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Abstract: Owing to various industrial applications of mercury (Hg), its release into the environment
at high concentration is becoming a great threat to living organisms on a global scale. Human
exposure to Hg is greatly correlated with contamination in the food chain through cereal crops
and sea foods. Since Hg is a non-essential component and does not possess a biological role and
exhibits carcinogenic and genotoxic behaviour, biomonitoring with a focus on biomagnification of
higher living animals and plants is the need of the hour. This review traces the plausible relationship
between Hg concentration, chemical form, exposure, bioavailability, bioaccumulation, distribution,
and ecotoxicology. The toxicity with molecular mechanisms, oxidative stress (OS), protein alteration,
genomic change, and enzymatic disruptions are discussed. In addition, this review also elaborates
advanced strategies for reducing Hg contamination such as algal and phytoremediation, biochar
application, catalytical oxidation, and immobilization. Furthermore, there are challenges to overcome
and future perspectives considering Hg concentrations, biomarkers, and identification through the
nature of exposures are recommended.

Keywords: mercury fate; methyl mercury conversion; bioaccumulation; ecotoxicity; biomarkers

1. Introduction to Mercury Pollution

According to United States (US) Government Agency for Toxic Substances and Dis-
ease Registry (ATSDR), mercury is the third most toxic substance for humans. Around
450 contaminated sites are identified and an estimated 20 million people worldwide are
at risk of Hg exposure, which is a concerning health risk [1]. In recent decades, robust
scientific technology has explored the different factors affecting Hg transport, fate, con-
version to methyl mercury (MeHg), mechanism, and effect of Hg exposure to different
biota. This information collectively helped to gather global support to stop Hg pollution for
the protection of human and environmental health. As a result, the Minamata convention
formed in 2017, and provides better insight on the bio-magnification and toxic effects of
Hg [2–4].

Sustainability 2023, 15, 13292. https://doi.org/10.3390/su151813292 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151813292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-1937-9685
https://doi.org/10.3390/su151813292
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151813292?type=check_update&version=1


Sustainability 2023, 15, 13292 2 of 33

Due to increased use in various industries, mercury enters into the environment and
its presence affects microbial activity, seed germination, and plant morbidity and can be
absorbed by human bodies through the food chain, skin contact, and direct inhalation [5,6].
Hg mainly exists in three different forms: elemental, inorganic, and organic. Elemental mer-
cury (Hg0) is considered as class D carcinogen by United States Environmental Protection
Agency and known as metallic mercury. It oxidizes to inorganic mercury and enters the
environment. Hg0 is found in high concentration in the atmosphere and can be active from
6 to 24 months [7]. It is found that mercuric sulphide in cinnabar ore can be extracted by
heating at 538 ◦C. Liquid metal mercury is industrially used in thermometers, dental filling,
production of chloride gas, and electrical parts. Elemental mercury can be ingested by
mouth but the digestive tract cannot easily absorb it [8]; however, it can be inhaled through
respiratory tract where Hg vapour enters the blood from lungs and affects human body.
In contrast, water soluble inorganic Hg can be absorbed by the digestive tract after oral
intact or skin contact [9]. Mercury chloride, sulphur sulphide, and mercury acetate are used
to extract inorganic Hg. Coal-fired power plants and other coal burning plants are also
responsible for high elemental and inorganic Hg release [10]. Hg0 is uncharged and can
pass through the blood–brain barrier where it is converted into inorganic divalent mercury
(Hg2+) and causes brain damage [11]. Human exposure to high amounts of inorganic
Hg is very rare though inorganic salts of mercury which causes skin, eye irritation, and
kidney toxicity [12]. MeHg and [(CH33)2Hg] are examples of highly toxic and the most
frequently found organic form of Hg and are considered a class C carcinogen. Aquatic
microbes convert Hg0 into their organic form which is accumulated in fatty acids of many
fish and fish-consuming animals which are consumed by humans. Due to its structural
resemblance with methionine, it can be found in brain tissue after crossing the blood–brain
barrier [13,14]. The MeHg exists in our food chain and can be absorbed by the digestive
tract (95%), blood circulation, and skin contact (remaining 5%) and readily reaches the brain
and other tissues of the body. Kidney problems such as renal dysfunctions, neurological
dysfunction, impaired reproductive functioning, hearing loss, and sleep disturbance are
some of the toxic effects of excessive Hg accumulation in the human body [8,15].

Human activity remobilizes the released Hg and enhances their chance of methyla-
tion. Thus, aquatic and terrestrial bioaccumulation of Hg results in increased exposure
of Hg to human and animals [16]. It is even found in remote regions due to long-range
transport capacity. Increased artisanal and small-scale handicraft gold mining are one of
the main factors in Hg pollution in the environment. Although alterations in Hg cycling,
MeHg bioavailability and trophic transfer is triggered by climate change and changed
land usage [17,18]. The presented manuscript is an endeavour to explore the mercury fate,
bioaccumulation, and human toxicity.

1.1. Sources of Mercury Pollution

Due to varied deposition of Hg and geographical features, it is distributed unequally
around the world. Industrial processes such as mining, disposal of waste and molten
metals, production of chemicals, fertilizers, and natural sources are the main sources of Hg
pollution. But exposure to Hg can occur through different sources and routes. Religious
and cultural practices, fossil fuel combustion, and gold mining are direct sources of Hg
pollution in developing countries [19]. The different sources of Hg pollution are presented
in Table 1.

Waste incineration, fossil fuel combustion, cement production, artisanal gold mining,
and smelting of ores are identified as anthropogenic sources of Hg emission [30]. Heating
of elemental mercury is carried out in small scale gold mining and emits Hg vapour to the
atmosphere and the vapours are settled as dust on water and soil surface [31]. Inorganic
Hg is converted into MeHg in the aquatic ecosystems making it an essential part of Hg
biogeochemical cycle. Climate change also introduces the trophic transfer and methylation
of Hg [32].
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Table 1. Different sources of mercury pollution.

Exposure Groups Sources Reference

Atmospheric exposure

Burning of fossil fuels and coal [20]

Metal mining [1]

Fertilizers, pesticides, and other chemical manufacturing [21]

Incineration of domestic and industrial waste [22]

Volcanic eruption, first fire [23]

Hydrosphere exposure
Entry of Hg to water bodies through effluents [24]

Discharges from oil refineries [25]

Food products Consumption of food products contaminated with Hg [26]

Cosmetic products Skin lightening creams, toothpaste, and soap [27]

Medical products Dental amalgam, antiseptics and some Ayurvedic medicines. [28]

Consumer goods Plastic, paint, batteries, lamps, switches, thermometers, bulbs [29]

Terrestrial vegetation act as a significant reservoir in the biogeochemical cycle of
atmospheric Hg. Increasing wildfires due to drastic climate change also mobilize the Hg
trapped in the terrestrial ecosystem and releases high amounts of Hg and other pollutants
into the atmosphere [18]. During the year 2000, in Africa, Eurasia, and South America,
the estimated Hg emissions were 43%, 31%, and 18% respectively [33]. Increased cases of
wildfire is predicted in Boreal region which will increase the Hg emission and its deposition
in the Arctic [34]. As Hg can be exchanged at the air–water interface, thinning out of sea
ice also can introduce Hg into the atmosphere. It is reported that the Hg concentration
and contamination has considerably increased in the Arctic sea and plays an Important
role in transport, distribution, and transformation [35]. A study reported that Hg can be
mineralized, and it can be easily accumulated. In addition, it is converted to MeHg which
is persistent in soil and sediments [36]. Hg present on the surface water bio-accumulates,
and methylates in the aquatic food chain very easily within a year of time. In contrast, Hg
deposited on land takes several years to be bio-accumulated into the food chain [26].

