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Abstract: Solar energy is one of the most suggested sustainable energy sources due to its availability in
nature, developments in power electronics, and global environmental concerns. A solar photovoltaic
system is one example of a grid-connected application using multilevel inverters (MLIs). In grid-
connected PV systems, the inverter’s design must be carefully considered to improve efficiency. The
switched capacitor (SC) MLI is an appealing inverter over its alternatives for a variety of applications
due to its inductor-less or transformer-less operation, enhanced voltage output, improved voltage
regulation inside the capacitor itself, low cost, reduced circuit components, small size, and less
electromagnetic interference. The reduced component counts are required to enhance efficiency, to
increase power density, and to minimize device stress. This review presents a thorough analysis of
MLIs and a classification of the existing MLI topologies, along with their merits and demerits. It
also provides a detailed survey of reduced switch count multilevel inverter (RSC-MLI) topologies,
including their designs, typical features, limitations, and criteria for selection. This paper also covers
the survey of SC-MLI topologies with a qualitative assessment to aid in the direction of future
research. Finally, this review will help engineers and researchers by providing a detailed look at the
total number of power semiconductor switches, DC sources, passive elements, total standing voltage,
reliability analysis, applications, challenges, and recommendations.

Keywords: Renewable Energy Sources (RESs); Photovoltaic (PV) systems; Switched Capacitor
(SC); Reduced Switch Count Multilevel Inverter (RSC-MLI); Common Ground Switched-Capacitor
(CGSC); Reliability

1. Introduction

Recently, there has been a remarkable rise in the use of grid-supplied power. This can
be attributed to an increased number of users and the expansion of high-power sectors.
Traditional power production has led to a significant surge in global emissions, thereby
causing detrimental effects on the environment. Significant progress has been made in
integrating renewable energy sources such as solar and wind into the grid. Welcome to
the world of photovoltaic (PV) systems, which have become the top choice for harnessing
energy thanks to their incredible potential. In fact, worldwide, grid-connected solar PV
capacity has soared to over 635 GW, satisfying approximately 2% of the global energy
consumption [1].

Solar energy is a rapidly growing field, and one crucial aspect that has gained signifi-
cant importance is power electronics. Researchers are actively engaged in the pursuit of
developing highly efficient power electronic converters to enhance the overall performance
of solar energy systems. In applications requiring medium and high power, MLIs are
increasingly being employed. This is because MLIs provide several inherent advantages
over two-level inverters, as mentioned in Table 1.
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Table 1. Comparison between two-level and multilevel inverters (MLIs).

Parameter Two-Level Inverter MLI

Function at a fundamental frequency Fails Operate

Operate at high voltage and current Operate Operate

Fault-tolerant operation Impossible Possible

Harmonic content Low High

Stress on power electronic switches More Less

Switching losses High Low

Power quality performance Low High

Voltage variation rate High Low

Generation of voltage in common mode Higher Lower

Generation of variable voltage Not possible Possible

Capability of functioning without a
transformer No Yes

Efficiency Low High

Input current distortions High Low

Voltage applications Low High

Structure Complicated Modular

Electromagnetic interference High Low

It has been predicted that renewable energy would contribute 29% of worldwide
power output in 2020, up from 27% in 2019, that renewable energy generation would
increase by more than 8% to 8300 TWh by 2021, and that solar PV and wind would account
for two-thirds of the growth in renewable energy. The increase in renewable energy alone
in China in 2021 was about half of what was predicted, followed by the United States,
the European Union, and India, as shown in Figure 1a. China has continued to be the
largest PV market, although there is growth in the United States due to continuous federal
and state legislative support. In India, new solar PV capacity additions have recovered
quickly from COVID-19-related delays in 2021. According to the IEA’s 2021 Renewable
Energy Market Update, by 2020, renewable energy was the only type of energy whose
consumption increased despite the pandemic. To increase worldwide renewable power
in 2021 and 2022, the renewable energy sector has looked at new additions. In addition,
270 GW went online in 2021 and 280 GW went online in 2022, continuing the remarkable
level of renewable energy additions that are anticipated. This expansion has exceeded the
yearly capacity rise record set in 2017–2019 by more than 50%, indicating that renewables
have been responsible for 90% of the increase in global capacity in 2021 and 2022, as shown
in Figure 1b.

Flexible alternating current transmission systems (FACTSs), customized power devices
(CPDs), variable-speed drives (VSDs), active front-end converters (AFCs), and renewable
energy sources for power generation are just a few of the many uses for MLIs [2–5]. MLIs
can be classified as classical if they use the most common topologies, such as the diode-
clamped multilevel inverter (DCMLI), flying capacitor multilevel inverter (FCMLI), and
cascaded H-bridge (CHB) multilevel inverter, mentioned in Figure 1c. There has been a
lot of interest in these topologies, but their practical implementation is highly impacted
by the application, the system that is designed, and costs. The fundamental disadvantage
of a DCMLI is its asymmetrical loss distribution. This, in turn, results in an irregular
distribution of junction temperature, which, in turn, results in constraints on the inverter’s
power, current, and switching frequency at maximum junction temperature [6,7].
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Traditional MLIs, on the other hand, need a larger number of components to achieve
the same number of output levels, have issues with capacitor voltage balance, and cannot
increase their voltages [8]. Different reduced device count MLIs have been presented to
address traditional MLIs’ high component count [9–14]; however, these MLIs have lacked
a voltage-boosting function. To eliminate capacitor voltage imbalance in typical MLIs,
complicated control algorithms or multi-output boost converters have been implemented.
These methods increase an inverter’s weight, complexity, and expense. SC-MLIs minimize
the drawbacks of traditional and reduced device count MLIs [15–22].

Researchers have continued to investigate and to develop additional topologies by
implementing little or major modifications to conventional MLIs. As a result, MLIs with a
lower device count have been developed, and this subset of MLIs has been dubbed RSC-
MLIs, which have recently been the subject of many reviews. Newly designed RSC-MLIs
for integrating renewable energy sources and driving applications are addressed in [23–25].
The incorporation of switched-capacitor (SC)-based circuits is one of the most widely used
methods for designing better MLIs, and rapid progress has been made in the area of SC-MLI
development since 2010. Pure SC-based switching circuits use a series–parallel switching
conversion technique to take the available fixed DC-link voltage and produce a multilevel
voltage using a reduced number of capacitors, power switches, and/or diodes. SC-MLIs are
a valuable and interesting solution for many new applications due to the voltage step-up
feature they offer, which includes self-voltage balancing for the involved capacitors, which
is the result of a single-stage switching operation that eliminates the need for inductors
and transformers [26–35]. The following is a list of the primary factors and propensities for
SC-MLIs:

1. Maximizing the number of output voltage levels while minimizing the number of
semiconductor devices needed.

2. Increasing the overall output voltage gain with single or multiple DC-source configurations.
3. Reducing or controlling the current stress/loss profile of switches with soft charging

or pulse-width modulation (PWM)-based techniques for better power density and to
improve efficiency.

A wide range of new issues, design requirements, and real-world constraints of con-
ventional MLIs have been highlighted in recent articles [36–45]. Different circuit designs
are used to build MLIs using the SC concept. These include single, multiple, mid-point-
clamped, and common-grounded (CG)-based DC-source structures [46–55]. Hybrid topo-
logical designs that integrate well-known integrated methods such as flying capacitor
(FC) and switched boost (SB) technologies into the SC framework significantly raise their
performance [56–82].

The significant contributions of this review include:

(1) A complete literature overview and a rigorous analysis of about 200 recently published
papers regarding the development, classification, and use of MLI topologies;

(2) A thorough analysis of MLIs and a classification of the existing MLI topologies, along
with their merits and demerits.

(3) A detailed survey of reduced switch count multilevel inverter (RSC-MLI) topologies,
including their designs, typical features, limitations, and criteria for selection.

(4) A critical analysis and classification of the existing SC-MLI topologies with a qualita-
tive assessment of the merits and downsides of SC-MLIs with well-known applica-
tions, and a future roadmap is explored.

(5) An effective summary of multilevel inverters, highlighting the necessity for new or
modified multilevel inverters for grid-connected sustainable solar PV systems.

(6) Finally, this review study should help engineers and researchers by providing a
detailed look at the total number of power semiconductor switches, DC sources,
passive elements, total standing voltage, reliability analysis, applications, challenges,
and recommendations.
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This review paper includes the following: Section 2 describes grid-connected solar PV
systems and MLI background including MLI applications; different types of energy sources
integrated with MLI-based systems, motivational factors for generating an RSC-MLI, and
assessment parameters are discussed in great length. Section 3 presents the detailed MLI
categorization and description of the structure and working principle of features for each
reported RSC-MLI topology, and a variety of SC-MLIs with single or multiple DC-source,
mid-point-clamped, and CGSC configurations are examined and then compared on several
criteria, including the total number of power semiconductor switches, DC sources, passive
elements, total standing voltage, efficiencies relative to the number of levels, and the
structural motivations behind each concept. Section 4 provides a reliability assessment
study to estimate the lifespan of an MLI. Section 5 provides the present challenges and
recommendations. Finally, Section 6 concludes the article with some final thoughts.

