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Abstract: The mechanical characteristics of rock are greatly influenced by hydrochemical corrosion.
The chemical corrosion impact and deformation properties of the meso-pore structure of rock under
the action of different hydrochemical solutions for the stability evaluation of rock mass engineering
are of high theoretical relevance and applied value. Based on actual data, a support vector ma-
chine (SVM) rock constitutive model based on artificial bee colony algorithm (ABC) optimization
is constructed in this article. The impact of porosity (chemical deterioration), confining pressure,
and other aspects is thoroughly examined. It is used to mimic the triaxial mechanical behavior of
rock under various hydration conditions, with high nonlinear prediction ability. Simultaneously, the
statistical damage constitutive model and the ABC-SVM constitutive model are used to forecast the
sample’s stress–strain curve and compare it to the experimental data. The two models’ correlation
coefficients (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE) are
computed and examined. The correlation coefficient between the ABC-SVM constitutive model
calculation results and the experimental results is found to be larger (R2 = 0.998), and the error is
smaller (RMSE = 0.7730, MAPE = 1.51), indicating that it has better prediction performance on the
conventional triaxial constitutive relationship of rock. It is a highly promising new way of describing
the rock’s constitutive connection.

Keywords: hydrochemical corrosion; constitutive relationship of sandstone; machine learning;
artificial bee colony algorithm (ABC); support vector machine (SVM)

1. Introduction

The change in the relationship between stress and the related strain of rock under
external force is referred to as the constitutive relationship of rock, which is a mathematical
formula that describes the mechanical characteristics of rock [1–3]. Geotechnical engineer-
ing places a high priority on predicting and understanding rock mass stability. Studying
the fundamental relationships of rocks in various contexts is essential due to the complexity
and instability of rocks and their environment.

The geomechanical behavior of corroded rock can be accurately reflected by the statis-
tical damage model of rock developed by pertinent researchers using certain mathematical
expressions. For example, Xu et al. [4] obtained the chemical damage constitutive model
by combining the mechanical damage under an external load with the chemical damage,
and verified that the constitutive model can accurately predict the stress–strain relationship
after water–rock interaction through a semi-immersion experiment and uniaxial testing.
Liang et al. [5] created a constitutive model of acid corrosion sandstone damage based on

Sustainability 2023, 15, 13415. https://doi.org/10.3390/su151813415 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151813415
https://doi.org/10.3390/su151813415
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su151813415
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151813415?type=check_update&version=1


Sustainability 2023, 15, 13415 2 of 14

the Weibull distribution and Drucker–Prager (D-P) criteria by using sandstone subjected
to pH = 1 and 3 hydrochloride (HCl) solutions as the research object. Han et al. [6] estab-
lished and proved the formula for estimating the damage variable, and they quantitatively
evaluated the damage of rock microstructure following chemical corrosion. Pan et al. [7]
developed a nonlinear statistical damage constitutive model by using the statistical method,
and it can accurately represent the mechanical characteristics of rock. An efficient method
for examining the progression of rock degradation is a plausible constitutive model [8–10].
The common features of the above rock damage constitutive models are based on assump-
tions such as the Weibull distribution; following this, an explicit mathematical expression
is used to investigate the relationship between rock stress and strain. However, certain
mechanical characteristics, such as peak strength, modulus of elasticity, etc., have a sub-
stantial impact on the selection of these model parameters [6,11]. The selection of different
parameters is difficult and dependent on the researcher’s personal preferences because
the mechanical behavior of rocks exhibits highly complicated nonlinear aspects [12,13].
Although some researchers have developed methods for quantitatively predicting rock
mechanical characteristics in recent years [14–16], the aforementioned issues cannot entirely
be avoided.