Organic mercury is the most hazardous form and found in food chain, pesticides, and
insecticides. Accumulation of organic Hg (methyl or ethyl mercury) in fish, poultry, and
rice grain is a major health concern. Hg levels are reported to be 1.54 and 2.95 mg/Kg
in raw food samples collected from the Democratic Republic of Congo and South Africa,
respectively. The fish sample collected from Palestine and South Africa has also shown
higher concentration (by 0.5 mg/Kg) of Hg than recommended by the European Com-
mission [37,38]. After making entry to the human body through food, MeHg crosses the
blood–brain barrier and is accumulated in brain cells. A study showed that 50–80% of total
Hg found in fish muscles is MeHg [39]. Inorganic Hg is found in other foods. The estimated
Hg level in human adults is 0.40 mg/Kg due to the position and bio-magnification of Hg
in the food chain [40]. A study compared the concentration of MeHg in fish collected
from Mediterranean and Atlantic sea and observed higher concentration of mercury in
Mediterranean fish [41]. Provisional Tolerable Weekly Intake has shown the accumulation
due to consumption of Mediterranean fish is 110 and 140% higher in children and adults,
respectively, than the recommended level. The total Hg level in human blood, hair, and
fish muscles showed the estimated weekly intake of 0.63 µg/Kg body weight/Week and
over 10 days the estimated intake ranges from 0.36 to 0.97 µg/Kg body weight [42]. It
is also understood that climate change plays a passive role in increased exposure and
bioaccumulation of pollutants like Hg [43].
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Previously, Hg was mainly used in thermometers, but recently it has gained new
application in Hg vapour lamps, tube lights, and compact fluorescent lamp industries.
Release of Hg from industrial installations, artisanal small scale gold mining (ASMG),
metal production, and careless disposal of Hg containing products along with domestic
waste represent significant sources of Hg pollution [5]. Fluorescent lamps recycling units
presents a health risk for their workers due to Hg exposure. It is reported that significant
concentration of Hg is released when a fluorescent lamp is destroyed [1]. An estimated
15 million people including 3 million women and children in around 70 countries are
associated with ASMG where the gold is extracted using elemental Hg. They are constantly
exposed to high levels of elemental Hg, not only in their workplace but also at home and
during commute [44]. An approximate 50 million tons of electronic waste are disposed
annually which reportedly releases Hg posing great threat to children’s health [45]. Disposal
of thermometers, batteries, electrical switches, and fluorescent lamps also encourage entry
of Hg when exposed to humidity, rain, and wind [46]. Seepage of water from mining
sites enters lakes, water streams, and rivers and accumulates Hg for many years [47].
Coal combustion is another great source of Hg release in the atmosphere accounting to a
total of 71%, 46% of which comes from industrial plants and 35% from power generation
plants [48]. Production of Hg, silver, and other chemicals also pose the risk of mercury
contamination which varies across the countries like Asia (16%), North America (30%), and
Europe (27%). During the 1970s, the commercial Hg production was at its highest, and it
has decreased ever since, along with their release in air (20%), water (30%), soil (30%), and
landfills (20%) [5,49]. Toxic Release Inventory and U.S Environmental Protection Agency
has reported two third of all mercury released in atmosphere in USA is generated from
coal-based power plants [50].

1.2. Different Routes of Mercury Incorporation

The toxic effects of Hg majorly depends on the route of entry; ingestion, inhalation,
trans-dermal, and trans-placental [51]. Epidemiological and experimental studies have
shown that the overall Hg body burden is influenced by sex and genetic background,
while uptake and distribution of Hg is influenced by the nutritional background of the
subject [52]. Exposure of Hg can result in its trans-placental movement to the uterus. Hg
exposure is dangerous for the foetal brain and can cause mental retardation, vision loss,
hearing loss, congenital malformation, language disorder, and delayed development [53].

Inhalation is the most direct route of Hg pollution, and the vapour can reach the
brain to cause direct damage. After intake of contaminated seafood, MeHg, which is a
powerful neurotoxin, is ingested by the digestive tract and accumulates in the brain for a
long period [54]. Pregnant women pose a major risk as MeHg can become accumulated in
foetal brain and other tissues. Many dermatologists use skin lightening products to treat
hyper pigmentation disorders [1]. These products contain inorganic Hg which inhibits
melanin production in epidermal melanocytes. A study has shown that these products do
not mention Hg as ingredients. A case study also reported exposure of inorganic Hg can
take place through breast milk and skin contact (through bed linens) [55].

A study on Indonesian gold miners has shown occupational exposure of Hg also can
be severe as they develop chronic mercury intoxication. Breastfed infants possess the risk
of development disorder. Major health problems reported among gold miners include
headache, fatigue, mucosal irritation, tremor, memory problems, visual impairment, ataxia,
muscle weakness, mood swings, persistent cough, and chest pain [8].

1.3. Patho-Physiological Mode of Action

After crossing the blood–brain barrier, MeHg is oxidized to intracellular mercury in
the glial cells and remains in brain cells for a long time [14]. Exposure to ethyl mercury
leads to a higher level of mercury accumulation than MeHg exposure [13]. But damage in
granular layer is only observed in the case of MeHg exposure. Demethylation of Hg cannot
be responsible for neurotoxicity as MeHg in glial cells can be found in neurons as well
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in the symptomatic phase of the disorder [56]. Another study has shown strong affinity
towards thiol groups in both organic and inorganic mercury, and is partly responsible for
its toxic effects [57]. Subcellular neurotoxicity of MeHg is associated with OS, change in
glutamate, and calcium homeostasis. Changed calcium homeostasis is due to the inhibition
of calmodulin (calcium binding protein) and induction of neuro-inflammatory changes [39].
MeHg are reported to possess harmful effects on microtubules and Rho family proteins
which causes problems in neuronal differentiation and migration [58]. The SH group in
tubulin attracts methyl mercury causing depolymerisation and disintegration of cerebral
microtubules. The microtubule associated protein or MAP2 functions and expression can
also be affected by MeHg [59]. Decreased development in dentate gyrus neurons is due to
a deficit in hippocampus-dependent spatial learning and memory loss. Astrocytes resist
the harmful effects of MeHg due to the expression of glutathione or GSH [60].

2. Fate and Transport of Mercury in Terrestrial Ecosystems

The fate of Hg in the ecosystem is an intricate biogeochemical cycle that involves
movement within the lithosphere, atmosphere, and hydrosphere [61]. On the local, regional,
and global scale, Hg can be completely mixed vertically until the troposphere, and can
be transported over great distances. Past studies in arctic fishes, collected from areas
where human interventions are minimum, reported high concentrations of MeHg. It
is mobilized from the lithosphere through natural geological activities. Other natural
activities anthropogenic activities like mining, coal combustion, and industrial processes
also led to mobilization of mercuric deposits. This has caused an immense increase of
~450% in Hg concentration in the ecosystem [62]. According to recent estimations, natural
emissions of Hg (76–300 g/yr) are significantly outnumbered by anthropogenic emissions
(2000 Mg/yr) [63]. The increase in Hg in the atmosphere causes its deposition throughout
aquatic and terrestrial ecosystems. It is estimated that there was a fivefold increase in Hg
deposition in peat and lake sediments even in remote regions in the last few decades [64].
The cycling of Hg through the ecosystem depends on its chemical form as illustrated in
Figure 1.

The high inertness of gaseous Hg enables it to be dispersed along long ranges as dry
depositions [17,61]. The reactive species, Hg2+ also is dispersed along with the inert Hg0

as wet depositions. The dry deposition (Hg0) of mercury is taken up by plants through
stomata gas exchange. Thus, in terrestrial ecosystems the major addition of mercury to
the soil happens by litterfall and its decomposition [65]. Apart from this, the Hg2+ is
deposited directly on the canopy of trees and is washed off to the ground, adding to the soil
deposits [5]. There are two possible fates for the deposited Hg2+. It can either be absorbed
into sediments, where it can become MeHg, or it can be reduced to Hg0 in water [66]. The
conversion of Hg2+ to Hg0 is affected by different factors like water temperature, pH, total
dissolved organic matter, and light intensity. The accumulated Hg0 can cycle back into the
atmosphere through volatilization, hence it is the only method in which the accumulation
of Hg in life form can be limited.

Organic mercury is formed when Hg is combined with organic carbon. MeHg is one
of the most common species among organic mercury, this compound exists as monomethyl
mercury (CH3Hg+) or [(CH33)2Hg] [67]. Other than chemical conversion in water and
sediments, microbial activity and photolysis also contributes to the conversion of Hg+ to
MeHg. This organic compound is responsible for bioaccumulation of Hg in life forms.
The MeHg enters the food chain commonly via aquatic life forms which thrives along the
surface water. In seawater, MeHg is converted into [(CH33)2Hg] [68].
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2.1. Mercury in Soil and Plant Life

It was discovered that the vegetation greenness, leaf area, soil organic matter, annual
precipitation, and latitude, all affect the mercury distribution in the landscape. Compared
with other ecosystems, forested watersheds and its drainage network including the river
and lacustrine sediments exhibit significantly greater concentrations of Hg [17]. Soil is
extensively studied for Hg concentration as it is considered as the terrestrial repository of
contaminants. The deposition of mercury among the mountain regions are contributed by
the local mineral depositions and anthropogenic inputs via atmospheric depositions.