2. Grid-Connected Solar Photovoltaic System

Massive worldwide energy demand has led to significant usage of fossil fuels, which
has affected the environment by increasing greenhouse gas emissions. So, renewable energy
resources have gained popularity and growth through producing clean electricity [83–87].

PV cells are used in solar-based technologies to transform the sun’s energy into usable
power. Figure 2 describes the operation of photovoltaic cells, converters, inverters, and
energy control units that make up a system for converting solar energy. Nevertheless,
efforts are being made to better understand how to incorporate renewable energy sources
into the electricity grid. There has been an increased focus on power converters and their
controls because of the importance of their work in transforming electricity and controlling
the output power. DC–DC converters are typically used in the initial stage of integrating
renewable energy sources into a DC grid. Due to the output voltage variations of renewable
energy sources such as wind and solar PVs, this stage must operate at peak efficiency.
Hence, it is imperative that the DC–DC converters in the front-end stages exhibit responsive
behavior towards such fluctuations in order to operate at their optimal efficiency [88–97].
In small-scale industrial or utility applications, these inverters are frequently employed
because of their elevated voltage stress, poor efficiency, elevated operating temperature,
and increased pressure capabilities. Multiple inverters are commonly utilized in large-
scale, high-power, grid-connected renewable energy systems due to their advantageous
characteristics [98–102].
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Figure 2. Grid-connected multilevel inverter for solar PV application [103].

An MLI is selected for medium- and high-power applications based on its capability
to generate voltage waveforms of superior quality while functioning at a low switching
frequency [104–108]. Figure 3 indicates how multilevel inverters have a wide variety of
uses in the emerging field of renewable energy, and Figure 4 exhibits the MLI-based system
integration of various renewable energy sources being employed and discussed [109–113].
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A. Reduced Switch Count Multilevel Inverters (RSC-MLIs): Background

In order to overcome the size and complexity limitations of conventional MLIs, RSC-
MLIs have been developed. However, their structural and operational features are affected
by changes in their topological arrangement.

(i) Factors Contributing to Motivation

Researchers often consider the following qualities while building a novel RSC-MLI
architecture, as shown in Figure 5. The most salient features are enumerated below.
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(ii) Classification

In any physical design, switches and DC-link voltages can be connected in any topol-
ogy. Often, there is no required architecture, but other times there are ladders, staircases,
columns, U-shaped structures, and cascade structures. As can be seen in Figure 6, the
resulting RSC-MLIs can be categorized in accordance with their topological and functional
properties, as discussed in [114–116].
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(iii) The Evaluation Criteria for an MLI

In contrast, this review study takes into consideration broad criteria for rating the
proposed topologies:

Several MLI evaluation parameters are context dependent, as shown in Figures 7 and 8,
and some of the key features of an MLI that contribute to the different capabilities of the power
system are discussed [117–121].
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An interconnected multilevel converter system can use renewable energy sources,
including solar PV, wind energy, and fuel cells. Their operation, effectiveness, improved
power quality, and applications are mostly determined by the control scheme used in the
MLI-PWM. Multiple MLI topologies have been suggested in recent years [122–125]. Based
on the number of DC sources in their topology, MLIs have been classified as shown in
Figure 9, and based on a categorization of the reduced switch in their topology, MLIs have
been classified as shown in Figure 10. The NPC-MLI or DC-MLI, FC-MLI, and CHB-MLI
are the most prevalent industrial topologies [126–130].
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• Cascaded H-bridge multilevel inverter (CHB-MLI): This topology, which was initially
patented by Baker and Bannister [1,39], was thought to be a good alternative to
previously reported topologies since it required fewer power components. The series
connection of H-bridges with independent DC sources makes up the topology known
as the CHB-MLI. Many series-connected H-bridge constructions combine to produce
the multilevel stepped waveform. A generic H-bridge cell can be cascaded to create
the CHB-MLI that theoretically has an infinite number of layers. Due to its modular
design, it effectively corrects the voltage imbalance that can be seen in NPC and
FC settings. A CHB typically consists of power conversion cells connected in series
on the AC side and individually powered by an isolated DC source from a battery,
ultra-capacitor, or fuel cell on the DC side.

• Diode-clamped multilevel inverter (DC-MLI): Nabae, Takashi, and Akagi proposed the
diode-clamped multilevel inverter (DC-MLI), also known as the NPC-MLI, in 1981 [73].
The widespread adoption of these inverters can be attributed to their tremendous
competency in high-power and medium-voltage operations as well as their relatively
high efficiency.
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• Flying capacitor multilevel inverter (FC-MLI): Meynard and Foch [25,39] suggested
the FC-MLI topology in 1992 to address the issue of static and dynamic sharing of the
voltage between semiconductor switches as implemented in the NPC-MLI architecture.

3. Reduced Switch Count Multilevel Inverters (RSC-MLIs) Topologies

A. Generalized RSC-MLI Topologies

Generalized RSC-MLI topologies can be further divided into subcategories depending
on the similarity of their structures and the switching devices used. The categorization is
as follows:

(1) Separate Level and Polarity Generator Topologies

Each phase-voltage level has its own independent polarity and level generators, which
results in an unusually high number of levels. Popular combinations include the MLDCL,
SSPS, RV, SCSS, and MLM topologies, according to [2]. Figure 11 depicts the per-phase
architecture of these three-source arrangements. An isolated DC supply is used in each
basic unit, which uses bidirectional switches to generate levels in the MLM topology. It is
important to note that MLDCL and SSPS topologies need identical device-blocking voltages.
Adding a new basic unit to an RV, SCSS, or MLM topology increases voltage stress. As
a result, the total DC-link voltage is equal to the blocking voltage of each device. Except
for the SCSS and MLM topologies, all of these topologies offer symmetric and asymmetric
configurations.
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It is acquired from the polarity generator in the SSPS topology since the level generator
cannot make it. Only two devices in the level generator are in conduction to obtain any
positive or negative voltage level in the SSPS topology depicted in Figure 11b. Because
the output voltage is raised by charging all of the DC-link capacitors in series or parallel
operation, the output voltage is also increased. This SSPS function is ideal for charging
batteries and storing energy. For grid-connected PV systems, series or parallel operation
maximizes the use of DC sources. Adding an H-bridge to an SSPS topology RSC-MLI
reduces switch counts and further losses. An asymmetrical improvement architecture with
a voltage gain is presented by the SSPS topology with minimal modifications. To expand
the RV architecture to higher levels, just duplicate the encircling intermediate stage of the
level generator illustrated in Figure 11d. In the topologies presented in Figure 11, level
generators can only use additive DC source combinations.

(2) T-Type Structure Topologies

A T-type topological structure interconnects numerous DC-link nodes by a phase-leg
of full-/half-bridge structures on the burden side. These designs use unidirectional and
bidirectional switches. Figure 12 depicts typical T-type topology combinations through
complete bridge, cascaded, and half-bridge structures. The T-type with complete bridge
construction is the most common, owing to its simplicity and reduced switch count [131,132].
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(i) T-type MLI: This type of architecture is based on H-bridges and was suggested
by [2,133]. The H-bridge is built from the unidirectional switches, and the
bidirectional switches connect the H-midpoint bridges to the DC-link voltages.
Figure 12a depicts the T-type per-phase configuration with three DC voltage
sources. With no redundancies, this topology is merely symmetrical. To increase
the topology’s flexibility, the number of DC sources can be increased with
bidirectional switches or cascade many T-type modules, which allows for uneven
voltage ratios and switching redundancy. T-type modules should have the same
DC-link voltage. A T-type MLI with two five-level T-type modules cascading is
shown in Figure 12b.

(ii) Half-leg T-type MLI: Separately, the phase leg is linked to the DC link
by bidirectional switches in half-bridge T-type topologies. A three-level
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topology is shown in Figure 12c as an example of this structure. To obtain
larger levels, just increase the DC sources using bidirectional switches,
which may provide even and odd phases of voltage. In Figure 12c, two
devices per leg are in conduction at any one moment, and the voltage rating
of bidirectional switches is smaller than the devices in a phase-leg. Due to
minor conduction losses and a reduced total blocking voltage, this design
is preferred over a DCMLI and ANPC in terms of efficiency. Many PV and
grid-connected applications have used this design. When an open-circuit
switch malfunction occurs, this inverter can be reconfigured to withstand
the problem [2,132].

(3) HSC Structure Topologies

A hexagon switch cell (HSC) structure is constructed using unidirectional switches,
and the DC link is connected to this structure using bidirectional switches.