New methods, for example, artificial intelligence, virtual reality, and big data, are being
developed together with network technology. The study of rock mechanics integrating
deep learning has become a new method and trend. In recent years, the constitutive
model of rock and soil materials has been studied through artificial intelligence techniques
successfully. For example, Ghaboussi et al. [17,18] developed a material constitutive
model based on neural networks and successfully applied them to concrete, sand, and
synthetic materials in the conceptual model study; neural network research studies were
carried out successively by Banimahd [19], Goran [20], Penumadu [21] and others, which
further improved the rock constitutive relationship study based on intelligent methods.
Chen et al. [22] proposed an evolutionary neural network constitutive model reflecting
the total stress–strain characteristics of rock under rock chemical corrosion, on the basis
of carefully examining the corrosion effects of rocks under various hydration conditions.
Yao [23] developed an evolutionary neural network constitutive model based on genetic
algorithms and artificial neural networks, taking into account the confining pressure
and hydrochemical corrosion effects by carefully assessing the stress state and chemical
damage of limestone under an aqueous chemical solution. The aforementioned findings
demonstrate that using neural network technology to create a constitutive model of rock
can avoid making assumptions and oversimplifications about its mechanical properties,
avoid the need for mathematical expressions of constitutive relationships, and offers a novel
method with some promise [17–24]. The constitutive relationship model of fillings under
uniaxial compression was created by Qi et al. [25] using the random forest model (RF),
which was then verified and analyzed using the measured data. The results revealed that
the established RF model could accurately predict the constitutive relationships of fillings
under various conditions. This further demonstrates how constitutive models of rock
materials may be created using various algorithms (such as random forest). In order to
study the applicability in establishing constitutive models of rock, it is important to try
different algorithms.

In the machine learning method, SVM performs well in adaptability and fault tolerance,
has arbitrary approximation and self-learning capabilities for nonlinear functions, and is
appropriate for dealing with nonlinear mapping relationships that call for simultaneous
consideration of numerous uncertainties [26–29]. Through the relevant research of some
scholars, it can be seen that the ABC algorithm is suitable for optimizing the parameters
of the SVM model [30–32], which can improve the generalization ability of the model.
Based on these considerations, this study establishes the ABC-SVM rock constitutive
model based on the experimental data and introduces performance evaluation indicators
(R2, RMSE, and MAPE) to evaluate the model performance and examine the viability
of intelligent algorithms in predicting the mechanical behavior. Furthermore, statistical
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constitutive models are used to calculate the results, as well as compare and analyze the
characteristics and applicable conditions of various models. The paper is organized as
follows: Section 1 briefly introduces the application of traditional constitutive models
under chemical corrosion and the research results of machine learning in the field of
rock mechanics. Section 2 details the principles and flow of the ABC-SVM algorithm.
In Section 3, the ABC-SVM constitutive model and the statistical damage constitutive
model are established, and the calculation results are compared. Section 4 discusses the
advantages and disadvantages of both models, respectively. Finally, the conclusions are
provided in Section 5.

2. Methods
2.1. SVM Algorithm

The SVM algorithm can be used to linearly or nonlinearly separate data, which
is a binary classification model. It is a supervised learning method for classification
and regression in the field of machine learning [33]. The fundamental goal of the SVM
algorithm is to create a hyperplane that can maximally divide the two classes of data
while also maximizing the distance (or margin) between the two classes’ nearest points
(support vectors) and the hyperplane. The kernel function in the SVM algorithm can map
indivisible data from low-dimensional space to high-dimensional space, allowing for their
separability [34]. Convex quadratic programming can be used to solve the SVM algorithm
and find the best hyperplane and kernel function parameters. The SVM model is more
suitable for linear regression, and the regression equation can be described as [35]:

yi = ω× φ(xi) + b (1)

where yi represents the predicted value of sample i, ω is the normal vector perpendicular
to the hyperplane in multidimensional feature space, xi is a vector consisting of the input
variables of the i-th sample, φi is the mapping function, and b refers to the hyperplane
vector ω along the normal.