The plant facilitates the addition of Hg due to the atmospheric dry deposition, which
plays a key role in increasing the forest depositions four times higher than wet deposition
in open sites. The forest depositions are greater than that of shrublands and deserts,
which have limited vegetation cover. Although vegetation cover plays a crucial role in the
accumulation of Hg in the soil, other factors like the texture, morphology and genesis, total
organic matter, and pH also affect the accumulation and retention of Hg in soils [17].

Different soil types have different effects on the accumulation of Hg. The ferralitic
soil retains Hg through adsorption although it lacks other nutrients. The Hg is associated
with organic carbon, and later this complex compound is retained in ferralitic soil by
Al/Fe oxyhydroxides [69]. Hg retention in tropical soils are controlled by the geochemical
contents and texture. The ferralitic soil in the Amazon region has more Hg than that of
temperate and boreal soils. Ferrelatic soil acts as the link for Hg transfer between the
terrestrial and aquatic ecosystems in the humid tropical regions. The erosion and transfer



Sustainability 2023, 15, 13292 7 of 33

of Hg from soils would be accelerated by subsequent heavy rainfall and high discharge
events, which are characteristic in humid tropical regions [70].

2.2. Mercury in Lacustrine Sediments

The settling particles scavenge the Hg that has been directly deposited on a lake
surface, which are confined as sediments. The Hg that has been deposited on watersheds
is transported to lakes primarily bound to organic matters and mineral matter [65]. As in
soil, the Hg deposition in lacustrine sediments is also affected by many variables including
physical, chemical, and biological. Some of these factors are dissolved oxygen concentration,
temperature, pH, complexing agents, and nutrient distribution [66,71]. The redox reactions
of Hg2+ and Hg0 occur among these sediments, which facilitate their distribution into
organic as well as inorganic complexes. The methylation of Hg occurs both in sediments
as well as in the water column, the methylation of Hg will be high among the sediments
which have high organic matter content. The MeHg in sediments either is deposited into
the lacustrine segments as further sediments accumulate on top or it leaches into the lake
water which will accumulate in the life forms [71]. The concentration of Hg accumulated
in various organisms collected from diverse geographical locations in the last five years is
presented in Table 2.

Table 2. Accumulation of mercury in various organism collected from diverse geographical locations.

Organism Mercuric Concentration
(ppm) Geographical Locations Reference

Lethrinus nebulosus 0.771 Qatar [72]
Natrix maura 0.194 Europe [73]
Epinephelus coioides 0.55 Kuwait [74]
Epinephelus coioides 0.045 China [16]
Urtica dioica 21.4 France [75]
Elateridae sp. 3.6798 France [75]
Rastrelliger brachysoma 0.025 Malaysia [76]
Stolephorus indicus 0.04–0.18 UAE [77]
Scylla serrata 4.11 India [78]
Penaeus monodon 2.25 India [78]
Gerres oyena 0.0283 Qatar [79]
Chiloscyllium arabicum 0.1662 Qatar [79]
Rhizoprionodon oligolinx 0.7942 Qatar [79]
Chaetobranchus semifasciatus 2.85 India [80]
Liza macrolepis 1.860 India [80]
Gazza minuta 1.97 India [80]
Chilina sp. (snails) 0.564 Argentina [81]
Samastacus spinifrons (crayfsh) 0.561 Argentina [82]
Aquila chrysaetos (Scottish golden eagles) 0.0348 Scotland [83]
Arius arius 0.977 India [78]
Caranx affinis 3 India [78]

2.3. Fate of Mercury in Aquatic Environments

Hg in aquatic environments usually exists in elemental form (Hg0), ionic (Hg+, Hg2+),
and as MeHg forms, constituting a major threat to aquatic life including plants and animals.
The proportion of elemental mercury (Hg0) is relatively less in aquatic environments
compared with ionic (Hg+, Hg2+) and MeHg [84]. Hg0 is majorly present in surface water
and is formed through the microbial decomposition of Hg2+ [85]. Reduction can also
be brought about by abiotic factors present in water. Photocatalytic reduction can be a
major factor in the decomposition of Hg2+ [24]. Among the three forms of Hg, the major
concern in the aquatic habitat is posed due to the bioaccumulation and biomagnification of
MeHg [86]. The transformation of Hg in the aquatic environment shares several similarities
with its cycling in terrestrial environment and is broadly divided into five phases:
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2.3.1. Oxidation of Hg0

Oxidation of Hg0 is a fast process and can be brought about by chemical agents or
through photooxidation process. The major chemical agents involved in the oxidation of
Hg0 apart from oxygen includes nitrates, nitrites, iron phosphates, sulphur, and carbon
dioxide [87].

2.3.2. Reduction in Hg2+

Reduction in Hg2+ in the aquatic environment is attributed to three major factors:
Major proportion reduction occurs through light-induced mechanisms (photoreduction)
followed by microbe mediated enzymatic processes; A third and minor proportion of Hg2+

can be traced to the dark reactions that take place in aquatic ecosystems whose actual
mechanism remains unclear [88].

2.3.3. Methylation of Hg2+

The formation of MeHg in aquatic environments is often driven by the nature of the
sediments and activity of the several microbial communities in the proximity of the aquatic
ecosystems. The microbial contribution in the formation of MeHg is a thrust area of study
and so far three groups of bacteria namely sulphate-reducing bacteria (SRB), iron-reducing
bacteria (IRB), and methanogens were reported to aid in MeHg formation [89].

2.3.4. Degradation of MeHg

Surface water is the major site for degradation of MeHg majorly due to the photodegra-
dation occurring at the surface due to light attenuation. The photochemical degradation of
MeHg is driven by factors like the presence of dissolved organic matter (DOM), photolysis
and an oxidant radical (*OH) produced as a result of photo Fenton reactions [90].

2.3.5. Demethylation of MeHg

Demethylation represents the reverse process of methylation. This process involves
the removal of the methyl part of MeHg upon exposure to UV radiation. This can be carried
out either by microbes, photodecomposition, or abiotic factors. Photodecomposition was
observed to be accelerated in marine environments [91].

The transfer and cycling of Hg from atmosphere, terrestrial, and aquatic ecosystems is
often affected by other physical factors and geographic factors which in turn determines
the accumulation rate in the organism prevailing in various habitats [92].

3. Mercury Bioaccumulation and Microbial Community Changes
3.1. Source and Bioconversion of Mercury to Methylmercury

United Nations on Environmental Pollution (UNEP) classified Hg emission into two
broader categories: direct emission from anthropogenic and natural activities and re-
emission from the depositions. Natural direct emission includes emission from volcanoes
and release from weathering of volcanic rock. After the release, Hg is transported and
recycled between air, soil, and water, until it is removed from cycle as deposition as
sediment in coastal and deep ocean, lakes, and soils of subsurface [93]. Atmospheric
deposition contains the three principal forms of Hg, although the more abundant form
is inorganic divalent mercury (Hg2+) followed by MeHg and elemental mercury. Upon
entering surface water, Hg enters a cycle that becomes attached to particles that settle as
sediments. From sediment, it can spread through diffusion into the water column or be
resuspended and sediment with other particles.

Methylation is an important step that transforms elemental mercury into a more mobile
form. Anaerobic bacteria possessing the Wood–Ljungdahl pathway for carbon fixation
is essential in producing MeHg. These bacteria harbour the hgcAB gene, constitutively
expressed in certain anaerobes. Bacteria that process sulphate (SO2−

4 ) is directly linked with
methanogens converting inorganic Hg to MeHg. Increased natural organic content, humic
acid, and algal growth are associated with increased methylation in natural reserves [94].
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The conversion of inorganic mercury to MeHg is aided by hgcA, which transfers the methyl
group from methyl-THF to inorganic mercury ion. Though the Hg2+ form is not a nucle-
ophile that attacks the methyl group, theories suggest electrons in mercury undergoes a
spatial conformational change that react with carbocation. HgcA, in addition to methyl
transfer, also facilitates the import of elemental mercury into the cell through its transmem-
brane port. HgcB, an iron-sulphur protein, helps maintain the redox balance by reducing
Hg during methylation. Although a common mechanism of MeHg efflux is not reported,
few systems showed the presence of efflux motors which helps in MeHg depuration [95].
It enters the food chain through the phytoplankton, which absorbs the effluxed MeHg or
directly to higher organisms that consume bacteria that accumulate MeHg. Ultraviolet
rays from sunlight break down methyl mercury to Hg2+ or Hg0. Elemental Hg can re-enter
the atmosphere as a gas, and highly reactive ionic form can react with biomolecules and
accumulate in living organisms.

