR and a 0.02 increase in
SSIM. Similarly, for maize rust leaf images, the original CycleGAN produced PSNR and
SSIM values of 29.11 dB and 0.85, respectively, while the improved CycleGAN achieved
values of 31.47 dB and 0.89, representing a 2.36 dB increase in PSNR and a 0.04 increase in
SSIM. Lastly, for maize leaf blight images, the original CycleGAN yielded PSNR and SSIM
values of 29.16 dB and 0.82, respectively, while the improved CycleGAN achieved values
of 32.01 dB and 0.83, resulting in a 2.85 dB increase in PSNR and a 0.01 increase in SSIM.

By examining Figures 5 and 6, it is evident that the generation process of mild maize
disease leaf images exhibits relatively small fluctuations in the PSNR and SSIM curves for
both the original CycleGAN and the improved CycleGAN. However, when generating
severe maize disease leaf images, both models experience larger fluctuations in the PSNR
and SSIM curves, which gradually stabilize as the number of iterations increases. Overall,
the proposed improved CycleGAN structure in this study has achieved higher PSNR and
SSIM values for the three different disease severity levels of maize diseases compared to
the original CycleGAN, indicating superior quality in the generated images.

4.2. Contrast Based on Objective Parameters of Generated Images

(1) Comparison of generated image FID values.

The objective parameter, FID, is used for the preliminary assessment of the generated
image quality, providing an intuitive and effective evaluation. Visual observation allows
for the identification of similarities and differences between generated and real images,
providing preliminary judgments on the generated image performance based on parameter
similarities. Subsequently, the distribution similarity between generated and real images
can be assessed. Table 2 displays the FID values generated for three different levels of maize
disease. Model A represents a network that solely integrates the attention mechanism, while
model B represents a network that solely integrates feature recombination. Conversely,
model C represents a network that combines both the attention mechanism and feature
recombination.

From Table 2, the results show that, in terms of the maize gray spot disease leaf image,
the improved model C generates an image that is closest to the real one based on objective
parameters. Its FID value is reduced by 47.42 and 47.46 compared to the image generated
by the original CycleGAN. For the maize leaf rust disease leaf image, the improved model
C generates an image that is closest to the maize gray spot disease leaf image based on
objective parameters, with reductions in the FID value by 57.61 and 52.43. Regarding the
maize common rust disease leaf image, the improved model C generates an image that is
closest to the maize gray spot disease leaf image in terms of objective parameters, with
reductions in the FID values by 52.96 and 51.16.

(2) Gray-level histogram feature maps comparison.

The gray-level histogram is a statistical function that represents the distribution of
gray levels in an image. It shows the frequency of occurrence of different gray levels by
indicating the number of pixels with a specific gray level. Figure 7 presents the comparison
of gray-level histograms for the target images generated from real images, the original
CycleGAN model, and improved models A, B, and C. The horizontal axis represents
the pixel value, and the vertical axis represents the number of pixels. This comparison
provides insight into the variations in gray-level distributions among the different image
generation models.
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Table 2. FID value comparisons of maize disease leaf images generated by different models.

Module CycleGAN The Attention-Based
CycleGAN Method

The Feature
Recombination-Based

CycleGAN Method

The Incorporating
Attention Mechanism

and Feature
Recombination

CycleGAN Method

gray leaf spot
(minor/severe) 158.26/172.17 114.26/128.61 124.71/136.19 110.84/124.71

rust disease
(minor/severe) 167.34/181.59 113.71/135.86 119.93/141.03 109.73/131.16

leaf spot disease
(minor/severe) 161.32/175.99 112.36/127.41 127.53/139.76 108.36/124.83

Real image Original CycleGAN model Improve the model A Improve the model B Improve the model C

(a)

Real image Original CycleGAN model Improve the model A Improve the model B Improve the model C

(b)

Real image Original CycleGAN model Improve the model A Improve the model B Improve the model C

(c)

Figure 7. Comparison of grayscale features of diseased maize leaf images generated by different
models: (a) maize gray leaf spot disease, (b) maize rust, (c) maize leaf spot.