Through the Lagrange optimization method, optimal constraints are introduced for
solving Equation (1):

yi = ∑n
i=1 (ai − a′i)φ(xi)φ(xk) + b (2)

where ai and a′i are Lagrange multipliers that correspond to the ith sample, and φ(xi)φ(xk)
represent the kernel function.

The complex nonlinear problem of rock mechanics is influenced by a wide range of
variables. Therefore, it is difficult to utilize linear regression to evaluate its mechanical
properties and obtain reliable results. The Kernel function must be used to map the data into
a higher-dimensional feature space in order for the SVM model to tackle nonlinear issues.
The sigmoid kernel function, radial basis function (RBF) kernel function, and polynomial
kernel function are examples of kernel functions. The preferred function among these, the
RBF kernel function, is the strongest at dealing with nonlinear problems. In this study,
the SVM model is defined using the RBF kernel function. The RBF kernel function can be
expressed as [36]:

k(xi, x) = exp

(
−||x− xi||2

σ2

)
(3)

In Equation (3), σ is the width parameter of the RBF kernel function.

2.2. ABC Algorithm

Karaboga et al. [37] created the artificial bee colony optimization method in an effort
to mimic the difficult optimization challenge of bee colony search behavior. The main
assumption is as follows [30]: Bee scouts look for abundant food sources initially. They are
referred to as observation bees when they are looking for food sources. After performing
a “swing dance” to help other bees identify the best food source, observation bees will
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select a source of honey based on information from other bees and the likelihood that the
source of honey will be found. They will then use a search procedure similar to other bees
to re-search the field. The observation bees are currently referred to when the word “bees”
is used. The outcomes of this cyclic search get closer and closer to the optimal solution, and
the related search neighborhood gradually shrinks.

Considering the initial position of the honey source, the initial solution can be solved
with Equation (4) [38]:

Xij = Xmin
j + rand(0, 1)

(
Xmax

j − Xmin
j

)
(4)

in which i = 1, 2, . . ., N, j = 1, 2, . . ., D, N is the number of honey sources and D is the
population count.

For each solution, a new solution of the adjacent solution Xk of Vjk is:

Vjk(i + 1) = Xjk(t) +ϕjk(t)
(

Xjk(t)− Xwk(t)
)

(5)

K = int(rand× N) + 1 (6)

in which the value range of ϕjk is between −1 and 1, and Xjk is the j-th solution of the k-th
population solution.

The old response will be replaced by the new one if it is more appropriate. The scout
bee selects one answer based on each one’s likelihood and fitness value (or mistake). The
observation bee will next look for a different response; if it is more pertinent than the
original, it will be selected. The ideal choice is made using the fitness value or mistake.
When the error is less than the set termination error, the search is finished. To avoid falling
into the trap of a local optimal solution, a honey source is calibrated as a tabu search point
when the number of iterations (number of cycles) reaches the predetermined limit value
and has not been increased. The formula for calculating the probability of observation bees
choosing a honey source is as follows:

Pi =
f iti

∑N
j f itj

(7)

According to the basic principle of artificial bee colony algorithm, the main parameters
involved in the algorithm include the number of honey sources, termination error, limit,
maximum number of iterations, etc. These parameters need to be set according to specific
problems when the algorithm is applied.