(i) Topology-I: A mix of T-type with HSC RSC-MLI topology with two stiff
DC sources, i.e., ES and ER, on each side of the HSC. Figure 13a illustrates
that more bidirectional switches or several modules cascaded together
may expand this topology’s capabilities further. According to Figure 13a,
this topology is similar to the five-level T-type MLI when short-circuiting
and open-circuiting the unidirectional switches H5 and H2, as shown.
Since there are now unidirectional switches, we can work in asymmet-
rical configurations with the H-bridge to HSC. Asymmetrical behavior
occurs only when ES is less than or equal to the number of elements in the
configuration. DC-link capacitors “n” in the asymmetrical design of this
architecture can provide (4n + 1) levels of phase voltage. Other voltage
levels can be operated by using an asymmetrical arrangement with suitable
voltage ratios.
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(ii) Topology-II: Figure 13b shows a configuration that is identical to Topology-
I but uses bidirectional switches to connect both sides of the HSC and DC
connections. This topology preserves many of the same properties and
functions as Topology-I through a pair of unidirectional devices [2].

B. Unit-Based RSC-MLIs
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A few authors have developed feasible topologies with drastically reduced switch
numbers compared to conventional MLIs to reduce the topological size, price, and complex-
ity. There are a limited number of output voltage values that these topologies can provide.
These setups function as RSC-MLIs with fixed topologies and output voltage values.

(1) Basic Unit RSC-MLI Topology

Separate polarity and level generators are used in this H-bridge topology [108,110]. A
five-level unipolar voltage can be obtained by using an RSC-MLI basic unit. The basic unit
in Figure 14 is made up of three-cell and one-cell structures. The three-cell structure has
three voltage sources coupled by five unidirectional switches.
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(2) Symmetrical Unit-Based Topology

There are two unit-based topologies that function with a reduced device sum for a
specified number of output voltage levels [2]. These setups are detailed below.

(i) Five-level configuration: To produce nine-level inverters, just cascade two
units as indicated in Figure 15a. In each cycle, the cascaded units exchange
switching pulses. Consequently, the units perform uniformly.
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(ii) Nine-level configuration: To compare, Topology-I of the hybrid T-type
design seems to be comparable, with two DC-link capacitors of identical
voltage, as illustrated in Figure 15b.

(3) Asymmetrical Unit-Based Topologies

Figure 16 shows a 17-level MLI circuit with an asymmetrical design. It has ten unidi-
rectional switches with anti-parallel diodes and three asymmetrical DC voltage sources in
a 1:2:5 ratio to produce the expected 17-level output voltage. It is described in detail in the
aforementioned [134].



Sustainability 2023, 15, 13376 13 of 44Sustainability 2023, 15, x FOR PEER REVIEW 15 of 49 
 

 
Figure 16. An asymmetrical 17-level RSC MLI. 

To produce the desired output voltages of 19 levels in a 1:3:5 ratio [135], an asymmet-

rical design of the MLI circuit is shown in Figure 17. The design employs ten unidirec-

tional switches with anti-parallel diodes and three asymmetric DC voltage sources. Tables 

2 and 3 provide information on how 17-level and 19-level MLIs are built, how they com-

pare with each other, and summarize the various recent topologies. Similarly, Figure 18 

compares the parameters of the 17-level MLI topologies that have recently been devel-

oped, while Figure 19 compares the parameters of the 19-level MLI topologies that have 

recently been developed [134–137]. 

 

Figure 17. An asymmetrical 19-level RSC MLI. 

 
(a) Number of switches  

14

10

20

24

16

10

20

10 10
13

0

10

20

30

N
u

m
b

er
 o

f 
S

w
it

ch
es

 

Recently developed 17-Level MLI Topologies

DC+2021 DC+2018 TA+2019 Lee+2018 SR+2021

Ali+2019 HA+2020 MA+2018 NS+2021 MAJ+2020

Figure 16. An asymmetrical 17-level RSC MLI.

To produce the desired output voltages of 19 levels in a 1:3:5 ratio [135], an asymmetri-
cal design of the MLI circuit is shown in Figure 17. The design employs ten unidirectional
switches with anti-parallel diodes and three asymmetric DC voltage sources. Tables 2 and 3
provide information on how 17-level and 19-level MLIs are built, how they compare with
each other, and summarize the various recent topologies. Similarly, Figure 18 compares
the parameters of the 17-level MLI topologies that have recently been developed, while
Figure 19 compares the parameters of the 19-level MLI topologies that have recently been
developed [134–137].
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Figure 17. An asymmetrical 19-level RSC MLI.

Table 2. Parametric comparisons of the recently developed 17-level MLIs.

Topologies NSWT NDCS NL NCAP NDK TSVPU
Transformer-

Less Interfacing
Capability

Leakage Current
Limiting

Capability
FCC/L

CF/L

α = 1.5 α = 0.5

[3] 14 4 17 4 14 11 No No 3.05 4.02 3.38

[138] 10 2 17 4 20 - No No 3.88 - -

[139] 20 2 17 4 20 - No No 3.88 - -

[140] 24 2 17 4 24 - No No 4.48 - -

[5] 16 4 17 4 14 11 No No 3.17 4.14 3.5

[141] 10 4 17 0 10 36 No No 1.41 9.18 4.94

[142] 20 8 17 0 20 36 No No 4 7.17 5.05

[143] 10 2 17 0 10 40 No No 1.35 9.88 5.18

[134] 10 3 17 0 10 12 No No 1.94 3.92 3.66

17-Level
SC-MLI

[144]
13 0 17 4 13 5.6 Yes Yes 2.11 2.02 1.69
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Table 3. Parametric comparisons of the recently developed 19-level MLIs.

Topologies NL NSWT NDK NDCS FCC/L TSVPU
Efficiency

(%)
CF/L

α = 0.5 α = 1.5

[145] 19 12 11 1 1.26 7.55 87.72 1.46 1.85

[146] 19 10 19 2 1.63 8.88 - 1.86 2.33

[147] 19 22 22 8 2.73 8.22 93.49 2.95 3.38

[148] 19 11 19 5 1.84 8 - 2.05 2.47

[149] 19 10 10 2 1.15 6.88 - 1.33 1.7

[150] 19 11 11 4 1.36 5.77 97.38 1.52 1.82

[136] 19 13 13 3 1.52 6.66 93.67 1.70 2.05

[135] 19 11 11 3 1.31 4.66 97.38 1.43 1.68
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a. Power loss efficiency calculations:

Power losses are the main constraints in inverters, such as conduction losses (PCond)
and switching losses (PSwi) [134–136]. The net amount of conduction losses can be obtained
by considering losses in the IGBT switch (PCIGBT) and anti-parallel diode (PCDI) in the
current conduction state and is represented as follows:

PCond(t) = PCIGBT(t) + PCDI(t) (1)

PCond(t) =
{[

VIGBT + RDI i
β
n(t)

]
+ [VDI + RDI in(t)]

}
in(t) (2)

where VIGBT, VDI, and in are the IGBT threshold voltages and peak current, respectively. If
the diodes (NDI) and switches (NIGBT) are conducted at the same intervals (t), RIGBT and
RDI are the IGBT and diode on-state resistance, respectively, β is the IGBT constant. The
average power loss is:

PCond =
1

2π

∫ 2π

0
{NIGBT(t)PCIGBT(t) + NDI(t)PCDI(t)}dt (3)

The energy losses such as energy turn-on (Enon) and turn-off (Enoff) for IGBT turn-on
and -off states during power consumption are:

Eno f f =
1
6

VIGBTj Ito f f (4)

Enon =
1
6

VIGBTj I′ton (5)

The j is the loss in IGBT and tnoff and tnon are the turn-on and -off, Enoff and Enon I and
I′ of the IGBT switches, respectively.

PSwi = f
{
∑ NIGBT

j=1

[
∑

Nnonj
j=1 Enonji + ∑

Nno f f j
j=1 Eno f f ji

]}
(6)

The Nnonj and Nnoffj are IGBT turn-on and -off jth time intervals with fundamental (f )
in one complete cycle.

PTloss = Pcond + Pswi (7)
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To calculate the inverter efficiency by Equation (8):

%η =
Poutn

Pinn
=

Poutn

Poutn + PTloss
× 100 (8)

where both Poutn and Pinn are abbreviations used to denote output and input power, respec-
tively. The output power can be calculated using Equation (9) as follows:

Poutn = Vrms × Irms (9)

b. Switch stress total standing voltage (TSV) calculations:

To produce the largest blocking voltage via each switch, the multilevel inverter is
crucial, and the TSV is the most essential factor in switch selection. There is a pairing
between the maximum voltage across the switches and the TSV values. A voltage-blocking
stress has been applied across the switch. Differences in voltage stress exist between
unidirectional and bidirectional switches.