The results indicate that, based on Figure 7, improved model C shows a higher simi-
larity to real maize leaf images in terms of gray level, compared to the original CycleGAN
model, improved model A, and improved model B for all three types of maize disease
leaf images. In conclusion, by analyzing the FID values and visually comparing gray-level
histograms of the generated maize disease leaf images using objective parameters, it can
be concluded that the maize disease leaf images generated by improved model C exhibit
higher image quality and are more similar to real maize leaf images.

4.3. Comparison of Stability of Improved Models

In this study, a recombined feature loss function was introduced to optimize the
edge information of leaf contours and enhance image generation quality. To validate the
performance improvement brought by the recombined feature loss function, maize gray
spot disease leaf images were used as a case study, and the image generation quality
was compared for images with different background complexities. Figure 8 visually
demonstrates the comparison results.

The feature contours of the generated images more closely resemble the original leaf
images after adding the feature recombination module, as depicted in Figure 8. This
improvement can be attributed to the module’s ability to extract deep features from both
diseased and healthy leaf images, enabling the improved model to better learn the mapping
relationship between the two types of images. Under the condition of a simple background,
the generated images using improved model B achieve PSNR and SSIM values of 23.17 dB
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and 0.89, respectively, while those using improved model C achieve 25.63 dB and 0.91,
respectively. Under the condition of a complex background, the generated images using
improved model B achieve PSNR and SSIM values of 21.89 dB and 0.82, respectively,
while those using improved model C achieve 23.11 dB and 0.86, respectively. Through
the comparison of different backgrounds, it can be observed that the generated images
of diseased maize leaves using improved model C attain higher PSNR and SSIM values,
indicating that the generated images more closely resemble the real images in terms of pixel
values and exhibit structures that more closely resemble the original images, ultimately
leading to higher image quality.

health CycleGAN Attention mechanism Feature recombination This research model

(a)

health CycleGAN Attention mechanism Feature recombination This research model

(b)

Figure 8. Improved model generation image effects in different degrees of complexity backgrounds:
(a) simple background, (b) complex background.

By analyzing Figures 5–8, it is evident that improved model C exhibits satisfactory
performance in generating maize disease leaf images, suggesting that the inclusion of the
feature recombination loss function has demonstrated partial improvement in the training
effectiveness of improved model C. Nevertheless, the feature recombination loss function
exhibits instability. To ensure that the introduced feature recombination module has a
better effect on the quality of generated maize disease leaf images, the analysis focuses on
maize gray spot disease leaf images in six repeated experiments using identical parameters
for all experimental groups.

According to Table 3, which presents the results of six repeated experiments, the mean
and variance of PSNR values for leaves affected by maize gray spot disease are 23.13 dB
and 0.0083, respectively. For SSIM values, their mean and variance are 0.89 and 0.0011,
respectively. In the case of leaves with severe symptoms, the mean and variance of PSNR
values are 20.89 dB and 0.0012, respectively. The mean and variance of SSIM values for
these leaves are 0.81 and 0.0028, respectively. By comparing the mean and variance of PSNR
and SSIM values, it can be observed that the variance is small and the overall data shows
little fluctuation. This indicates that the introduced feature recombination loss function is
not limited to achieving the best performance in a single experiment and that the overall
stability of the model is not significantly affected.

Table 3. Improved Model stability evaluation.

Method PSNR/dB SSIM
Mean Variance Mean Variance

minor 23.13 0.0083 0.89 0.0011
severe 20.89 0.0012 0.81 0.0028
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4.4. Ablation Experiment and Comparison with Other Methods

To compare the improvement effects of the proposed method in this study, we per-
formed controlled experiments using traditional generative models VAE and deep neural
network method Pix2Pix as well as conducted ablation experiments. The experiments
focused on maize gray leaf spot disease, and the quality of the generated images was
compared. We compared the performance of the proposed method, original CycleGAN,
attention-based CycleGAN, feature recombination-based CycleGAN, VAE, and Pix2Pix on
a constructed dataset of maize gray leaf spot disease. The comparison of the six methods
in generating diseased leaf images can be seen in Figure 9, and the quality comparison is
presented in Table 4.