2.3. ABC-SVM

The performance of SVM when used for regression analysis is influenced by the
kernel function g and the penalty factor c. The penalty factor c is mostly utilized to lessen
prediction error and balance the algorithm’s complexity. SVM’s capacity for generalization
is enhanced by reducing the empirical risk function. The number of support vectors
depends on the size of the g value, which, in turn, impacts the generalizability of the model.
The generalizability of SVM is typically inversely proportional to the g value. The model’s
training time is too long when the g parameter is too little, though. In order to obtain the
prediction error and generalizability of SVM in the proper state, a suitable g value must
be chosen. Therefore, it is crucial to understand how to choose the ideal values for c and
g (hyperparameters). The SVM hyperparameters c and g can be improved using the grid
search method. Choosing the search range based on existing information or suggested
values, then dividing it into grids of a certain length, is the basic notion underlying the grid
search strategy. The data (training set) in each group (c, g) were subjected to regression
analysis using SVM, and the predicted outcomes were recorded. A value must be sought at
each node of the grid. Following a thorough examination of all node values in the grid and
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a comparison and analysis of the SVM’s prediction results under multiple (c, g) conditions,
the (c, g) combination with the lowest error value was identified. The grid search approach
can generally search for a better parameter combination and is convenient and quick;
however, it is easy to slip into the local minimum trap. This paper uses ABC to optimize
SVM, thereby avoiding the local minimum trap in the process of parameter optimization
and improving prediction performance and generalizability, to establish a prediction model
of rock mechanical properties with better performance and stronger generalizability.

The specific steps of the ABC-SVM algorithm are as follows:

(1) The data set is established and randomly divided into a training set and test set.
(2) The parameters of the ABC algorithm are initialized and produce the initial solution.
(3) The SVM with the initial solution as the parameter combination is used to establish

the model on the training set and back-judge to obtain the results. At the same
time, the K-fold cross-validation method (K = 5 in this paper) is used to calculate the
performance of the model (the mean square error is used as the evaluation index in
this paper).

(4) Honey bees search for new nectar sources using the neighbor search method. Repeat
step 3 and compare it with the original outcome, to compare the performance of SVM
under different combinations of two parameters. The combination of SVM parameters
with the better performance will be retained.

(5) The observed bee takes the position of the retained nectar source, i.e., (c, g) combina-
tion, as the new initial solution, and then repeats step 4.

(6) Repeat the above steps and record the global optimal solution and the corresponding
performance index.

(7) When the bee passes through the limit cycle, it is judged whether the condition is
satisfied. If it is satisfied, the new solution is used instead of the old solution.

(8) Determine whether the termination condition is satisfied. If it is satisfied, the optimal
solution of the output is used as the optimal parameter combination; if it is not
satisfied, turn to step 4 until the end condition is satisfied.

(9) The optimal (c, g) combination obtained by the ABC algorithm is brought into SVM
to establish the ABC-SVM model, which is applied to the test set to analyze its
performance and generalization ability.

The steps of the 5-fold cross-validation method are as follows:

(1) The training set is randomly divided into five subsets with the same number of
samples in each; four of those are selected as the sub-training set, and the remaining
subset is the validation set.

(2) Based on the initial parameters and sub-training sets of the ABC algorithm, the model
is established and then applied to the validation set, and the performance of the model
on the validation set is calculated.

(3) Step 2 is repeated five times, in which the validation set is changed in each cycle to
ensure that each set of samples in the training set can be used to train and validate
the model.

(4) The results of the above five cycles are recorded and the average value is calculated.
(5) Based on the new set of parameters of the bee colony near search, repeat steps 2–4.
(6) Carry out steps 4–5 of the artificial bee colony algorithm, in which the new parameter

performance calculation in step 5 repeats steps 1–5 of the 5-fold cross-validation, and
then move on to steps 6–9 of the artificial bee colony algorithm.

The process of predicting rock mechanical properties using the ABC-SVM algorithm
is shown in Figure 1.
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3. Rock Constitutive Model Based on ABC-SVM Model
3.1. Data Analysis