According to [134], it is possible to calculate the TSV per unit (TSVPU) as:

TSVPU =
VTSV
Vomax

(10)

c. Cost function (CF) parameter calculations:

The cost function (CF) can be used to make educated guesses about the financial
viability of various MLI design alternatives, which is useful for highlighting budgetary
constraints and showcasing design tradeoffs. The following equation provides a means
through which the cost factor can be determined:

CF = (NSWT + NDD + NCAP + NDCS + NDK + αTSVPU) (11)

where NSWT indicates the number of switches, NDD indicates the number of diodes, NCAP
indicates the number of capacitors, NDCS indicates the number of DC sources, NDK indicates
the number of driver circuits, and TSVPV indicates the total standing voltage, if TSVPU is
multiplied by the “α” weighting factor. In order to calculate the cost function (CF) can be
used Equation (12) can be used as follows:

CF = (NSWT + NDK + NDCS + αTSVPU) (12)

For the best cost factor computation, 0.5 and 1.5 will be explored. The component
count per level factor (FCC/L) can be calculated by using Equation (13):

FCC/L =
(NSWT + NDCS + NCAP + NDD + NDK)

Levels
(13)

C. Switched capacitor (SC) unit-based topologies

Basically, a DC source, diodes, capacitors, and switches make up the building blocks
of an "SC unit”. SPSC units, SC voltage doubler units, SC half-mode units, SC bipolar units,
and SC voltage triple units are all subsets of basic SC units. The SC-MLIs can be categorized
as single and multiple DC-source SC-MLIs, mid-point-clamped SC-MLIs, common ground
switched-capacitor (CGSC)-based MLIs, and hybrid SC-MLIs [151–161].

1. Single DC-source SC-Unit-based MLIs

a. SPSC Units

There are two main types of SPSC units utilized in SC-MLIs, and they are depicted in
Figure 20; Figure 20a depicts the minimal component count for Type-I of this device, which
consists of just two switches, one capacitor, and one power diode [162–166]. The output
voltage can be set to one of two discrete positive values, VDC or 2VDC, depending on the
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value of the input DC source. SPSC Unit-II, represented in Figure 20b, employs the same
capacitor charging and discharging principle, although with an extra capacitor and a power
switch in place of the diode and four-quadrant switch. The SPSC Unit-I is different from the
SPSC Unit-II in that it can only send power in one direction. Furthermore, unlike the SPSC
Unit-I, the SPSC Unit-II uses charged capacitor voltages to create both discrete voltage
levels, which eliminates the possibility of a DC offset during the formation of the output
voltage level in SC-MLIs. In this case, in addition to the paralleled conventional power
switches in SPSC Unit-II, four-quadrant power switches with a back-to-back connection of
two standard MOSFETs can be employed [167–171].Sustainability 2023, 15, x FOR PEER REVIEW 22 of 49 
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b. SC Voltage Doubler Unit

A voltage doubler SC unit, as shown in Figure 20c, is a two-port converter that utilizes
a single DC source, two capacitors, two complementary power switches, and two power
diodes. Each capacitor has its own charging channel, which includes a diode and a power
switch. Being a two-port SC-based basic unit, it can provide five different DC-link voltages,
including 0 VDC, ±VDC, and ±2VDC. This fundamental SC unit’s adaptability to operation
comes at the expense of a lack of bidirectional power flow capacity [172–176].

c. SC Half-Mode Units

When using an SC half-mode device, the DC-link capacitors can be charged to a voltage
that is only a small multiple of the DC-input source’s voltage. Several other SC half-mode
units have been introduced recently, as illustrated in Figure 20d. This is connected to the
charging activities of the capacitors in the SC half-mode Unit-I; two fixed values of discrete
DC-link voltages are required at its output, and this requires four DC-link capacitors, two
complementary switches, and two diodes. Using a capacitive charging channel consisting
of two diodes and a single power switch, the capacitors in this setup are charged to half the
main DC-link voltage, earning this configuration the designation SC half-mode Unit-II, as
shown in Figure 20e.

d. SC Bipolar Unit

The SC bipolar unit, shown in Figure 20f, has the ability to generate bipolar output
voltage levels, such as 0VDC, ±VDC. In this device, just one DC-link capacitor is required
to be charged in parallel to the input DC-source voltage, whereas five power switches are
required for the entire operation.

e. SC Voltage Tripler Units
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Basic units based on SC technology give SC-MLI topologies with voltage increases
that are three times the normal value. Figure 20g shows the functioning concept of the most
common type of SC voltage tripler unit. It is comprised of two DC-link capacitors, two
power diodes, and four power switches [177–181]. As can be observed, both capacitors in
this device are charged by the DC input. Table 4 provides a comparative study of different
single DC source SC-MLIs [151], Table 5 describes the comparative study of different
SC-MLIs with two asymmetric DC sources, and Table 6 provides a comparative study of
cross-connected asymmetrical 15-level SC-MLIs [182–186].

Table 4. Comparative study of different single DC source SC-MLIs.

Type of SC-MLI
No. of

Levels/THD
Overall Voltage Gain/Caps

Voltage
TSV (pu)/MVS Reported Rated Efficiency

No. of Components

S D C

FB based [153] 7/19.5% 3/VDC (3) 6/3VDC 85%@1kHz/5W 10 0 3

HB based [169] 7/7% 3/VDC (2) 5.66/3VDC 92.2%@50Hz/500W 9 4 2

HB/NPP based [172] 7/16.2% 1.5/0.5VDC (2) 6/VDC 95.5%@50Hz/250W 10 0 2

HB based [173] 7/11.2% 4/VDC (2), 2VDC (2) 5.5/4VDC 96.5%@50Hz/270W 12 0 4

HB based [162] 7/13.7% 1.5/VDC (2) 5.33/VDC 96.6%@50Hz/600W 10 0 2

FB based [151] 7/2.8% 3/VDC (2) 6/3VDC 92.1%@50Hz/150W 9 1 2

FB based [174] 9/3.1% 2/VDC (2) 5.75/2VDC 94.2%@1kHz/200W 9 2 2

FB based [175] 9/13.8% 4/VDC (1), 2VDC (1) 5.25/4VDC NA%@50Hz/NA 9 2 2

HB/NPP based [176] 9/12.5% 2/0.5VDC (2) 5.5/2VDC NA%@50Hz/400W 11 0 2

HB/NPP based [36] 9/8.8% 2/VDC (1), 0.5VDC (2) 5.5/2VDC 97.4%@50Hz/1kW 12 0 3

HB/NPP based [37] 9/10.2% 2/VDC (1), 0.5VDC (2) 5.5/2VDC 98%@50Hz/1kW 10 1 3

HB based [165] 11/6.8% 5/VDC (2), 3VDC (2) 5/6VDC 95.5%@50Hz/220W 9 4 4

HB based [166] 13/11% 6/VDC (2), 3VDC (2) 5.5/6VDC 95.5%@50Hz/500W 10 4 4

HB/NPP based [177] 13/5.3% 3/VDC (2), 0.5VDC (2) 6/3VDC NA%@50Hz/1kW 12 4 3

HB based [178] 13/7.2% 6/VDC (2), 3VDC (1) 6/3VDC NA%@50Hz/NA 13 2 3

HB based [38] 13/7.7% 6/VDC (1), 2VDC (2) 5/3VDC 94%@50Hz/1kW 15 0 3

HB/NPP based [160] 17/NA 8/VDC (2), 2VDC (2), 4VDC (2) 4.25/8VDC 95.5%@50Hz/1kW 10 4 6

HB based [179] 17/3.9% 8/VDC (1), 2VDC (2), 4VDC (2) 4.25/8VDC 94.5%@50Hz/80W 10 5 5

HB based [180] 21/4.8% 10/VDC (2), 2VDC (4), 4VDC (2) 5/2VDC NA%@50Hz/NA 20 8 8

HB based [181] 21/4.5% 10/VDC (2), 2VDC (4), 4VDC (2) 5/2VDC NA%@50Hz/NA 20 12 10

Table 5. Comparative study of different SC-MLIs with two asymmetric DC sources.

Type of SC-MLI No. of
Levels/THD

Overall Voltage
Gain/CapsVoltage

TSV
(pu)/MVS

Asymmetric
Amplitude of
DC-Sources

No. of
Components

S D C

SCC-Mode-I [43] 11/NA 1.25/VDC 4.2/4VDC VDC and 3VDC 11 0 1

SCC-Mode-II [43] 11/9.3% 1.67/2VDC 4.4/2VDC VDC and 2VDC 11 0 1

Figure 1 [49] 15/4.7% 1.75/VDC 8.5/7VDC VDC and 3VDC 10 1 1

Figure 1 [47] 17/4.8% 1.6/2VDC, 1.5VDC (1) 4.5/8VDC 2VDC and 3VDC 12 1 3

Figure 1 [44] 19/8.9% 1.8/4VDC (2) 4.89/9VDC VDC and 4VDC 13 0 2

Figure 1 [47] 21/4.3% 2/VDC (2), 4VDC (2) 5/10VDC VDC and 4VDC 14 0 4

Figure 1
[52] 25/1.8% 2/VDC, 4VDC 10/10VDC VDC and 5VDC 12 2 2

Figure 3 [44] 29/NA 2/VDC (2), 2.5VDC 4.64/14VDC VDC and 2.5VDC 18 0 3

Figure 12 [182] 31/NA 4/VDC (2), 4VDC (2) 5.5/15VDC VDC and 4VDC 14 2 4

Figure 13f SCC [183] 31/NA 3/VDC (2), 4VDC (2) 5.6/15VDC VDC and 4VDC 16 0 4

Figure 13g SCC [184] 49/NA 4/VDC (3), 4VDC (3) 7.25/24VDC VDC and 4VDC 18 2 6

Figure 3 [185] 49/NA 2/VDC (2), 5VDC (2) 6/24VDC VDC and 5VDC 18 2 4

Figure 4 [44] 49/NA 2/VDC (2), 5VDC (2) 5/24VDC VDC and 5VDC 20 0 4
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Table 6. Parametric comparisons of cross-connected 15-level SC-MLIs.