Table 4. Image quality comparison of maize disease leaves generated by different methods.

Method PSNR/dB SSIM
Minor Severe Minor Severe

This research method 23.13 20.89 0.89 0.81
The original CycleGAN method 18.47 14.11 0.81 0.73

The attention-based CycleGAN method 21.83 18.64 0.86 0.78
The feature recombination-based CycleGAN method 20.02 16.91 0.83 0.75

The VAE (Variational Autoencoder) method 12.11 10.38 0.71 0.67
The Pix2Pix method 22.76 20.17 0.88 0.79

Table 4 shows that the proposed method achieves higher PSNR and SSIM values
compared to the original CycleGAN, VAE, and Pix2Pix methods for generating images of
both slightly and severely diseased maize gray leaf spots. In the case of slightly diseased
images, the proposed method achieves a PSNR value of 23.13 dB and an SSIM value of
0.89, which are improvements of 4.66 dB and 0.08, respectively, compared to CycleGAN,
11.02 dB and 0.18 compared to VAE, and 0.37 dB and 0.01 compared to Pix2Pix. For severely
diseased images, the proposed method achieves a PSNR value of 20.89 dB and an SSIM
value of 0.81, which are improvements of 6.78 dB and 0.08, respectively, compared to
CycleGAN, 10.51 dB and 0.14 compared to VAE, and 0.72 dB and 0.02 compared to Pix2Pix.
These results demonstrate the superior performance of the proposed method in generating
maize gray leaf spot disease images, which closely resemble real images.

health CycleGAN Attention mechanism Feature recombination This research model VAE Pix2Pix

(a)

health CycleGAN Attention mechanism Feature recombination This research model VAE Pix2Pix

(b)

Figure 9. The comparative study of generating slightly diseased image effects using six different
methods under varying degrees of complexity in different backgrounds: (a) simple background,
(b) complex background.

In terms of the visual results of the generated slightly diseased maize gray leaf spot
images by the six compared methods, the proposed method in this article performs the best.
When generating diseased leaf images under different degrees of background complexities,
the proposed method avoids generating interference images with disease features on the
interfering leaves in the background and successfully repairs the edge images of maize
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leaves, resulting in more realistic generated diseased images. Among the six methods
compared, Pix2Pix is the closest to the proposed method in performance, but its handling
of background information shows some residual information. The VAE method produces
the lowest image quality, with distorted slightly diseased maize gray leaf spot images and
poor clarity. The attention-based and feature recombination-based CycleGAN methods
both make certain improvements in image clarity and interference information in image
backgrounds compared to the original CycleGAN method, but may still struggle to fully
generate disease feature information when dealing with complex backgrounds.

Due to the visually intuitive manifestation of disease severity in severe maize gray
leaf spot images, it can be observed from Figure 10 that the method proposed in this paper
shows better results in generating images of leaves severely affected by corn gray leaf spot
disease. The other methods show residual background interference and partial distortion
in the generated images.

health CycleGAN Attention mechanism Feature recombination This research model VAE Pix2Pix

(a)

health CycleGAN Attention mechanism Feature recombination This research model VAE Pix2Pix

(b)

Figure 10. Results of six methods with different background complexities: (a) simple background,
(b) complex background.

Experimental analysis on datasets containing both mild and severe maize gray leaf
spots demonstrates the commendable performance of the proposed method in generating
accurate leaf images of the disease. The generated images exhibit a higher quality, closely
resembling real leaf images. Significantly, the proposed method surpasses the original
CycleGAN method, as well as the attention-based and feature recombination-based Cy-
cleGAN methods. Furthermore, compared to traditional generation models like VAE and
Pix2Pix, the proposed method not only improves the overall clarity of images but also effec-
tively captures specific maize disease feature information in targeted areas. Additionally,
the generated image’s edge information shows a greater similarity to the original image,
thus enhancing its quality.