3.2. Bioaccumulation of Mercury in Higher-Order Organisms

Animals accumulate MeHg at a faster rate than they eliminate it, they consume
Hg accumulated in smaller organisms at each successive level of the food chain. Small
concentrations of MeHg from environment can thus accumulate gradually to significant
harmful levels in fish, fish-eating wildlife, and people. Even at minor deposition rates
in remote locations from point sources, its biomagnification produces toxic effects on
terminal consumers of food chains. The Hg undergoes vicious cycles where it transforms
from inorganic forms and methylated form in environment through natural disperse and
organisms (Figure 2).
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Dissolved organic carbon (DOC) and pH strongly affects the Hg retainment in an
ecosystem. Several studies showed that for the same species of fish taken from the same
region, increasing the acidity of the water (decreasing pH) with or without increasing the
DOC content generally results in higher Hg levels in fish, an indicator of more significant net
methylation. Similarly, higher DOC levels increased Hg accumulation until saturation level.
Combined, high acidity and DOC levels enhance the mobility of Hg in the environment,
thus making it more likely to enter the food chain [96].

Many marine life forms tend to accumulate Hg in less soluble inorganic form. Though
Hg is toxic for bacterial species, prolonged exposure increases bioaccumulation. A study
on bacterial communities in the gold mining field, which uses Hg for refining, showed
all isolated accumulated Hg > 50% without losing viability, with the major being Bacillus
species [97]. In fishes, Dicentrarchus labrax (European bass fishes), on Hg exposure, showed
bioconcentration of Hg on gills and bioaccumulation of the liver. The accumulation tends
to increase the OS in respective organs. In addition, the microplastics increased the rate
and accumulation of Hg in the fish’s liver [98]. In walruses, Hg concentration in their
skeletal muscles decreases with aging. A population study on pacific walruses showed
that females tend to accumulate more Hg than males, with a significant reduction in Hg
levels with aging [99]. In seals, the Hg accumulation in muscle tends to transfer to the
blood during the gestation period and pass on to the offspring through the placenta. The
subsequent lactation period, post-delivery, showed a proportional decrease in Hg levels in
offspring [100].

3.3. Mercury Toxicity and Its Effect on Microbial Community

In bacteria, the accumulation occurs in proteins where Hg binds to metallothionein
through cysteine groups. Anabaena spp., Pseudomonas spp., and Synechococcus spp accumu-
late more mercury through this mechanism. In addition to intracellular metallothioneins,
extracellular sequestration of Hg is captured by siderophores, oxaloacetate, phosphates,
and sulphides [101].

Several reports on the microbial community in soil revealed that the abundance of
microbial species remained the same. However, the abundance ratio was significantly
varied. Proteobacteria, Actinomycota, Blastomonas, and Acidobacters were dominant in
Hg-exposed soil, irrespective of pH. The predominant bacteria, Actinobacter, was found
to dominate the post-Hg treatment though it is negatively correlated to Hg [102]. Ex-
posure of 50 mg Hg/kg soil of mercury on agricultural soil significantly decreases pH
from 7 to 6 with a decrease in total organic content and macronutrients. Due to Hg toxi-
city, ~36% of microbial species were lost compared with the control. Natural microbiota
Sphingobacterium sp., Pedobacter saltans, and Brevundimonas subvibrioides were enriched by
1.42, 1.57, and 2.73 times, respectively [103].

Unlike the bacterial community, the fungal community has its detoxification system
and was affected only at higher Hg concentrations. However, the fungi were susceptible to
pH and hence greatly affected by pH the change caused by Hg. Basidiomycota increased to
1.61 and five times in alkaline and neutral pH, respectively, and decreased by 18% in acidic
pH. On the contrary, Ascomycota showed an inverse relationship with pH, with a slight
increase in population (5%) under acidic conditions [102].

3.4. Molecular Mechanism of Mercury Selection
3.4.1. Genes Involved in Mercury Resistance

The ionic form of Hg (Hg2+) can readily react with the thiol group of proteins and hence
cause loss or abnormality in functional proteins. Hence, the bacterial system develops
resistance through mercury reductase (merA), which converts highly reactive Hg2+ to
unreactive elemental mercury (Hg0) as gas [104]. Hg resistance operon consists of genes
coding for the following proteins: transmembrane proteins which transport mercury
through the periplasmic membrane (merC, merE, merF, merT, and merG); organo mercury
lyase (merB); and mercury reductase (merA). The presence of this operon increased the
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resistance level compared with bacteria not harbouring the genes, and is regulated by
merR and merD. A Statistical study on Hg resistance genes in bacteria showed that the
abundance of merA is more than the co-existence of merA and merB. MerT is associated with
transporting ionic mercury protein adducts, whereas merE helps transport methylmercury
protein adducts. Merck is associated with transporting organic mercury, which requires
merB and merA for detoxification [105]. Genes hdcAB is also linked with the evolution of
merA, suggesting the co-evolution of Hg uptake and resistance genes [95]. The species of
Pseudomonadales and Xanthomonadales were found to enrich in the presence of mercury with
the help of the merA gene in the native plasmid [104].

3.4.2. Horizontal Gene Transfer on Microbial Selection

Mobile genetic elements (MGEs) are responsible for transferring resistance genes
across species and affect the microbial community under extreme conditions. MGEs of mer
operon were transferred to other species through conjugation to share Hg resistance. The
conjugation was so efficient that even distant phyla Burkholderiales received Hg-resistant
plasmid [104]. Hg is also linked to increased co-transfer of antibiotic genes. A common
clinical carbapenemase isolates resistant Klebsiella pneumonia shown to co-transfer mer genes
along with bla (carbapenemase-resistant gene) in the presence of Hg [106]. In addition
to pesticide resistance, Hg resistance is linked with many commonly used laboratory-
grade antibiotics such as chloramphenicol, ampicillin, streptomycin, sulphonamide, and
trimethoprim [101]. Hg resistance from prolonged bacteria exposure in Hg-rich sites can
acquire antibiotic resistance genes (ARG) through conjugation. Several studies showed
that microbes from Hg-contaminated soils of mines, agricultural farms, aquaculture, and
dairy farms and from the gut of animals carried microbes containing both Hg and ARG
resistance genes [107].

4. Toxicokinetic and Ecotoxicology of Mercury

Hg is one of the most hazardous anthropogenic pollutants due to its extreme toxi-
city, and it poses a significant threat to ecosystems, especially via its accumulation and
biomagnification in food webs [108]. The organic Hg compounds, especially MeHg, are
the most dangerous forms of Hg due to their high solubility in lipids, which increases
the likelihood of biological absorption and bioconcentration [109]. MeHg is generated
when inorganic Hg undergoes a series of physiologically mediated chemical reactions in
anaerobic environments [108]. The majority of Hg found in polluted fish and human bodies
is found in its organic form, which is a neurotoxic that has negative effects on fish and
mammal reproductive and neurological development [110].

4.1. Biomonitoring of Mercury

Biomonitoring refers to a method of measuring environmental pollution by observing
the effects on live creatures. The primary value of biomonitoring is determining the
relative concentrations of contaminants within a sample of organisms. Various studies
have shown that the Hg level already exists globally and affects both human health and
the environment. Negative health consequences from Hg exposure are evident even at low
levels [1]. But the question of whether toxicity from different types of Hg builds up over
time remains open and will be the focus of future research. The European Commission
and the EPA/FDA have both provided guidance on acceptable Hg levels in food [1].
Unfortunately, human biomonitoring is necessary for estimating the internal dosage of
Hg and associated dangers to human health. Biomonitoring in people is necessary for
determining whether or not Hg were actually ingested by humans. Prospective monitoring
of air, water, and other environmental samples cannot offer these data. Because it may
offer quantifiable information on the authentic exposure of Hg population and aid in the
assessment of preventative activities, human biomonitoring of Hg is a helpful tool to assist
environment and health policymaking.
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Heavy metals (HMs) may enter fish in two ways: via the water and their food, and
through their semipermeable membranes. Metals may interfere with important metabolic
processes in fish tissues, making fish a useful bioindicator. Using fish as a bioindicator
is ideal for assessing HM contamination for two primary reasons: bioaccumulation and
biomagnification. The first, is that metals may bioaccumulate in fish tissues and, in general,
have very long-lasting properties. Second, biomagnification causes metals to bioaccumulate
in tissues after being devoured by species at a higher trophic level, which in turn is
consumed by species at a lower trophic level, further increasing the concentration of the
metal in the tissues of the higher trophic level [111].