Topologies NLev NSwt NDK NDC NC NDio VTB/NL Efficiency (%)

[187] 15 10 10 5 0 1.26 - 93.73

[188] 15 14 14 1 4 1.63 4.86 -

[189] 15 10 9 4 0 2.73 4.6 97.5

[190] 15 8 8 3 0 1.84 2 95.2

[191] 15 10 9 3 0 1.15 2.26 -

[192] 15 10 10 5 0 1.36 1.06 90

Figure 1 [186] 15 10 8 2 2 1.31 3.6 96.3

4. Mid-Point-Clamped SC-MLIs

High-frequency variable CMV, which results from the varying numbers of HB legs
used in the aforementioned single and multiple DC-source SC-MLIs to invert the SC
unit/generalized SCC output voltage polarity, is one of the main issues that prevents
their widespread use, for example, in grid-tied PV systems. Since their output voltage
is monitored at the neutral point of the DC connection, mid-point-clamped MLIs are a
common choice in this scenario. While a multilevel output voltage waveform is generated
by a single input DC source, the leakage current problem in grid-tied PV applications is
significantly reduced. The identical capacitors used in the DC links of single-phase MLIs
may be used in three-phase systems. Table 7 provides a comparative study of different
mid-point-clamped SC-MLIs [187–197].

Table 7. Comparative study of different mid-point-clamped SC-MLIs.

Type of SC-MLI
No. of

Levels/THD TSV (pu)/MVS Reported Rated
Efficiency

No. of Components

S D C

SC [56,159] 4/41.4% 2.66/1.5VDC 97%@1kW 4 2 4

ABNPC [57] 5/NA 5/VDC 98.5%@1.2kW 6 2 3

ABNPC [60] 5/NA 6/0.5VDC NA@50W 10 0 3

ABNPC [62] 5/NA 6/0.5VDC 97.5%@800W 6 2 4

ABNPC [81] 5/NA 6/1.5VDC 97.1%@1kW 8 2 4

ABNPC [82] 6/20.2% 4.4/3VDC 95.8%@450W 6 4 5

Sym SC [172] 7/12.2% 5/VDC 97%@150W 9 1 3

ABNPC [61] 7/NA 5.33/VDC 96%@50W 9 0 3

ABNPC [66] 7/19.3% 5.3/2VDC 96.7%@250W 9 0 3

Dual T-type [70] 7/NA 7.33/2VDC 98%@100W 10 0 4

ABNPC [71] 7/NA 6.66/VDC 97%@100W 10 0 4

ABNPC [74] 7/NA 4.66/VDC 97.8%@400W 8 2 4

Dual T-type [61] 9/NA 10/VDC 96%@50W 12 0 3

ABNPC [72] 9/NA 5/0.5VDC 97%@500W 10 4 4

ABNPC [73] 9/NA 10/2VDC 98%@400W 11 4 3

ABNPC [75] 9/4.1% 5/VDC 97.1%@400W 10 2 2

Asym SC [56] 15/5.5% 5/2VDC 97%@150W 12 2 4

9-Level SC-MLI
[198] 9/1.07% 8.5 VDC 98.03%@583.91W 10 4 4

15-Level MC-MLI
[199] 15/5.66% 7 VDC 94.1%@113.75W 9 4 3

MM-STC [200] 9/9.28% 4 VDC 98.65%@321.35W 8 8 0

17-Level SC-MLI
[201] 17/NA 5/2VDC 96.5%@434.7W 16 10 4

a. Five-Level mid-point-clamped SC-based inverter
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The five-level mid-point clamped-based MLI approach, as shown in Figure 21a, in-
volves adding two capacitors, C3 and C4, and a four-quadrant power switch “p” to a
standard 3L NPC-based inverter to provide five distinct levels of output voltage.
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b. Seven-Level mid-point-clamped SC-based inverter

The seven-level mid-point-clamped inverter proposed in [79] and depicted in Figure 21b
is another example of this topology, although one that employs nine rather than eight
switches. Figure 22 shows the comparison of the efficiency of SC-MLI with multi-source
MLIs [198], and Figure 23 shows the measured efficiency of the 19-level SC-MLI at different
frequency ranges [144,198–201].
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5. Common Ground Switched-Capacitor (CGSC)-Based MLIs

Mid-point clamped MLIs can minimize leakage current in transformer-less grid-tied
PV systems. HF-CMV in midpoint-clamped MLIs is from DC-link capacitors. To eliminate
CMV, CGSC-based MLIs have been proposed, where the input DC source’s ground and
the grid’s neutral point are directly coupled. No leakage current can flow through the
system because the parasitic capacitance between the negative terminal of the input DC
source, such as PV panels, and the ground sees a grounded potential instead of a fluctu-
ating HF-CMV. This converter is also called a three-port single-DC source inverter or a
transformer-less inverter with double grounding. Table 8 provides a comparative study of
different CGSC-based MLIs, and Table 9 provides comparative study of different hybrid
MLIs [194–196].

Table 8. Comparative study of different CGSC-based MLIs.

Type of
SC-MLI

No. of
Levels/THD

Overall Voltage
Gain/Caps Voltage

TSV
(pu)/MVS

Reported Rated
Efficiency

No. of Components

S D C

[86] 5/NA 2/VDC (1), 2VDC (1) 4.5/2VDC 98.1%@600W 6 2 2

[89] 5/NA 2/VDC (1), 2VDC (1) 6/2VDC 96%@40W 7 2 2

[90] 5/35.4% 2/VDC (2) 5/2VDC 98%@600W 8 1 2

[92] 5/NA 2/VDC (1), 2VDC (1) 5/2VDC 98%@600W 11 0 4

[93] 5/NA 2/VDC (1), 2VDC (1) 6.5/2VDC 97.5%@600W 8 2 3

[94] 5/NA 2/VDC (2) 5.5/2VDC 98.3%@600W 8 0 2

[99] 5/36.4% 2/VDC (1), 2VDC (1) 6.5/2VDC 97.5%@330W 8 1 2

[102] 5/NA 2/VDC (2) 6/2VDC 96.7%@1kW 9 0 2

[102] 5/NA 1/0.5VDC (2) 6/VDC 97%@500W 6 1 2

[94] 7/NA 3/VDC (3) 6/3VDC 98.3%@600W 11 0 2

[95] 7/NA 3/VDC (2), 2VDC (1),
3VDC (1) 6/3VDC 98%@800W 6 4 4

[97] 7/NA 3/VDC (1), 2VDC (2) 5.33/3VDC NA@1kW 8 4 3

[98] 9/NA 4/VDC (4) 6/4VDC NA@275W 17 4 4

[102] 9/NA 4/VDC (4) 6/4VDC NA@1kW 17 0 4

Table 9. Comparative study of different hybrid MLIs.

Type of
SCMLI

No. of
Levels/THD

Overall Voltage
Gain/Caps Voltage

TSV
(pu)/MVS

Reported Rated
Efficiency

No. of Components

S D C

CGSC
based [105] 5/NA 1/VDC (1), 0.5VDC (1) 4/VDC 95.8%@1.2kW 6 1 2

ABNPC
based [106] 7/NA 1/0.5VDC (2), VDC

(1), 0.5VDC (1) 5/VDC 98%@2.2kW 8 2 4

ABNPC
based [107] 7/NA 1/0.5VDC (2), VDC

(1), 0.5VDC (1) 5.5/VDC NA 10 0 4

ABNPC
based [112] 7/NA 0.5/0.5VDC (2),

0.33VDC (2) 6/0.5VDC NA 11 0 4

HB based
[108] 9/NA 2/VDC (2), 0.5VDC (1) 6/2VDC 96.4%@500W 8 2 3

HBSC
based [109] 9/13.5% 2/VDC (1), 0.5VDC (1) 6/VDC 97.3%@330W 11 0 2

HBSC
based [110] 9/NA 2/VDC (1), 0.5VDC (1) 5/2VDC 96.5%@330W 8 1 2

HBSC
based [111] 9/NA 2/VDC (1), 0.5VDC (1) 5.5/2VDC 96.6%@600W 8 1 2

HBSC
based [114] 9/9.4% 2/VDC (1), 0.5VDC (1) 5.5/VDC 96.5%@800W 10 0 2

CGSC
based [116] 9/NA 2/VDC (2), 0.5VDC (1) 5/2VDC 97.5%@1.2kW 9 1 3

CGSC
based [117] 5/NA 2/VDC (1), 2VDC (1) 6/2VDC 97.5%@700W 7 2 2
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a. Three-level CGSC-based inverter