4.5. Comparison Based on Classification Model Accuracy

Based on the original base data, we employed three methods for dataset augmentation:
the original CycleGAN method, the proposed method in this paper, and the Pix2Pix method.
The unbalanced maize disease dataset was expanded to 500 images, and the training set
and test set were divided in a 4:1 ratio, resulting in a total of 300 iterations. For batch
processing, a batch size of 50 is used. The initial learning rate is set to 0.001. We calculated
the average accuracy of six recognition networks (VGG16, VGG19, ResNet50, DenseNet50,
DenseNet121, and GoogLeNet) using the augmented dataset, as presented in Table 5. In
Table 5, A denotes the original dataset, B represents the CycleGAN model augmented
dataset, C corresponds to the improved model in this paper augmented dataset, and D
signifies the Pix2Pix model augmented dataset.
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Table 5. Dataset average accuracy comparison in different classification models.

Model VGG16 VGG19 DenseNet50 DenseNet121 ResNet50 GoogLeNet

A 85.19% 86.16% 84.12% 87.71% 87.27% 89.03%
B 88.13% 89.57% 87.63% 89.12% 89.12% 91.39%
C 91.11% 91.79% 92.33% 93.17% 92.93% 93.64%
D 89.94% 90.73% 90.91% 92.14% 91.68% 92.56%

Based on Table 5, the proposed improved model achieves the highest accuracy among
the six classification models when generating the augmented dataset. Notably, the average
accuracy using the GoogLeNet model reaches up to 93.64%, surpassing the accuracy of
the original dataset, original model, and datasets expanded by deep learning generation
models. For the classification results of VGG16, ResNet50, DenseNet50, and GoogLeNet,
confusion matrices are presented in Figures 11–14. In these figures, (a) represents the
original dataset, (b) represents the CycleGAN model augmented dataset, (c) corresponds
to the augmented dataset using the improved model from this paper, and (d) signifies the
Pix2Pix model augmented dataset.
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Figure 11. Dataset in VGG16 classification results.

corn gray leaf spot (severe) 

corn gray leaf spot (mild) 

corn leaf blight(mild)
corn leaf blight(severe)

corn rust(mild)
corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (m
ild) 

corn leaf blight(m
ild)

corn leaf blight(severe)

corn rust(m
ild)

corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (mild) 

corn leaf blight(mild)
corn leaf blight(severe)

corn rust(mild)
corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (m
ild) 

corn leaf blight(m
ild)

corn leaf blight(severe)

corn rust(m
ild)

corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (mild) 

corn leaf blight(mild)
corn leaf blight(severe)

corn rust(mild)
corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (m
ild) 

corn leaf blight(m
ild)

corn leaf blight(severe)

corn rust(m
ild)

corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (mild) 

corn leaf blight(mild)
corn leaf blight(severe)

corn rust(mild)
corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (m
ild) 

corn leaf blight(m
ild)

corn leaf blight(severe)

corn rust(m
ild)

corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (mild) 

corn leaf blight(mild)
corn leaf blight(severe)

corn rust(mild)
corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (m
ild) 

corn leaf blight(m
ild)

corn leaf blight(severe)

corn rust(m
ild)

corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (mild) 

corn leaf blight(mild)
corn leaf blight(severe)

corn rust(mild)
corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (m
ild) 

corn leaf blight(m
ild)

corn leaf blight(severe)

corn rust(m
ild)

corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (mild) 

corn leaf blight(mild)
corn leaf blight(severe)

corn rust(mild)
corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (m
ild) 

corn leaf blight(m
ild)

corn leaf blight(severe)

corn rust(m
ild)

corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (mild) 

corn leaf blight(mild)
corn leaf blight(severe)