Biomarkers for Hg exposure (within human monitoring) need an understanding of
exposure situations to be interpreted correctly. Hg levels in blood and urine may be used
as proxies for overall Hg exposure. In both experimental and epidemiological research,
sex and genetic heritage have been found to alter the total body burden of Hg. Nutritional
background may influence the absorption and distribution of mercury species, and hence
the human biomonitoring readings [112]. It is vital to distinguish between reference values
and health-based limit values when interpreting human biomonitoring data. The reference
values are arbitrary benchmarks with no clinical relevance [113].

Human hair samples from the Amazon basin near Tucuru Dam were examined for
MeHg and overall mercury concentration [114]. Total Hg concentrations in hair, on average
75 g/g (about 90% of MeHg), were found to be dangerously high compared with WHO
guidelines. The median total mercury content was 12.0 g/g, with 57% and 30% of the
subjects having very high values (10 g/g and 20 g/g, respectively). These levels are far
higher than any others seen in people living near Amazonian dams. Gold mining has not
been a major contributor to Hg pollution in the studied region. However, it was recently
brought to light that one of the most eaten fishes (Cichla sp.) can be contaminated with
MeHg [114].

MeHg to total mercury ratio and particular mercury species concentrations have been
reported [115]. Despite the public health and toxicologic involvement in MeHg and Hg,
these Hg species have been technologically difficult to measure in large population studies,
resulting in the authors conducting several multiple regression analyses to examine factors
associated with MeHg concentrations. Age was a significant factor, with the peak incidence
occurring between the ages of 60 and 69. MeHg levels were shown to be higher among
Asians, men, the elderly, and persons with higher levels of education. MeHg share of total
Hg varied by race and age, and the trend was nonlinear. MeHg reference values for the U.S.
population and the ratio of MeHg to total Hg may aid in a more accurate evaluation of the
public health risk associated with consuming seafood containing MeHg [115]. Absorption
of ingested MeHg is thought to be high and not expected to vary much.

4.2. Mercury Toxicity to Environment

The toxic substances and disease registry under the US Government agency has ranked
Hg as the third most toxic element or substance on the planet, behind arsenic and lead,
which are being dumped into our waterways and soil, spilled into the atmosphere, and
consumed by humans in food and water. Nearly tripling the quantity of mercury in the air
is a direct result of human activities, and the atmospheric load is rising at a rate of 1.5%
year. Hg in the soil or recirculated water with mercury may be ingested by animals and
plants. The harmful effects of Hg on humans may bioaccumulate if it enters the food chain.
Hg entry into the food chain is thought to occur in a variety of ways depending on the
ecology [116].

4.2.1. Mercury Toxicity to Plants and Algae

Plants root systems are their primary access point for taking up soil nutrients, includ-
ing poisonous metals. The root system has a lot of surface area, so it can take in and store
nutrients the plant needs to thrive. But it may also take in and store toxins it does not
need, such as HMs. To comprehend Hg’s behaviour in the soil–plant system, one must first
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know the Hg transfer factor between the two. Various types of plants contain Hg, which is
then delivered to various organs by special proteins called transporters [117]. Even at low
applied quantities, Hg is hazardous to plants, causing growth retardation, photosynthesis
suppression, reactive oxygen species production, lipid membrane oxidation, DNA damage,
and protein degradation. Plants have evolved several defence mechanisms to cope with
the oxidative damage caused by Hg exposure. Antioxidants including glutathione, phy-
tochelatin, salicylic acids, ascorbic acid, selenium, proline, and tocopherols are all part of
these defensive systems [117].

The impact of Hg on the development and production of Solanum lycopersicum crops
was investigated by [118]. At decreased Hg concentrations, plant growth, including germi-
nation rate, height, root length, blooming time, pollen viability, and chlorophyll content,
was seen to be improved. When Hg levels were much greater, however, development was
stunted, and inhibitory effects were reported. A researcher evaluated Pisum sativum L. for
Hg-induced cytotoxicity and genotoxicity [119]. The data demonstrated cytostatic effects,
including a delay in S-phase at low dosages and an arrest in G1 at high doses, as well as
a reduction in mitotic index and cell proliferation index. Additionally, changes in DNA
strand breakage, DNA fragmentation, the clastogenic parameter, and micronuclei were
seen in roots when Hg concentrations were elevated. These findings showed that Hg may
create genetic differences in plants by interfering with their cell cycle.

Halimione portulacoides, a common and widespread species in temperate saltmarshes, is
well-known as a bioindicator and biomonitor of Hg pollution. H. portulacoides stores most of
its mercury in its roots, and the element is then actively translocated to its shoots and leaves.
Differences in Hg concentration can be explained by evaporation and transpiration of Hg
from the plants leaves. Both thoriated and monomethyl Hg are poisonous towards this salt
marsh plant. Even at low concentrations, mercury may have an effect on photochemistry
with sustained exposure [120].

Numerous studies have shown that biomolecules including proteins, DNA, and
lipids are susceptible to OS and damage when exposed to Hg and other HMs. Total
protein concentrations in the roots and leaves of Triticum aestivum were found to increase
by 16% and 10%, respectively, when treated with 2.5 M of HgCl2 [121]. In response to
Hg stress, the body may expand its total protein pool. Proteins involved in the cellular
redox system are not an exception to this rule. In another study, after 40 and 60 days
of Hg stress, malondialdehyde levels in plants considerably decreased from control, but
malondialdehyde contents rose with increasing exposure length to Hg pollution. Exogenous
Hg administration may also lead to Hg accumulation and toxicity, much as the root uptake
system [122].

Photosynthesis, a crucial autotrophic metabolic activity, has been shown to be vulner-
able to toxicity from metals. The oxygen-evolving enzyme, donor site, and the subunit
of ATP synthase in the chloroplast are all known to be affected by Hg presence [123]. It
is well-known that the production of reactive oxygen species causes the degradation of
chlorophyll and membranes and limits its biosynthesis. This, in turn, destroys the struc-
ture and function of the photosynthetic apparatus and leads to an unequal distribution
of energy within the cell [117]. Some researchers performed a pot experiment showing
that Hg stress induces a decrease in net photosynthetic rate, stomatal conductance, and
transpiration rate in the leaves of grass in response to an increase in intercellular CO2
concentration [124]. Chlorophyll breakdown in plants responded differently depending on
Hg content and exposure duration. Chlorophyll content of Chlamydomonas reinhardtii was
reduced by 58.6% compared with the control, indicating the presence of toxic symptoms,
although the photosynthetic rate was suppressed by a much smaller margin [125]. Several
studies were conducted to understand the nature and toxicity of inorganic Hg and MeHg
in algal systems as they represent a significant part of the food chain. Microalgae are
considered to be the point of entry for Hg and MeHg to travel through the higher trophic
levels in an aquatic ecosystem [126]. Exposure of microalga Chlamydomonas reinhardtii to
inorganic Hg and MeHg was reported to cause dysregulation of cellular transport and
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energy metabolism. Further Hg exposure was observed to have a negative impact on the
rate of photosynthesis and oxidation-reduction directions in C. reinhardtii [127]. Exposure of
Chlorella vulgaris to Hg was reported to reduce the amount of photosynthetic pigments in a
concentration-dependent manner. Further, a decrease in protein content and increase in the
amount of reactive oxygen species (ROS) was reported in the study [128]. Chronic exposure
to Hg in Chlorococcum dorsiventrale Ch-UB5 collected from coastal areas of Tunisia was
observed to cause reduction in biomass, altered redox activities, inhibition of photochemi-
cal activity, and appearance of oxidative stress [129]. The toxicity of Hg to microalgae is
majorly due to its interaction with SH groups of the enzymes and imparting OS. Hg inside
the algal cells were observed to bind to cytosolic ligands and block the functional groups of
important enzymes there by altering their confirmation and functional properties [130].

4.2.2. Mercury Toxicity to Fish

Increased level of tissue mercury concentrations have been linked to point source
pollution and have been shown to have obvious impacts on fish survival and develop-
ment [131]. Fish with muscle Hg contents much below those resulting in overt toxicity
are often found in areas that obtain Hg from atmospheric deposition rather than directly
from contaminated point sources [110]. Nonetheless, increasing evidence from laboratory
experiments and field observations showed that the Hg levels often seen in wild fish are
adequate to elicit sublethal toxic effects such as metabolic alterations, tissue and cell dam-
age, decreased reproduction, developmental consequences, and behavioural effects [132].
Importantly, elevated Hg concentrations have been documented in certain Arctic fish popu-
lations, especially in lakes, due to the long-range transmission of Hg from human emission
sources at lower latitudes [133,134]. Variations in fish diet and trophic position cause
deviations in Hg levels and the associated risk of deleterious effects. Table 3 represents the
level of Hg content present in fish.