The inverters are based on CGSC and have been recently practiced. Taking into
consideration Figure 24a, [202] proposed a three-level CGSC-based inverter with five
power switches and a virtual DC-link capacitor, where the capacitor, C, was charged to
the input DC source, Vdc, during the positive and zero levels of the output voltage and
discharged during the generation of the negative output voltage. Siwakoti-H inverters
were proposed in [203] that reduced the number of switching devices for this type of three-
level CGSC-based inverter, as illustrated in Figure 24b,c, where one additional diode was
employed in Type-I of this converter and two RB-IGBTs were used in its Type-II variation.
In [204], a three-level, four-switch CGSC-based inverter is presented; the virtual DC-link
capacitor is charged indirectly to Vdc through a diode-aided CPC cell.
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b. Five-level CGSC-based inverter

There are two distinct CGSC-based inverter topologies, as can be seen in Figure 24d,e,
one employing six power switches and the other employing eight power switches, both of
which are capable of producing five levels of double voltage conversion gain output. A
five-level CGSC-based inverter, recently presented by Ardashir et al. [197], is comprised
of six power switches. The negative output voltage levels are generated using a similar
virtual DC-link SC approach, but the total gain of the voltage conversion is unity.

c. Seven-level CGSC-based inverter

The authors of [134] described a further inverter design based on a seven-level CGSC
by considering Figure 24f, with fewer switches. By charging capacitors C1, C2, and C3 to
Vdc, 2Vdc, and 3Vdc, respectively, the whole seven-level inverter output voltage range
can be made with a voltage gain of three. This construction is based on the virtual DC-link
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principle, just like the aforementioned five-level CGSC-based inverters. Only six power
switches are needed, but an extra four power diodes are essential. Since C2 and the input
DC source are connected in series, C3 can be charged from either. This charging action is
feasible both at zero and at the highest positive output voltage level, +3 Vdc, just as in the
five-level CGSC-based inverters given in [86–91]. Additionally, in positive and negative
half-cycles of the output voltage, the direction of the load current charges and discharges
the DC-link capacitor Cdc. As a result, a higher Cdc and C3 capacitance may be required to
reduce the voltage ripple caused by these lengthy discharging cycles.

d. Nine-Level CGSC-based inverter

A nine-level quadruple-voltage-gain CGSC-based inverter is shown in Figure 24g. The
consistent MVSs across all the FB-cell switches and the lowered balanced voltage value of
the related capacitors make this a compelling design, despite the high number of switching
devices it employs. Because bigger values of the capacitance are required in the case of
increased power injection requirements, the converter’s lengthy discharging cycle for the
capacitors may be a major drawback.

The scope of use for SC-MLIs can be expanded as shown in Figure 25, and SC-MLIs
are appealing for grid-tied PV-based low-power applications because of their single-stage
voltage step-up capability, despite their pulsing input current [86–88]. Other developed
applications of SC-MLIs with restricted output power performance include motor drives,
electric vehicles, energy storage systems, and balancing in battery strings.
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Figure 25. Various applications of SC-based multilevel converters/inverters.

As can be seen in Figure 26, we take into consideration ten characteristics to present a
comprehensive qualitative overview of the circuit properties of various SC-MLIs.
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6. Modulation Techniques

Modulation techniques typically involve a carrier signal and a modulator waveform
with different waveform parameters. By adjusting the characteristics of a carrier signal
using a reference signal, modulation can be used to control the switching time of the
switches in the MLIs. Harmonic reduction and switching losses, both of which can be
controlled by modulation methods, are two of the things that affect the overall efficiency
of a multilevel inverter. The modulation index plays an important role in all control sys-
tems. The THD fluctuates with a modulation ratio (either too much or too little). There
are a variety of methods in the literature that may be used based on the switching fre-
quency, whether fundamental or high frequency. Figure 27 shows several MLI modulation
control techniques.
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Table 10 provides a comprehensive study of conventional MLI topologies; Table 11
offers the merits and demerits of new multilevel inverter topologies; Table 12 provides the
applications of MLI topologies; and Table 13 provides information on a comprehensive
examination study of traditional and new multilevel inverter topologies.

Table 10. The advantages of switched-capacitor multilevel inverters (SC-MLIs) over conventional
multilevel inverters.

Advantages
Switched-Capacitor Multilevel Inverters

(SC-MLIs)
[36,38,68,90,91,99,151,198,201]

Conventional Multilevel Inverters
(DC-MLI, FC-MLI & CHB-MLI)

[1,2,11,31,39,106,205]

Reduced component count Fewer power electronic components required More components needed

Cost Fewer components lead to lower costs and
increased reliability

A higher component count might lead to
increased cost and complexity

Higher efficiency Fewer components and simplified control can
contribute to higher efficiency

Higher component count and more complex
control might lead to lower efficiency

Compact design Modular and compact designs are possible The size might be larger

Modular structure Scalable and adaptable design by adding or
removing capacitor modules Limited scalability

Simplified control Simple control strategy due to switched
capacitors Control complexity may be higher

Voltage balancing Inherent voltage balancing Requires active balancing

Improved reliability A simpler structure and fewer components can
result in improved overall reliability

Complex structures and more components
might lead to increased failure points
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Table 10. Cont.

Advantages
Switched-Capacitor Multilevel Inverters

(SC-MLIs)
[36,38,68,90,91,99,151,198,201]

Conventional Multilevel Inverters
(DC-MLI, FC-MLI & CHB-MLI)

[1,2,11,31,39,106,205]

Reduced EMI Potentially lower EMI EMI considerations may be higher

Low-power applications Well-suited for applications with lower power
requirements

Suitable for a range of power levels, but
complexity might be overkill for lower power
applications

Improved waveform quality Inherent voltage balancing leads to improved
output waveform quality

Output waveform might require additional
filtering to achieve desired quality.

Table 11. Benefits and restrictions of new multilevel inverter topologies.

MLI
Topology Benefits Restrictions

RVDC-C
[205]

• A more modular framework
• Asymmetric or symmetric source configurations are

possible
• Cells may share electricity equally
• Can be used at the basic switching frequency

• Independent DC sources are required

Developed H-bridge
[31]

• To produce greater levels of output, it only requires a
small number of switches

• Why equality of load sharing across sources is
impractical.

• An asymmetrical arrangement is required
• Independent DC sources are required

SCU
[151]

• High modularity, equal load sharing across sources
• Works with both symmetric and asymmetric sources

• Control complex
• Capacitor performance problem
• DC sources must be isolated

DCC
[1]

• There is the option of using an asymmetric source
arrangement

• This device has a basic construction and a high
degree of modularity

• Cell-to-cell power transfer is impossible
• Various voltage switches are required
• Requires independent DC.

CPCC
[205]

• It may be used with either an asymmetrical or
symmetrical source arrangement

• It is feasible to distribute electricity equally across
cells in a symmetrical design

• No need for fundamental frequency shifting.
• Requires various voltage switches.

CIC
[205]

• Minimal switching and conductor losses
• Modular construction

• It requires both isolated and non-isolated DC
supply, and it cannot be used with
asymmetric source configurations

Hybridtopology
[31,43,51]

• Low-, medium-, and high-voltage applications are all
well-served by this component

• Switching frequency at the fundamental level can be
applied

• A lot of work is required to manage this
• Switches with various voltage ratings are

required
• This does not apply to a trinary-source setup
• Isolated DC power supply are required

HERC-C
[205]

• Simple and very modular structure
• Power distribution across modules may be done on

an equal basis
• Switching and conduction losses have been
• minimized significantly

• It is not possible to use a trinary source
configuration

Cascaded half- bridge
[11,33]

• Modular and simplified design
• All that is needed is a single, isolated DC supply
• Switch rating stays constant as the number of levels

increases
• Totally eliminates common-mode leakage current in

solar PV

• Balancing capacitors is a delicate process that
needs further attention

• High losses in switching
• It is not feasible to share authority equally
• It is feasible to set up a source in an

asymmetrical fashion.
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Table 11. Cont.

MLI
Topology Benefits Restrictions

SSSC
[151]

• Switches with the same power rating are needed
• A reduction in switch count without an increase in

switch rating
• Equality of power can be achieved

• The structure is complicated
• Capacitor dynamics prevent it from operating

at its basic switching frequency

SADC
[151]

• Simple Architecture and it can function at the highest
voltage-rated switch

• No two sources can share the burden equally
• A variety of switches are required
• A DC source of uneven magnitudes is needed

for this application

CCS
[11,33]

• Suitable for low-, medium-, and high-voltage
applications

• Simple construction
• Sources needed to be mandatorily asymmetric

Staircase cascaded
[33]

• Structural flexibility
• Low conduction losses
• Low-, medium-, and high-voltage applications
• Non-isolated DC input levels

• Requires switches of different voltage rating
• Equal distribution of power among sources

cannot be attained
• Asymmetric source configuration is not

possible

Reduced switch type
[205]

• Asymmetric arrangement is also feasible
• High efficiency
• Simple basic module layout for many levels

• DC power sources must be kept separate
• Various switches have different blockings
• Voltage ratings

Cascade unit based
[11]

• Has a modular design
• Can be swapped at the fundamental frequency
• Asymmetric source setup is another option.