corn rust(mild)
corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (m
ild) 

corn leaf blight(m
ild)

corn leaf blight(severe)

corn rust(m
ild)

corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (mild) 

corn leaf blight(mild)
corn leaf blight(severe)

corn rust(mild)
corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (m
ild) 

corn leaf blight(m
ild)

corn leaf blight(severe)

corn rust(m
ild)

corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (mild) 

corn leaf blight(mild)
corn leaf blight(severe)

corn rust(mild)
corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (m
ild) 

corn leaf blight(m
ild)

corn leaf blight(severe)

corn rust(m
ild)

corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (mild) 

corn leaf blight(mild)
corn leaf blight(severe)

corn rust(mild)
corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (m
ild) 

corn leaf blight(m
ild)

corn leaf blight(severe)

corn rust(m
ild)

corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (mild) 

corn leaf blight(mild)
corn leaf blight(severe)

corn rust(mild)
corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (m
ild) 

corn leaf blight(m
ild)

corn leaf blight(severe)

corn rust(m
ild)

corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (mild) 

corn leaf blight(mild)
corn leaf blight(severe)

corn rust(mild)
corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (m
ild) 

corn leaf blight(m
ild)

corn leaf blight(severe)

corn rust(m
ild)

corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (mild) 

corn leaf blight(mild)
corn leaf blight(severe)

corn rust(mild)
corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (m
ild) 

corn leaf blight(m
ild)

corn leaf blight(severe)

corn rust(m
ild)

corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (mild) 

corn leaf blight(mild)
corn leaf blight(severe)

corn rust(mild)
corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (m
ild) 

corn leaf blight(m
ild)

corn leaf blight(severe)

corn rust(m
ild)

corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (mild) 

corn leaf blight(mild)
corn leaf blight(severe)

corn rust(mild)
corn rust(severe)

corn gray leaf spot (severe) 

corn gray leaf spot (m
ild) 

corn leaf blight(m
ild)

corn leaf blight(severe)

corn rust(m
ild)

corn rust(severe)

(a) (b) (c) (d)

Figure 12. Dataset in ResNet50 classification results.

Figure 11. Dataset in VGG16 classification results.
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cleGAN methods. Furthermore, compared to traditional generation models like VAE and
Pix2Pix, the proposed method not only improves the overall clarity of images but also effec-
tively captures specific maize disease feature information in targeted areas. Additionally,
the generated image’s edge information shows a greater similarity to the original image,
thus enhancing its quality.

4.5. Comparison Based on Classification Model Accuracy

Based on the original base data, we employed three methods for dataset augmentation:
the original CycleGAN method, the proposed method in this paper, and the Pix2Pix method.
The unbalanced maize disease dataset was expanded to 500 images, and the training set
and test set were divided in a 4:1 ratio, resulting in a total of 300 iterations. For batch
processing, a batch size of 50 is used. The initial learning rate is set to 0.001. We calculated
the average accuracy of six recognition networks (VGG16, VGG19, ResNet50, DenseNet50,
DenseNet121, and GoogLeNet) using the augmented dataset, as presented in Table 5. In
Table 5, A denotes the original dataset, B represents the CycleGAN model augmented
dataset, C corresponds to the improved model in this paper augmented dataset, and D
signifies the Pix2Pix model augmented dataset.

Table 5. Dataset average accuracy comparison in different classification models.