Table 3. Levels of mercury present in different fish species.

Trophic Region Fish
Concentration
of Mercury
(ppm)

Portion Reference

Omnivores Siganus fuscessens 0.018 Muscle [135]
Herbivore Siganus rivulatus 0.02 Muscle [136]
Carnivores Epinephelus coioides 4.65 Liver [137]
Herbivore Siganus canaliculatus 0.032 Muscle [138]
Carnivores Lethrinus nebulosus 0.773 Liver [72]
Carnivores Lethrinus nebulosus 0.522 Muscle [138]
Carnivores Gerres oyena 0.028 Muscle [79]
Planktivores Sardinella albella 0.028 Muscle [138]

Recently, a study reported that fish populations were considered to be in the “no
danger” or “low risk” categories for muscle Hg concentrations, whereas a smaller number
of populations were considered into the “high risk” category [131]. Low quantities of Hg
and MeHg were found in both marine and freshwater invertebrates, indicating minimal
toxicity risk to invertebrates or nutritional exposure to invertebrate-feeding fish in an initial
screening. Predatory long-lived fish in the Arctic have Hg concentrations in the highest
danger categories. Similar studies of screening-level evaluations need to be fine-tuned by
future research that explicitly connects muscle Hg contents and impacts in Arctic species of
fish at high or severe risk.

Although there is a dearth of data that would allow us to assess the hazards of
fish associated with human use. Recently a study reported that Hg in organic form was
accumulated in fish throughout time and was amplified up the food chain based on the
fish’s size, nutrition, and trophic position [139]. The muscle and liver contained about
average mercury of (w/w) 268.2 ng/g and 62.3 ng/g, respectively. The levels of thymidine
kinase in fish muscles and livers were positively correlated with fish size [139]. These need
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to be explored well and can provide the foundation for a more accurate risk assessment of
eating fish contaminated with Hg.

Fish muscle is the most examined tissue for Hg accumulations because it appears to
operate as a Hg reservoir to protect other organs, and it is the major fish tissue ingested by
humans. Hg also tends to concentrate in detoxifying organs like the liver and kidney [140].
For this, zebrafish (Danio rerio) were investigated with Hg-contaminated diet for 21 days
and then monitored their Hg levels for another 28 days to determine bioaccumulation and
depuration. Hg levels in fish organs were examined at different time intervals. During the
absorption phase, the liver showed the greatest accumulation rates because of its central
role in detoxification. However, the time it took for Hg to be eliminated from the Danio
rerio liver was shown [140].

Exposure to Hg2+ at ambient concentrations may cause changes in thyroid hormone
levels and the transcription of associated HPT-axis genes, disrupting the thyroid hormone
metabolism process. From 2 h post-fertilization (hpf) until 168 hpf, zebrafish embryos were
subjected to 1, 4, and 16 g/L Hg2+. Genes associated in the hypothalamic-pituitary-thyroid
(HPT) axis and thyroid hormone (TH) levels were reported by measuring their mRNA
expression levels. Levels of triiodothyronine and thyroxine were reported to be higher
in the entire body after exposure to 16 g/L Hg2+ [141]. Interestingly, Zebrafish (Danio
rerio) intestinal tissue was sequenced for transcriptomics after being exposed to HgCl2.
This research created the way for further investigations into the molecular responses and
intestinal defence systems of zebrafish in response to numerous harmful stimuli.

Elucidation of how long-term exposure to Hg combined with other HMs is more
damaging to zebrafish oocytes than exposure to either metal alone creates interesting topic
among researchers. Effects of a combination of cadmium and Hg on the ovaries of adult
zebrafish were reported [142]. Female adult zebrafish were subjected to 21 days of exposure
to 1 mg/L of cadmium chloride and 30 g/L of mercury chloride and a binary combination
of both metals. Even though this research contributed to understanding molecular level
toxicological reactions of fish to HMs and offers a new approach to evaluating environmen-
tal risk, knowledge of the links between mercury exposure and changes in gene function,
biological phenotype, and toxicological reactions, among other things, is essential. Such
studies need to be performed in the future.

4.3. Mercury Toxicity to Birds and Animals

Some seabirds had rising MeHg concentrations documented in many investiga-
tions [57]. Common acute neurological consequences of mercury in birds include im-
pairments in motor skills, coordination, and motivation. Brain MeHg was also shown
to have a negative connection with N-methz-d-aspartate receptor density and a positive
correlation with muscarinic cholinergic receptor density in fish-eating birds [143]. Brain
lesions, demyelination of neurons, changes in haematological and hormone levels, vac-
uolar alterations in hepatocytes, and increased liver inflammation have all been linked to
sublethal exposure to Hg in birds [144].

The effects of Hg poisoning on reproduction, embryonic survival, and early devel-
opment are well-documented [145]. Across the board, there is mounting evidence that
exposing birds to sublethal concentrations of Hg (5 g/g MeHg) decreases reproductive out-
put, impairs immunological function, and causes avoidance of high-energy activities [146].
According to a review of 23 different bird species, the estimated risk assessment thresholds
for MeHg are between 0.2 and >1.4 mg/kg in feed, 0.05 mg/kg/d to 0.5 mg/kg/d on a
dosage basis, 2.1 to >6.7 mg/kg wt in parental blood and 0.6 to 2.7 mg/kg in eggs [147].
More research is needed to clarify a consistent association between gene expression patterns
and harmful consequences to comprehend the full scope of mercury’s impact on birds.

In rats, Hg has a negative impact on male reproductive activities as spermatogenesis,
sperm motility, and sperm head abnormalities. Exposure to Hg may lead to buildup in the
ovaries of mice, which may change reproductive behaviour and contribute to infertility
or ovarian failure, according to the available evidence [148]. Brain mercury levels of
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5–10 mg/kg wt or higher have been linked in several studies on a wide range of mammalian
species to severe toxicity and mortality. At the same time, non-marine mammal thresholds
for MeHg poisoning and mortality are estimated to be between 25 and 30 mg/kg ww Hg in
the liver. Brain Hg values 5 mg/kg wt have been linked to a wide range of neurochemical
alterations in free-living otters and mink [149].

Symptoms of mercury poisoning in animals include a loss of coordination, sluggish-
ness, tremors, convulsions, impaired senses, and eventually death [145]. There is no doubt
that mink and otters, as adults, will perish if they are exposed to MeHg in their diets over
time. Cats, dogs, mice, and primates were used in experiments to acquire evidence of
motor dysfunction [150]. MeHg also has an impact on the visual, cognitive, and emotional
characteristics of animals. Wild mink and Greenlandic polar bears have been shown to
have a correlation between the number of muscarinic cholinergic receptors in their brains
and the amount of mercury present. Neural tube anomalies, eye abnormalities, cleft palate,
neurobehavioral alterations, and traditional poor birth outcomes such changes in body
weight and death may all arise from MeHg exposure in utero [57].

4.4. Mercury Toxicity to Human Health

There is now no longer any doubt that Hg is neurotoxic and teratogenic, but there is
less agreement on the potential effects of long-term exposure to relevant levels of Hg due
to inconsistent and even contradictory observation in human studies [57]. Hg’s toxicity
extends to all its chemical forms. The toxicity level and the nature of the harmful effects
being generated by these variants are distinct. Absorption and dispersion in the body are
affected not only by the substance itself, but also by the chemical form it comes in. Hg may
enter the body in a variety of ways, including inhalation, ingestion, and skin contact [151].
Whether Hg compounds are hazardous after being ingested, inhaled, absorbed via the skin,
or transferred during pregnancy is dependent on the route of exposure [152].

Epidemiological and experimental investigations have demonstrated that sex and
genetic background impact the total body burden of Hg. Nutritional background may
also alter the intake and distribution of Hg species. Hg may enter the body by inhalation,
ingestion, and skin contact and prenatal exposure is a concern as well [153]. The brain of
foetus is more vulnerable through transplacental exposure. Mental retardation, congenital
deformities, delayed development, visual and hearing loss, and language impairments are
only a few of the neurodevelopmental impacts of mercury exposure during pregnancy.