• It is impossible to have an equal distribution
of power

• Switches with various voltage ratings are
required

Table 12. Applications of MLI topologies.

MLI Type Applications

NPC [72,79]
• Drives
• RESs
• Power conversion

FC [205]
• RES
• Drives

ANPC [57]
• Solar PV systems
• Filters

CHB [11,33]
• Power systems
• RES
• Motor Drives

HCHB [31,43,51]
• Drives
• RES

MLDCL [12]
• Permanent magnet motor drives for below 100 KW
• Solar PV and fuel cell incorporation

SSPS [151]
• RES
• Drives
• Traction
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Table 12. Cont.

MLI Type Applications

T-type [68]
• Drives
• RES
• Railways (traction)

N-type [1]
• RES
• Medium voltage level industries

CCHB [1,11,33]
• Drives
• Power conversion
• RES

RV [2,205]
• Power conversion
• High voltage DC transmission systems

MLM [205] • RES

CCS [11,33] • Solar PV systems

PUC [205]
• Drives
• RES

CBSC [151,205] • RES

M-type [1]
• High voltage DC transmission systems
• Wind energy conversion systems

Table 13. Comprehensive examination study of traditional and new multilevel inverter topologies
(nlevel = number of levels in phase voltage).

Topology
Unidirectional

Switches
(Nsw)

Bidirectional
Switches

DC Sources
(NDC)

Capacitors
(Ncap) H-Bridge Highest Switch

Rating

Total
StandingVoltage

Requirement
(p.u.)

CHB-MLI
[11,31] 2 ∗ (nlevel − 1) 0 (nlevel−1)

2
0 - VDC 2 ∗ (nlevel − 1) ∗

VDC

NPC-MLI
[72,73] 2 ∗ (nlevel − 1) 0 1 (nlevel −1) No VDC 2 ∗ (nlevel − 1) ∗

VDC

FC-MLI
[205] 2 ∗ (nlevel − 1) 0 1

nlevel
2 ∗ (nlevel −

1)
No 2 ∗ VDC 2 ∗ (nlevel − 1) ∗

VDC

RVDC-MLI
[1,2] 3 ∗ (nlevel − 1) 0

.
(nlevel − 1)

2

0 No 2 ∗ VDC
11
4 ∗ (nlevel − 1) ∗

VDC

H-bridge MLI
[31,45,51] 2 ∗ (log2 (nlevel + 1)) 0 (log2 (nlevel +1)

−1) 0 No n level−1
2 ∗ VDC

2 ∗ (nlevel − 1) ∗
VDC

SCU-MLI
[151,205]

3 ∗ (log3 ( nlevel + 1
2 ))

+ 4
0 Log3 ( nlevel+1

2 ) log3 ∗ ( n level+1
2 ) Yes n level−1

2 ∗ VDC
11
4 ∗ (nlevel −1) ∗

VDC

DCC-MLI
[1,2,133]

5∗(nlevel∗21)
6

0
.

(nlevel − 1)
3

0 Yes 3 ∗ VDC 7∗ nlevel−9
2 ∗ VDC

CPCC-MLI
[11,33,205]

2∗(nlevel−1)
3

(nlevel−1)
3

.
(nlevel − 1)

2

0 No 3∗(nlevel−7)
Nsw

10
3 ∗ (nlevel −1) ∗

VDC

CIC-MLI
[11]

2∗(nlevel+8)
3

0 (nlevel−1)
2

0 No 2 ∗ VDC (3 ∗ nlevel −7) ∗
VDC

Hybrid MLI
[31,43,51]

3∗(nlevel−1))
4

(n level−1)
8

(nlevel−1)
4

(nlevel−1)
4

No 2 ∗ VDC
13
8 ∗ (nlevel − 1) ∗

VDC

HERC-MLI
[11,33,205]

(3∗nlevel−1)
2

1 (nlevel−1)
2

0 No 2 ∗ VDC
15
4 ∗ (nlevel − 1) ∗

VDC
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Table 13. Cont.

Topology
Unidirectional

Switches
(Nsw)

Bidirectional
Switches

DC Sources
(NDC)

Capacitors
(Ncap) H-Bridge Highest Switch

Rating

Total
StandingVoltage

Requirement
(p.u.)

CHB-MLI
[11] (nlevel + 1) 0 1 (nlevel+1)

2
No 2 ∗ VDC (nlevel +3) ∗ VDC

SSSC-MLI
[151] (5 ∗ nlevel − 1) 0 1 (nlevel − 1) No VDC (5 ∗ nlevel − 1) ∗

VDC

SADC-MLI
[151,205]

(nlevel−1)
3

(nlevel−1)
12

(nlevel−1)
4

0 No 10 ∗ VDC
9
4 ∗ (nlevel − 1) ∗

VDC

CCS-MLI
[33,205] 6 (nlevel−5)

2
2 (nlevel−9)

2 + 2 No 2 ∗ VDC
1
4 ∗ (nlevel − 1) ∗

VDC

RSC-MLI
[205] 6 (nlevel−1)

2
(nlevel−1)

2
0 Yes 2 ∗ VDC

7
2 ∗ (nlevel − 1) ∗

VDC

(’ ∗ ’ indicates the multiplication operation).

7. Reliability Assessment

Reliability assessment is the process of estimating a device’s lifespan and chance of failure.
Reliability is vital to a system’s seamless operation. Manufacturing companies work with
reliability analyses to build durable, high-performing, and low-maintenance goods. This idea
of “reliability” includes various aspects for assessing a device’s reliability. Figure 28 shows
reliability categories and how to calculate system reliability [103,144,206,207].
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Figure 28. Reliability classifications.

Lifespan estimation is crucial, and a device’s or part’s lifespan can be estimated by
calculating the mean time to failure. A high MTTF suggests reliability. The MTTF can be
calculated using MIL-HDBK 217E. These standard handbooks will help calculate a device’s
failure rate (FR) and mean time between failures (MTTF). Reliability depends on several
aspects. Figure 29 shows a system’s reliability influence factors.
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(a) Reliability

“Reliability” can be defined as the ability of an object to perform its intended function
within specified conditions and time frames. This attribute is commonly assessed by
quantifying the probability or frequency of failures.

(b) Failure

The system fails when it stops doing the requested task. Thus, the time it takes
something to function without breaking down is frequently unpredictable. Failure can be
quick or delayed. A sudden failure is called cataleptic failure.

(c) Failure Rate (FR)

The ”failure rate” is a crucial aspect in the assessment of system reliability. The chance
of failure at a specific moment can be determined by utilizing the “failure rate” function.

(d) Mean Time to Failure (MTTF)

The MTTF measures how long an item or system lasts, on average, before breaking
down. This malfunction has rendered the device useless. The MTTF is often provided
among components with hourly or thousand-hour service life requirements.

(e) Mean Time to Repair (MTTR)

The MTTR is the typical amount of time needed to repair broken equipment, and its
value is directly proportional to the quantity of care it receives [103].

(f) Availability and Average Availability

Availability is the probability that a system will be functional at a particular moment.
The FR and MTTF are the most crucial metrics for this reliability analysis. As the FR is

time invariant, it can be used to describe D(t) [103]. The FR is a statistical measure of the
frequency with which a failure happens within a certain time frame. Combining the above
failure rates, the exponential distribution is utilized to obtain the probability distribution
function. The proportion of attempts that fail is also represented by ”λ” as follows.

P (t, λ) = λ e−λt (14)

The reliability function can be obtained from Equation (15):

D (t, λ) = e−λt (15)

The failure in time (FIT) is a metric for estimating the “failure rate” which is defined
as the average number of failures per time interval:

1 FIT = 10−9 failure/hour (16)

MTTF =

+∞∫
0

D(t)dt. (17)

MTTF =
1
λ

(18)

Using MIL-HDBK-217E specifications, Table 14 calculates FR [103]. Based on device
counts, power electronic circuits can determine their MTTFT [103]. The MTTFT decreases
as device numbers increase. The MTTFT increases with the component count. The inverter
topologies are evaluated by the number of components needed. The reliability features (FR
and MTTF) are calculated using the approximation technique [103] and summarized in
Tables 14 and 15, as well as graphically represented in Figure 30.
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Table 14. Failure rates of each component by using the approximation method [103].

SI. No. Components Failure Rate (Failures/Hour)

1. Switches 250 × 10−9

2. Diodes 100 × 10−9

3. Capacitors 300 × 10−9

Table 15. Expected mean failure time for three standard inverters.