Model VGG16 VGG19 DenseNet50 DenseNet121 ResNet50 GoogLeNet

A 85.19% 86.16% 84.12% 87.71% 87.27% 89.03%
B 88.13% 89.57% 87.63% 89.12% 89.12% 91.39%
C 91.11% 91.79% 92.33% 93.17% 92.93% 93.64%
D 89.94% 90.73% 90.91% 92.14% 91.68% 92.56%

Based on Table 5, the proposed improved model achieves the highest accuracy among
the six classification models when generating the augmented dataset. Notably, the average
accuracy using the GoogLeNet model reaches up to 93.64%, surpassing the accuracy of
the original dataset, original model, and datasets expanded by deep learning generation
models. For the classification results of VGG16, ResNet50, DenseNet50, and GoogLeNet,
confusion matrices are presented in Figures 11–14. In these figures, (a) represents the
original dataset, (b) represents the CycleGAN model augmented dataset, (c) corresponds
to the augmented dataset using the improved model from this paper, and (d) signifies the
Pix2Pix model augmented dataset.
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Figure 11. Dataset in VGG16 classification results.
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Figure 13. Dataset in DenseNet50 classification results.
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Figure 14. Dataset in GoogLeNet classification results.

5. Discussion

This paper introduces an enhanced CycleGAN model for transforming maize disease
leaf images, thereby achieving dataset augmentation:
(1) In the experiments, to test the influence of the improved methods on the model

performance, both the original CycleGAN model and the improved CycleGAN model
were used to perform disease transfer on healthy maize leaves. Overall, compared
to the original CycleGAN model, the improved CycleGAN model proposed in this
study achieved improvements in the PSNR and SSIM values of the three different
disease severity diseases, indicating better image quality of the generated images.

(2) We tested the impacts of different mechanisms on the improved CycleGAN model, the
original CycleGAN model, the CycleGAN model with only the attention mechanism,
the CycleGAN model with only the feature recombination, and the CycleGAN model
incorporating both the attention mechanism and feature recombination; all models
were used to perform disease transfer on healthy maize leaves. Objective parameter
analysis was conducted by calculating the FID values between the generated maize
disease leaf images and the original healthy maize leaf images, and visual comparisons
were made using grayscale histograms. It was found that the CycleGAN model with
both the attention mechanism and feature recombination generated maize disease leaf
images that were closer to real maize leaf images, and the image quality was relatively
better.

(3) We validated the impact of the feature recombination loss function on the model’s
stability, the generated image quality was compared for maize gray leaf spot images
under different background complexity levels. The experiment showed that the
generated images from the model with the introduced feature recombination loss
function had higher image quality, not limited to the best performance in a single
experiment.

(4) Comparative experiments were conducted through ablation experiments with the
traditional generation models VAE and Pix2Pix. Maize gray leaf spot disease was
taken as the experimental object, and the generated image quality was compared
under different background complexity levels. The results showed that compared
to the original CycleGAN method, the attention-based CycleGAN method, and the
feature recombination-based CycleGAN method, the proposed method in this paper
had obvious improvements. Compared with the traditional generation models VAE
and Pix2Pix, this proposed method not only enhanced the overall clarity of the
images, but also realized the generation of maize disease feature information in

Figure 13. Dataset in DenseNet50 classification results.
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Figure 13. Dataset in DenseNet50 classification results.
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Figure 14. Dataset in GoogLeNet classification results.

5. Discussion

This paper introduces an enhanced CycleGAN model for transforming maize disease
leaf images, thereby achieving dataset augmentation:
(1) In the experiments, to test the influence of the improved methods on the model

performance, both the original CycleGAN model and the improved CycleGAN model
were used to perform disease transfer on healthy maize leaves. Overall, compared
to the original CycleGAN model, the improved CycleGAN model proposed in this
study achieved improvements in the PSNR and SSIM values of the three different
disease severity diseases, indicating better image quality of the generated images.

(2) We tested the impacts of different mechanisms on the improved CycleGAN model, the
original CycleGAN model, the CycleGAN model with only the attention mechanism,
the CycleGAN model with only the feature recombination, and the CycleGAN model
incorporating both the attention mechanism and feature recombination; all models
were used to perform disease transfer on healthy maize leaves. Objective parameter
analysis was conducted by calculating the FID values between the generated maize
disease leaf images and the original healthy maize leaf images, and visual comparisons
were made using grayscale histograms. It was found that the CycleGAN model with
both the attention mechanism and feature recombination generated maize disease leaf
images that were closer to real maize leaf images, and the image quality was relatively
better.