The selection of input variables is essential to obtaining calculations with more precise
outcomes. In general, the following guidelines [39] must be followed while choosing the
input variables: (1) the physical meaning of the parameters is obvious; (2) finding the
parameter values is easy; and (3) the parameters can accurately reflect the traits of the
output variables. The stress–strain connection of rock is primarily described by the rock
constitutive model, where strain is the input variable and stress is the output variable.
The mechanical behavior of rock will be influenced by hydrochemical corrosion, confining
pressure, and other elements. There may be pores in rock that has been impacted by
hydrochemical processes. In direct proportion to the porosity following corrosion, chemical
damage to rocks and the severity of mechanical property attenuation both rise. The strength,
elastic modulus, peak strain, and ductility of rock all rise with an increase in confining
pressure. Thus, confining pressure and porosity are chosen as the input variables. At the
same time, the peak point must also be determined because the rock’s peak strength will
also affect its stress–strain curve. Only the uniaxial compressive strength of the rock can be
used to calculate the peak strength of the rock under various confining pressures once the
porosity and confining pressure have been established. Therefore, the uniaxial compressive
strength of rock is selected as the input variable.

The ABC-SVM rock constitutive model’s input variables are porosity, confining pres-
sure, uniaxial compressive strength and strain. The model’s output variable is the stress
that corresponds to the strain. As a result, the implicit formulation of the ABC-SVM-based
rock constitutive relation is [38]:

σ1 = f (n, σ3, σc, ε) (8)

In Equation (8), σ1 represents the principal stress of rock under triaxial compression,
n denotes porosity, σ3 is the confining pressure, σc is the uniaxial compressive strength, and
ε represents the strain.

As a way to evaluate the effectiveness of the five approaches or models, the correlation
coefficient (R2), root mean square error (RMSE), and mean absolute percentage error
(MAPE) are introduced in this study. The correlation coefficient, which normally ranges
from 0 to 1, measures the strength of the association between the predicted value and the
test value. The higher the value, the better. The mean absolute percentage error is the
average value of the absolute percentage error, and the discrepancy between the predicted
value and the test result is primarily depicted by the root mean square error. The degree of
deviation from the observed value is predicted by the two main response models, and the
lower the value, the better. The three indicators can be obtained directly from the literature,
so the calculation formulas and procedures are not described in detail.
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With the use of data on rock porosity, confining pressure, uniaxial compressive
strength, and rock mechanics test results, the data set for the ABC-SVM constitutive
model was created in this study. By using the research of Qi et al. [25] as a guide, the
stress and strain data from the experiment with an interval of 0.1% were chosen in order
to shorten the operating time. The data set used in this study was compiled from 60 test
samples of sandstone that underwent nuclear magnetic resonance and mechanical testing
under various hydration conditions. The statistical box plots of the input variables are
displayed in Figure 2. The figure demonstrates that all variables were asymmetrical since
their median values did not fall within the box plot’s center. In addition, none of the
variables had out-of-the-ordinary values, suggesting that the test data could be utilized
to build a data set for the prediction of rock mechanical properties. Stratified sampling
was carried out based on varied confining pressures and hydration levels. As indicated in
Table 1, four rock sample data were chosen as the test set, while further sample data served
as the training set. The 5-fold cross validation method was used to select the parameters, to
reduce the influence of random error in the process of model training.
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Table 1. Testing samples.

Hydrating
Condition

Confining Pressure
/MPa

Porosity
/%

Uniaxial
Compressive
Strength/MPa

H2SO4 20 10.86 52.45
Distilled water 5 5.96 63.13

NaOH 10 8.57 55.74
Natural state 0 5.02 65.16

3.2. Establishment and Verification of Model

The ABC-SVM model’s parameter optimization is shown in Figure 3. The image
demonstrates how the ABC-SVM model’s mean square error decreases as the number
of iterations rises, from 0.055 at the start to 0.0016, and stays nearly unchanged after
20 iterations. The data presented above show how well the ABC algorithm optimizes
SVM parameters.
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Figure 3. The iterative process of ABC-SVM model parameter optimization.