Components NPC [103] FC [103] CHB [103]

IGBTs 4800 (12) 4800 (12) 1200 (12)

Capacitors 600 (2) 1500 (5) 1200 (3)

Diodes 1800 (18) 1200 (12) 1200 (12)

Total FITs 7200 7500 3600

Failure rate
(failure/106 h) 7.2 7.5 3.6

MTTF (hours) 138,888 133,333 277,777
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Calculation of the overall MTTF for power electronic circuits involves estimation of
the cumulative failure rate of the constituent circuit parts. In order to obtain the total
failure rate, denoted as λTotal, it is necessary to multiply the number of components such as
switches, diodes, and capacitors by their respective FR values, as specified in Equation (19):

λTotal = (λS × NSWT) + (λD × NDIO) + (λC × NCAP) (19)

The total MTTF of the circuit can be calculated by Equation (20):

MTTFTotal =
1

λTotal
(20)

The MTTF of power electronic circuits can be determined by considering the num-
ber of device counts. When there are a large number of device counts, the related total
mean time to failure (MTTFTotal) is reduced. A higher MTTFTotal is observed when the
number of components is lower. In this study, the main aim is to evaluate the average
duration of inverter topologies by considering the number of components needed for every
individual topology.

8. Challenges and Recommendations

The utilization of renewable energy systems in power grids has been enhanced due to
advancements in power electronics devices and related technologies. However, challenges
remain pertaining to electricity quality, grid reliability, and security. In order to ensure
the quality of grid power, a multitude of standards and guidelines have been established
for grid-connected RES. Based on the reviewed literature, it is understood that additional
research is required in the following areas:

Challenges:

• The evaluation of the performance of these novel topologies in grid-integrated applica-
tions is imperative, as the majority of them have not yet been examined in the context
of grid-connected Renewable Energy Sources (RESs).

• MLI control and modulation systems should be more robust, flexible, and fault tolerant.
• In recent times, researchers and industries have begun to develop hybrid topologies in

order to successfully address power quality challenges and to meet demanding grid
standards in a cost-efficient manner.

• More research is needed on quantitative approaches for solving MLI nonlinear systems.
• New voltage balancing techniques must be employed in MLIs to minimize capacitor

size and to increase inverter power density.
• Resonant converters with single DC source MLIs are suggested.
• It is imperative for smart grid systems to include the integration of microgrid load

interactions with MLIs as an essential component.
• However, because of the lower TSV, new RSC-MLI topologies need to be created to

boost their appropriateness for both solar PV and wind energy integration.
• Renewable energy sources are increasingly evolving towards a future smart grid

as they are integrated into networks utilizing appropriate MLIs, and for MLI topol-
ogy creation and control, this poses considerable hurdles. There have been many
breakthroughs in this sector.

Recommendations:

• The roadmap in Figure 31 shows SC-MLIs’ future progress. In addition to exploring
new topologies with higher voltage conversion gain, future SC-MLIs can consider
factors such as fewer switching devices, reduced MVS and TSV index across switches,
improved performance during high pulsating inrush current, and lower cost.

• A modern MLI performance analysis for many practical applications cannot measure
all failure prediction parameters and limits the ageing information of PV inverters.
Hence, Figures 32 and 33 are the proposed and future road maps for the reliability
study of PV inverters.



Sustainability 2023, 15, 13376 34 of 44

• In grid-connected solar PV systems, safe and reliable operation of the multilevel
inverter depends on the use of suitable safety mechanisms and control strategies,
which are listed in Table 16.

Table 16. Grid-fault challenges and recommendations for multilevel inverters in grid-connected solar
PV systems.

Grid-Fault Conditions
(Challenges)

Multilevel Inverter Response
(Recommendations)

Overvoltage
[34,163]

• The output voltage magnitude can be
controlled by reducing the modulation index

• Enable voltage regulation control

Under voltage
[34,163]

• The output voltage magnitude can be
controlled by reducing the modulation index

• Reactive power injection is required to
maintain grid voltage

Frequency deviation
[34,163,194]

• The output frequency of the inverter can be
adjusted by activating the frequency control
loop

• Frequency adaptive control algorithms are
activated

Voltage sag
[163,194]

• Voltage support methods, such as reactive
power injection, can be used

• Inverter may maintain grid voltage by drawing
power from DC-link capacitors

• Dynamic voltage restorer support during sag
periods

Voltage swell
[163,194]

• Inverter reduces the output voltage to mitigate
excessive power generation during the swell

Grid disconnect
[163,194]

• Inverter switch.hes to island mode (if
applicable) and operates as a stand-alone
system or shuts down safely

• Reconnection to the grid after stabilization

Short circuit
[34,163,194]

• In order to eliminate faults and restore inverter
functionality, fast disconnect and reconnect
procedures are required

• Short-circuit protection algorithms activated

Grid outage
[34,163,194]

• Inverter disconnects from the grid to ensure
islanding protection

• May switch to an internal control mode to
provide power to local loads

Harmonic distortion
[34,163,194]

• Activate harmonic filtering control to mitigate
harmonics in inverter output

• Implement active and passive filtering
strategies to mitigate harmonics
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be used 

• Inverter may maintain grid voltage by drawing power from DC-

link capacitors  

• Dynamic voltage restorer support during sag periods 

Voltage swell 

[163,194] 

• Inverter reduces the output voltage to mitigate excessive power 

generation during the swell 

Grid disconnect 

[163,194] 

• Inverter switches to island mode (if applicable) and operates as a 

stand-alone system or shuts down safely  

• Reconnection to the grid after stabilization 

Short circuit 

[34,163,194] 

• In order to eliminate faults and restore inverter functionality, fast 

disconnect and reconnect procedures are required 

• Short-circuit protection algorithms activated 

Grid outage 

[34,163,194] 

• Inverter disconnects from the grid to ensure islanding protection 

• May switch to an internal control mode to provide power to local 

loads 

Harmonic distortion 

[34,163,194] 

• Activate harmonic filtering control to mitigate harmonics in in-

verter output 

• Implement active and passive filtering strategies to mitigate har-

monics 

  

Figure 33. PV system mission profile translation diagram by PV array size ratio Rs consideration [103].

9. Conclusions

This review provides an efficient summary of multilevel inverters to emphasize the
necessity for new or modified multilevel inverters for grid-connected sustainable solar PV
systems. Firstly, this review presented a detailed survey of reduced switch count multilevel
inverter (RSC-MLI) topologies, including their designs, typical features, limitations, assess-
ment parameters, and selection for particular applications. Secondly, this review presented
a comprehensive analysis of MLIs and a classification of the existing MLI topologies, along
with their merits and demerits. Thirdly, this review also included a survey of SC-MLI
topologies with a qualitative assessment to aid in the direction of future research due to
their variety of applications such as inductor-less or transformer-less operation, enhanced
voltage output, improved voltage regulation, low cost, reduced circuit components, size,
and less electromagnetic interference. Lastly, this review serves as a valuable resource for
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engineers and researchers because it provides a detailed look at parametric comparisons of
the total number of power semiconductor switches, DC sources, passive elements, total
standing voltage, reliability assessment, applications, challenges, and recommendations.
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Abbreviations

MLIs Multilevel inverters
RES Renewable energy sources
NPC Neutral point clamped
SC-MLI Switched-capacitor multilevel inverters
DC-MLI Diode-clamped multilevel inverters
DCC Developed cascaded cell based
PUC Packed U-cell
NSWT Number of switches
NDCS Number of DC sources
NL Number of levels
NDIO Number of diodes
NCAP Number of capacitors
NDK Number of driver circuits
TSVPU Total standing voltage per unit
CF/L Cost function
FCC/L Component count factor per level
CHB-MLI Cascaded H-bridge multilevel inverter
PV Photovoltaic
SDCS Separate DC source
MPPT Maximum power point tracking
THD Total harmonic distortion
EMI Electromagnetic interference
MMC Modular multilevel converter
FC-MLI Flying-capacitor multilevel inverter
CSD Cascaded switched diode
CPCC Cascaded predictive current control
CCHB Cross-connected half-bridges
CCS Cross-connected source based
MCSI Multilevel current-source inverter
ASD Adjustable speed drives
AFC Active front-end converters
CPD Custom power devices
ANPC Active neutral point clamped
ABNPC Active boost neutral point clamped
PWM Pulse width modulation
CGSC Common-grounded switched-capacitor
FACTS Flexible alternating current transmission systems
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MLDCL Multilevel DC-link
SSPS Switched series-parallel sources
SPSC Series–parallel switched-capacitor
SSSC Single-source switched-capacitor
SADC Symmetric–asymmetric DC sources based
RV Reverse voltage
RVDC-C Reduced variety of DC voltage sources based cascaded
HERC-C Highly efficient and reliable configuration based cascaded
SCSS vSeries-connected switched sources
SCU Switched-capacitor Unit
MLM Multilevel module
HBSC Half-bridge switched-capacitor
SCC Switched-capacitor converters
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