High amounts of elemental Hg (32–160 ng/day) are readily absorbed by breathing.
Lipids readily dissolve mercury at its elemental level. Once in the bloodstream, it quickly
enters red blood cells, where it is concentrated at a level of 95%. In the red blood cells, the
hydrogen peroxide enzyme route oxidises it even more to Hg [154]. Dental amalgams are
the primary source of elemental Hg in the mouth. Elemental Hg travels via the circulatory
system and into the brain. The brain is a good place for elemental Hg to build up and
undergo oxidation into mercuric forms. In the metabolic process, elemental Hg undergoes
oxidation, resulting in the release of mercuric ions. There is, however, a significant delay
involved with this method. Hg gas is breathed out of the lungs and excreted in the faeces.
In humans, the half-life of MeHg is estimated to be about 60 days (EPA, 1997). Elemental
Hg toxicity is represented in Table 4.

Table 4. Mercury toxicity on human health [155].

Human System Health Effects

Intestinal system Effects on the gastrointestinal system include nausea, cramping, diarrhoea, and corrosiveness,
disorders of the digestive tract.

Urogenital system Short-term proteinuria with renal dysfunction, renal failure
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Table 4. Cont.

Human System Health Effects

Central nervous system

Erethism, amnesia, sleeplessness, impaired nerve sensation, and motor skills are all symptoms of a
breakdown in the nervous system.
Acrodynia, convulsions, vision and hearing loss, language difficulties, memory loss, apathy,
paraesthesia, and limb and facial numbness are all symptoms of this condition.
Defective brain function and stunted growth in children and unborn babies.
Discomfort in the nerves, a lightening of the cerebellum and brain, erratic arm motions, difficulty
swallowing, and so on.
Skin and eye irritation, Increased blood pressure: a problem for the cardiovascular system, pain in
the chest, shortness of breath, and diminished lung capacity

Genotoxicity Abnormalities and diseases of the chromosomes, lymphocytes with chromosomal abnormalities.

High levels of Hg were linked to sterility or tubal ovulation impairment. Hg was
reported to have negative impacts on semen quality measures and to cause DNA damage in
sperm in males [156]. Longer Thrombotic Thrombocytopenic Purpura (TTP), spontaneous
miscarriages, deformities, and higher incidence of menstruation problems were all linked
to higher Hg concentrations in females. As Hg has been linked to endocrine disruption
and subsequent hormonal abnormalities, which in turn have been linked to decreased
ovarian and testicular function and impaired human fertility, it is conceivable that this is
the cause of Hg negative impact on human reproductive health [156]. Molecular processes
by which Hg affects human fertility are not understood. It is critical to learn more about
the underlying molecular consequences of Hg on sperm and eggs.

Common pharmaceutical ingredients often include thimerosal, an organic Hg molecule.
Haemoglobin in erythrocytes is a macromolecule that can be affected by Hg poisoning
due to structural and functional alterations. The haemoglobin structure was compromised
by thimerosal, resulting in the loss of its primary function as an O2 transporter. There are
less free thiol groups in haemoglobin when ethyl mercury was present [157]. There have
been a lot of animal research performed on Hg, but it is not apparent whether it influences
human health.

5. Advanced Techniques Involved in Mercury Remediation

Several techniques have been employed for mercury removal from the environment.
As Hg cannot be broken down in the ecosystem, its remediation is mainly based on
either its immobilization or removal techniques. Researchers have developed diverse
techniques to reduce Hg pollution in the environment. Usually, Hg contaminants are
transported to remote locations and eliminated by various physio-chemical methods, like
soil purification, ion-exchange precipitation, adsorption, membrane filtration, etc. [158]. The
main goal of these methods is either Hg removal from polluted sites or converting harmful
mercury residues to less dangerous ones. However, these technologies can be expensive
and sometimes inefficient in achieving in situ clean-ups, along with the generation of
hazardous by-products [159]. Thus, developing affordable and eco-friendly methods over
conventional remediation techniques are gaining popularity. Recently, several studies
were conducted to create innovative mercury clean-up materials and technologies [160].
Researchers explored novel and efficient materials in these studies, particularly with more
surface area, substantial porosity, and active adsorption regions. The advanced innovative
techniques and their mechanisms rely on lately developed physical or chemical materials
or metabolic processes of organisms, specifically plants, algae, and bacteria. Among these
Hg removal techniques, advanced oxidation processes (AOPs), immobilization, reduction,
biological remediation, etc., are the major ones explored. These sophisticated techniques
have proven more economical and eco-friendlier than traditional treatment technologies,
like thermal desorption or activated carbon adsorption. Figure 3 presents the advanced
method available for Hg remediation. Some of these green and innovative approaches to
Hg removal are described in the following subsection.
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5.1. Phytoremediation of Mercury

Phytoremediation for environmental contaminants rely on plants that absorb HMs
like Hg. Plants serve as sinks for Hg species, so selecting species with robust cellular
mercury-buffering capacities, extended root systems, and higher biomass output is es-
sential. Hg is absorbed in Hg2+ by roots and transported to shoots, where processes like
OS-relieving enzymes, vacuolar sequestration, and chelation with thiol compounds become
activated. The Hg-contaminated soil phytoremediation is comparatively more affordable
and environmentally favourable than other approaches [161]. The advantage of phytore-
mediation lies in the fact that it permanently removes Hg from the surroundings by storing
it inside plant’s biomass. In general, the plant species should be able to remove substantial
quantities of HMs, without exerting any stress on their biomass [162]. Some plants, referred
to as hyperaccumulators, are crucial components of the remediation process, which are
comparatively better performers in reducing or removing pollutants [163]. Studies on
Cyrtomium macrophyllum, involving enriching the Hg levels to 36 mg kg−1, report nil dam-
age to leaf tissue [164]. Another study reported the ability of woody plant, Nerium oleander
in enriching and effectively removing pollutants like Hg from the environment [165].

Similarly, Festuca rubra L., Equisetum telmateya, and Leontodon taraxacoides show promis-
ing results for removal of mercury from the mining place. In this study, Hg is found
to be primarily stored in the plants’ leaves, with the highest concentrations reaching
75–85 mg kg−1 [163]. Oxalis corniculata L. also show positive results; however, the majority
of the Hg is localized to stems and leaves of the plant, indicating its potential as a candidate
for mercury extraction. Aquatic macrophyte Limnocharis flava is studied to accumulate Hg
from gold mining effluents [166].

In plants, the exceptional competence to store or remove Hg occurs naturally, pos-
sibly due to plant innate defence, or it might involve microorganisms around the roots.
Reportedly, microorganisms play a considerable role in phytoremediation [167]. The rhizo-
sphere bacteria are tangled in phytoremediation and have raised interest for further studies.
It appears that rhizosphere bacteria can alter the soil pH, release chelators, and trigger
oxidation/reduction events, which increase the metals bioavailability. The Plant Growth-
Promoting Rhizobacteria (PGPRs), in particular, boost the phytoremediation efficiency of
Hg by 45% [168].

Thus, it is summarized that phytoremediation of Hg-contaminated locations is promis-
ing due to the minimal adverse ecological impact and ease of usage. However, it should be
kept in consideration that phytoremediation is somewhat time-consuming, and effective-
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ness is constrained by various factors, like root depth and availability of the HMs. Lastly,
after the harvest of plants, dealing with Hg-containing biomass remains a challenge and
requires further caution; otherwise, it can negatively affect the health of lives.

5.2. Microbial Treatment of Mercury

The exploitation of microbes for removing HMs, including Hg, from contaminated
wastes is promising because of its effectiveness and environmentally benign nature. Under
aerobic circumstances, a variety of bacteria, such as Pseudomonas putida, P. aeruginosa,
P. stutzeri, Sphingomonas sp., Cupriavidus metallidurans, and Aeromonas hydrophila, etc., reduce
Hg levels efficiently [57,169,170]. In this method, Hg-resistant bacteria reportedly have
the ‘mer operon’, which contains several Hg-tolerance genes (merA genes). The sulphate-
reducing bacteria are also tested for cleaning Hg pollution in wetlands [171]. Bacillus is
already investigated in Hg and lead removal [172]. Overall, Pseudomonas, Bacillus, and Vibrio
fluvialis are proven efficient in improving mercury-contaminated soil [173,174]. In a study,
Sphingopyxis sp. SE2 showed 44% Hg clearance rate in 6 h [175]. Cupriavidus metallidurans
MSR33 removed mercury from contaminated water under both aerobic and anaerobic
conditions, despite the fact that Hg (mercury (II)) generally damages the metabolic activity
of the organism [176]. Naguib et al. tested Stenotrophomonas maltophilia ADW10 and
showed promising results [177]. Chen et al. (2018) rather applied a two-step method, firstly
performing a chemical extraction process to increase the bioavailability of Hg, followed by
bacterial reduction [178]. Here, Hg was extracted from the soil into an aqueous phase for
10 h using ammonium thiosulphate (0.5 M) extraction. After that, 81% of Hg (II) removal
was achieved. This procedure is more economical and environmentally friendly than the
one-stage strategy, which includes only bacterial reduction [178].