The calculated ideal parameters of the ABC-SVM model are c = 256 and g = 1.7028.
On a few samples from the training set, Figure 4 contrasts the test results with the back-
judgment outcomes of the optimized ABC-SVM model. The figure shows that the back-
judgment results of the model agree with the results of the test. Due to the rock’s apparent
brittleness and the uniaxial compression’s quick drop of post-peak stress, there is a large
difference between the expected outcomes of individual locations and the actual values. The
test curve itself is also not smooth. Overall, however, the rock’s stress–strain relationship
may be calculated with accuracy using the constitutive model based on ABC-SVM.
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The back-judgment outcomes of the ABC-SVM constitutive model on the training set
are assessed using the correlation between the prediction results and the actual values,
as illustrated in Figure 5. The data points are shown in the figure to have a good linear
distribution throughout the entire range and to be symmetrically distributed around the
best-fit line. The correlation coefficient between the predicted results and the actual value
is 0.994, indicating that the back-judgment results of the ABC-SVM constitutive model after
parameter optimization are extremely accurate.
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The optimized model is used to calculate the constitutive relationship of sandstone
samples in the test set in order to further confirm the predicting capability of the ABC-SVM
model on untrained rock samples. A comparison of the experimental findings of the model
on the samples from the test set is shown in Figure 6. The calculated curve of the model is
almost exactly in line with the test curve, showing that the model can simulate the rock
stress–strain relationship very accurately, with the exception of the large error of individual
points (mainly in the yield stage and post-peak stage). The stress–strain curve of rock
exhibits notable nonlinear characteristics, particularly in the yield stage and post-peak
strain softening stage, and the mechanical behavior and characteristics of rock are highly
condition-dependent, whereas the sample test data in the training set are insufficient to
completely and accurately reflect the mechanical properties of the samples in the test set.
Even so, the basic tendency of the test curve might still be visible in the anticipated results.
It is evident that the ABC-SVM model has a strong nonlinear prediction capacity and can
accurately simulate the triaxial mechanical behavior of rock under different hydration
conditions. It might provide a novel viewpoint in the significant area of study known as
rock constitutive connection research.

3.3. Comparison with the Statistical Damage Constitutive Model of Sandstone
3.3.1. Establishment of Statistical Damage Constitutive Model for Sandstone

The Lemaitre strain equivalence principle is used to establish the fundamental rock con-
stitutive relationship [40]. Based on damage mechanics theory, the mechanical properties of
rock under various conditions (such as after water chemical corrosion, temperature action,
freeze–thaw rock, etc.) are then taken into account, and a rock constitutive model that is
suitable for use is then determined. According to the findings of other literature [4,5,7],
the damage constitutive model of sandstone under chemical and mechanical coupling is
as follows:

σ1 = (1− Dc)E0ε1[1− λ + λe−(
F
F0
)

m

] + µ(σ2 + σ3) (9)
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where σ1, σ2, σ3 represent the principal stress in three directions, respectively; E0 stands for
the elastic modulus of the benchmark damage state; ε1 corresponds to the strain of σ1; Dc
is the chemical damage variable; λ is the modification coefficient of the damage variable;
and µ represents Poisson’s ratio. Strength parameters of the rock micro-element F and
the parameter values for the sandstone constitutive model m and F0 were calculated by
Liang [5] and brought into Equation (9).

The theoretical curve of the rock was obtained and compared with the test curve. The
sandstone samples under the natural state of confining pressure of 5 MPa and the treated
distilled water were used as examples. Figure 7 displays the test curve and calculation
curve for the constitutive model. Overall, there is good agreement between the theoretical
and experimental curves, mainly reflected in the front of the peak.
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3.3.2. Comparison

In order to quantitatively analyze and compare the performance of the two models,
this paper also takes the sandstone samples in the natural state and treated with distilled
water as examples under a confining pressure of 5 MPa. The ABC-SVM constitutive model
is then used to predict the stress–strain curves of the samples and to compare them with
the results of the experiments. Finally, R2, RMSE and MAPE are calculated and analyzed,
which are shown in Table 2, and the correlation with the experimental results is shown
in Figure 8.
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Table 2. The performance indexes of the two models.