(3) We validated the impact of the feature recombination loss function on the model’s
stability, the generated image quality was compared for maize gray leaf spot images
under different background complexity levels. The experiment showed that the
generated images from the model with the introduced feature recombination loss
function had higher image quality, not limited to the best performance in a single
experiment.

(4) Comparative experiments were conducted through ablation experiments with the
traditional generation models VAE and Pix2Pix. Maize gray leaf spot disease was
taken as the experimental object, and the generated image quality was compared
under different background complexity levels. The results showed that compared
to the original CycleGAN method, the attention-based CycleGAN method, and the
feature recombination-based CycleGAN method, the proposed method in this paper
had obvious improvements. Compared with the traditional generation models VAE
and Pix2Pix, this proposed method not only enhanced the overall clarity of the
images, but also realized the generation of maize disease feature information in

Figure 14. Dataset in GoogLeNet classification results.
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5. Discussion

This paper introduces an enhanced CycleGAN model for transforming maize disease
leaf images, thereby achieving dataset augmentation:
(1) In the experiments, to test the influence of the improved methods on the model

performance, both the original CycleGAN model and the improved CycleGAN model
were used to perform disease transfer on healthy maize leaves. Overall, compared
to the original CycleGAN model, the improved CycleGAN model proposed in this
study achieved improvements in the PSNR and SSIM values of the three different
disease severity diseases, indicating better image quality of the generated images.

(2) We tested the impacts of different mechanisms on the improved CycleGAN model, the
original CycleGAN model, the CycleGAN model with only the attention mechanism,
the CycleGAN model with only the feature recombination, and the CycleGAN model
incorporating both the attention mechanism and feature recombination; all models
were used to perform disease transfer on healthy maize leaves. Objective parameter
analysis was conducted by calculating the FID values between the generated maize
disease leaf images and the original healthy maize leaf images, and visual comparisons
were made using grayscale histograms. It was found that the CycleGAN model with
both the attention mechanism and feature recombination generated maize disease leaf
images that were closer to real maize leaf images, and the image quality was relatively
better.

(3) We validated the impact of the feature recombination loss function on the model’s
stability, the generated image quality was compared for maize gray leaf spot images
under different background complexity levels. The experiment showed that the
generated images from the model with the introduced feature recombination loss
function had higher image quality, not limited to the best performance in a single
experiment.

(4) Comparative experiments were conducted through ablation experiments with the
traditional generation models VAE and Pix2Pix. Maize gray leaf spot disease was
taken as the experimental object, and the generated image quality was compared
under different background complexity levels. The results showed that compared
to the original CycleGAN method, the attention-based CycleGAN method, and the
feature recombination-based CycleGAN method, the proposed method in this paper
had obvious improvements. Compared with the traditional generation models VAE
and Pix2Pix, this proposed method not only enhanced the overall clarity of the
images, but also realized the generation of maize disease feature information in
specific regions, and the edge information of the generated images was also closer to
the original images.

(5) In the experiment to validate the effectiveness of the expanded dataset, we utilized
the original CycleGAN method, the improved CycleGAN, and the Pix2Pix method
for dataset expansion. The experiment showed that on the expanded maize dis-
ease dataset using the improved CycleGAN, the average accuracy of the classifi-
cation tasks performed by six recognition networks (VGG16, VGG19, ResNet50,
DenseNet50, DenseNet121, and GoogLeNet) was the highest. The average accuracy
in the GoogLeNet model reached 93.64%, and the dataset expanded by the generation
model achieved an average accuracy exceeding 91% in different classification models.

Previously, Chen et al. [46] proposed an improved CycleGAN for generating synthetic
samples to enhance data distribution and address issues with small-sized datasets and class
imbalance. Xiao et al. [47] introduced texture reconstruction loss CycleGAN (TRL-GAN)
to enhance the accuracy and generalization of the citrus greening disease identification
algorithm. Liu et al. [48] designed an improved YOLOX-based tomato leaf disease identifi-
cation method. They employed CycleGAN to enhance tomato disease leaf samples in the
PlantVillage dataset, addressing the issue of imbalanced sample numbers. Furthermore,
this study primarily expanded experiments on three types of diseases in maize leaves.
Subsequent work can involve augmenting a wider variety of maize leaf disease types to
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enhance the recognition accuracy of maize leaf diseases under a greater range of conditions.
This method can also be extended to augment other maize disease datasets, thus enriching
experimental data across various domains. In processing the experimental data used in this
study, two methods, namely flipping and rotating, were employed to augment the original
dataset in order to meet the data quantity requirements for the classification accuracy of the
neural network model. However, beyond spatial augmentation, additional enhancement
functions, such as brightness and contrast adjustment, noise injection, and color jitter were
applied. These enhancement methods effectively aid in capturing underlying patterns.
In future work, we will incorporate these color-related enhancement methods into the
experimental section and then compare the classification performance of datasets with
and without the addition of synthetic images. This will enrich the experimental data and
further demonstrate the effectiveness of this approach. Additionally, due to the limited
availability and poor quality of agricultural disease data, achieving sustainable develop-
ment in agricultural disease data is challenging. In the future, research efforts can focus on
adjusting the training epochs, exploring more suitable initial weights, and refining network
architectures to address these challenges.

6. Conclusions

In this study, we improved CycleGAN by incorporating an attention mechanism
module and a feature recombination loss function, thereby constructing a model for trans-
forming maize disease leaf images. We examined the impact of different mechanisms
on the enhanced CycleGAN model and evaluated the quality of generated maize gray
leaf spot disease images under varying levels of background complexity. Comparative
experiments were conducted through ablation experiments with traditional models. Finally,
we compared the accuracy of different methods using a classification model to validate the
effectiveness of the model.

The experimental results indicate that, in assessing the impact on model performance,
the innovation of this study lies in comparing the generation of slightly and severely dis-
eased maize leaf images. Taking maize gray leaf spot disease leaf images as an example,
comparing the quality of generated slightly diseased maize leaf images, the improved
CycleGAN showed an improvement of 2.50 dB in PSNR and 0.03 in SSIM relative to the
original CycleGAN. Analyzing the quality of generated severely diseased maize leaf im-
ages, the improved CycleGAN exhibited an improvement of 3.01 dB in PSNR and 0.02
in SSIM compared to the original CycleGAN. When evaluating the FID values of gener-
ated images, for both slightly and severely diseased maize leaves, the images generated
by the improved model were objectively closer to real maize gray leaf spot disease leaf
images in terms of FID values. Furthermore, compared to images generated by the orig-
inal CycleGAN, the FID values decreased by 47.42 and 47.46, respectively. Comparing
the quality of generated images under different background complexities, the proposed
improved model outperformed other methods in terms of PSNR and SSIM for both simple
and complex backgrounds. Finally, using the improved CycleGAN, the maize disease
dataset was expanded. The classification results of six recognition networks, including
VGG16, VGG19, ResNet50, DenseNet50, DenseNet121, and GoogLeNet, confirmed the
effectiveness of the generated data. After expanding the samples, the accuracy of maize
disease recognition significantly improved by 3.5% to 4% compared to the original dataset
and by 1.5% to 2% compared to the CycleGAN model. In summary, the model constructed
in this study effectively expanded the dataset, increasing the available training samples
and achieving sustainable development in agricultural disease data. The added attention
mechanism enabled the model to accurately extract disease features from maize leaf disease
images, enhancing the realism of generated disease images. Furthermore, by utilizing the
feature reconstruction loss function, the model was able to distinguish between leaves
and backgrounds, enhancing contour information in the generated images and enriching
sample diversity. The results of this study can be applied to improve the early identification
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and management of maize leaf diseases, ultimately contributing to increased agricultural
production efficiency.
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