Model R2 RMSE MAPE

Statistical damage
constitutive model 0.990 2.5822 4.96

ABC-SVM model 0.998 0.7730 1.51
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Overall, the data are evenly distributed across the entire range, and there is a general
linear relationship between the data points. Additionally, they are evenly placed all around
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the best-fitting line. All of the correlation coefficients are greater than 0.9, indicating that
both models can produce predictions that are more precise. A comparison of the data
points obtained from the test results and prediction results of the rock statistical damage
constitutive model reveals that the test results are more off the diagonal than the prediction
results of the ABC-SVM model, and the correlation coefficient is also lower. These findings
demonstrate that the statistical damage constitutive model and ABC-SVM model developed
in this paper can be used to simulate the triaxial compression mechanics experiment of rock
under various hydration conditions, and that the calculation outcomes of the ABC-SVM
model are more closely correlated with the experimental outcomes.

The ABC-SVM model’s error of prediction outcomes is smaller than that of the sta-
tistical damage constitutive model, and the results are closer to the experimental values,
according to a comparison of the RMSE and MAPE of the two models. A thorough analysis
of the two models’ performance indicators shows that the ABC-SVM model performs better
than the statistical damage constitutive model and is thus better adapted to predicting the
nonlinear mechanical behavior of rock under complex conditions. In the case of insufficient
data, the statistical damage constitutive model is still recommended for determining the
stress–strain relationship of rock.

4. Discussion

(1) In rock mechanics, the statistical damage constitutive model of rock is widely
used and accepted. Each parameter in the model has a definite physical meaning, which
can depict how damage develops during the entire process of rock failure under stress.
The number of samples is not limited, and the calculations’ findings agree with those of
the experiment.

The model has a lot of parameters, and some of those parameters’ values are influenced
by subjective factors, making it challenging to determine their values with accuracy and
increasing the error in the calculation’s outcomes. Additionally, the statistical damage
constitutive model is typically based on microscopic damage, and the strength distribution
features of rock micro-units represent the macroscopic mechanical properties of rock. This
also results in a significant discrepancy between the post-peak residual strength section
and the test findings since it does not apply to the expansion of macroscopic cracks in the
post-peak stage of rock.

(2) The ABC-SVM rock constitutive model’s main function is to arbitrarily approximate
and learn the nonlinear constitutive relationship of rock in the training set. During the
model establishment process, precise mathematical expressions are not necessary, allowing
the model calculation outputs to be more closely matched to the test findings while also
minimizing errors brought on by incorrect parameter selection. When the size of training
samples is sufficiently large and representative, the ABC-SVM model may reflect the
constitutive relationship of rock under diverse test settings and be used to predict the
constitutive connection of rock in unidentified test situations. However, there are still
certain issues with the ABC-SVM rock constitutive model that need to be resolved. For
instance, the number of samples in the training set has a significant impact on the model’s
performance. The model’s prediction outcomes will be more precise when there are
sufficient representative samples to train it.

5. Conclusions

The ABC-SVM rock constitutive model is primarily examined in this research under
various hydration circumstances. The ABC-SVM rock constitutive model was created using
the experimental data. The model’s parameters were tuned using the training set, and
the model’s performance on the test set after utilizing the optimized parameters was then
confirmed. The following are the primary conclusions:

(1) The ABC-SVM rock constitutive model fully takes into account the effects of
confining pressure, porosity (chemical deterioration), and other variables. It is appropriate
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for modeling the triaxial mechanical behavior of rock under various hydration conditions
and has high nonlinear prediction ability.

(2) The ABC-SVM model has a better prediction performance on the typical triaxial con-
stitutive relationship of rock, as evidenced by the larger correlation coefficient (R2 = 0.998)
between calculation results and test results and the smaller error (RMSE = 0.7730 and
MAPE = 1.51). It is a brand-new approach to describing the composition of rock that has
a lot of promise. However, the statistical damage constitutive model is advised when there
are few data.
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