5.3. Algae-Based Mercury Removal

Algae has been extensively examined for their ability to remove HMs, because they
are found everywhere on Earth. Understanding of its ability to bind metals and innate
adsorption mechanisms has dramatically improved in recent years. Conscious efforts were
made to develop innovative algae- and seaweed-based adsorbents using various modes, i.e.,
extraction, nanoparticles, molecular, chemical modes, etc. [179]. The presence of functional
groups, such as amino, hydroxyl, carboxyl, and sulfhydryl (SH), can serve as binding sites
for metals, making the algal a suitable option for removing metals like Hg [180]. Utilizing
marine macroalgae is economical for the removal of Hg. Although various types of algae
can be used for the valorisation of HM wastes, but Green algae (Chlorophyta), brown algae
(Phaeophyta), and red algae (Rhodophyta) are the three most studied categories of algae
that show different binding preferences for different metals.

Some researchers checked six species of algae, namely Fucus spiralis, F. vesiculosus, Ulva
intestinalis, Ulva lactuca, Osmundea pinnatifida, and Gracilaria sp., as mercury adsorbents.
Among these, the green macroalgae (U. intestinalis, U. lactuca) displayed the best adsorption
rates [181]. This investigation proved the competitive advantages of algae-based adsorbents,
which display a high average of metal removal effectiveness of exceeding over 80% [181].
Chlorella vulgaris mercury ion biosorption is 42.1 mg g−1 at pH 6 [182]. Mercury uptake and
accumulation by U. lactuca (green algae) is observed to 209 µg g−1 [183]. Upon accumulation,
it is bound to macroalgae tissues without changing to a more hazardous form like MeHg.
Therefore, investigating more algal and seaweed species, and considering novel approaches
to achieving low-cost adsorbent regeneration can all encourage future research that focuses
on large-scale Hg treatment.

However, there is disagreement over whether algae actually convert Hg into MeHg.
According to Lei et al. (2019), algal organic material increased the MeHg content in a
eutrophic lake [184]. Hence, further research is warranted to conclude whether the algae
species performs this conversion.
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5.4. Biochar-Based Mercury Removal

Biochar is a solid and high-carbon substance generated through the anaerobic thermal
decomposition of organic biomass, at temperatures between 300 and 1000 ◦C in an oxygen-
limited environment [185]. The biochar-based Hg elimination is a cutting-edge technique
because it has excellent removal efficiency and cost-effectiveness, besides being produced
from wood and agricultural wastes [186]. The presence of surface functional groups, such
as -OH, C=O, link, C-O, and π bonds, facilitate biochar chemical modification by attaching
thiol/amino groups and thereby increasing adsorption capabilities [187]. Studies have
examined the biochar amended with copper oxides (CuOx), cerium oxide (CeO2), and
manganese-cerium (Mn-Ce) mixed oxides, which are promising catalysts for oxidizing
Hg0 [188,189]. Lately, magnetic biochar (MBC) has received interest in treating flue gas Hg0.
However, it should be kept in consideration that biochar cannot reduce total Hg from the
ecosystem, but it can significantly lower its mobility and bioavailability and thereby reduce
toxicity to lives. Different independent studies conclude that biochar can lower the Hg
levels in soil leachate and its bioavailability in sediments [190,191]. Further, biochar can also
remove MeHg from solutions [192]. In a study, 36 biochars made from various feedstocks
at various temperatures were tested for Hg removal from an aqueous solution. The study
revealed that Hg is bound to sulphur (S), oxygen (O), and chlorine (Cl) in biochars and
suggested that chemical interactions between mercury and different functional groups are
one of the main processes of Hg removal [193]. The presence of different functional groups
on the surface of amino-embedded modified biochar (AMBC) displays maximum mercury
(II) adsorption capacity of 14.1 mg g−1 [186]. Biochar-bentonite composite (CB), prepared
by the use of millet straw and bentonite, shows maximal Hg (II) adsorption capacities of
~12 mg g−1 much higher than adsorption values of biochar and bentonite (6.5 and 2 mg g−1,
respectively) [194].

Recent research suggests that biochar can lessen Hg deposition in case of crops as
well. For instance, a pot study revealed that total dissolved mercury (THg) in the soil pore
water is reduced by 34–44% in the rice growing season, and thus levels of THg in polished
rice decrease by 58–70% [195]. In another study, similar success was observed in rice
grain, where THg fell by ~82% with a 5% w/w sewage sludge charcoal amendment [196].
These innovative investigations indicate the tremendous capacity of biochar in treating Hg-
polluted ecosystems. The attempts to chemically modify biochar are tested to increase its
adsorbing potential. However, these techniques use caustic acids, bases, and other chemical
reagents, not favourable to the environment. Therefore, research is needed to develop this
technique further and streamline it for larger-scale Hg removal from the environment.

5.5. Advanced Oxidation of Mercury

The advanced oxidation process (AOP) is phase oxidation to eliminate mercury (0)
from the flue gas. AOP is used in either conjunction with catalyst, ozone (O3), or ul-
traviolet (UV) irradiation. AOPs is broadly divided into four categories: plasma AOPs,
Titanium dioxide (TiO2) photocatalytic AOPs, photochemical AOPs, and activated oxidant
AOPs [197]. However, activated oxidant AOPs, are the most auspicious because these
have strong oxidation capability with low energy usage. These cutting-edge techniques
for accelerating oxidation are incredibly successful. Hydroxyl radicals (•OH) and sulphate
radicals (SO4

•−) are prominently involved in the oxidation of mercury (0). Additionally,
the advanced oxidation technique using hydrogen peroxide (H2O2) is particularly effective
in the oxidation of several contaminants. Since radical-induced oxidation of mercury (0)
is supposed to be effective and quick, this research will be pursued in the future for the
removal of gaseous mercury (0) [198]. The vacuum ultraviolet radiation (VUV) process
used in the activation of ozone/water/oxygen (O3/H2O/O2) system displays that (•OH)
and (SO4

•−) are responsible for oxidizing Hg0 [199]. Researchers presented a manganese
(Mn2+)-modified ferric ion Fe3+/H2O2 wet scrubbing system, also known as Mn2+-modified
Fenton-like system, which is a novel oxidative absorption procedure for elemental mercury
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from flue gas. The increase in Fe3+, Mn2+, or H2O2 concentration improved Hg0 removal
efficiency [200].

Catalytic oxidation of Hg0 has attracted attention for the oxidation Hg0 to Hg (II).
Although, the current focus is on creating more reliable and affordable catalysts. Iridium
oxide (IrO2) modified Cerium-Zirconium (Ce-Zr) solid solution catalysts successfully catal-
yse the oxidation of Hg0. It is noticed that surface-chemisorbed oxygen species helped
the first oxidation of Hg0 to mercuric oxide. Afterward, mercuric oxide might either react
with hydrochloric acid (HCl) and release gaseous mercuric chloride (HgCl2), or desorb
from the catalysts [201]. Photocatalytic oxidation is another practical method to reduce
Hg0 emission. Zhang et al. developed several photo-catalysts for the photo-catalytic re-
moval of Hg0, including silver/silver iodide/silver carbonate (Ag/AgI-Ag2CO3) [202],
silver iodide-bismuth oxyiodide/cobalt ferrite (AgI-BiOI/CoFe2O4) [203], silver/bismuth
oxyiodide/zinc ferrite (Ag/BiOI/ZnFe2O4) [204], and silver@silver chloride/silver car-
bonate (Ag@AgCl/Ag2CO3) [202]. On the contrary, bismuth and iodide hybrid silver
nanoparticles, like some other materials, might trigger the photo-catalytic oxidation of
Hg0. Here, these processes have some unsettling drawbacks, like the use of expensive
chemicals, the generation of poisonous sludge, and other associated by-products, which
requires more standardization.

5.6. Immobilization of Mercury

Immobilization procedures of Hg can effectively lower health hazards significantly
by reducing the bioavailability of Hg. Hg is immobilized effectively, with the help of
nanoparticles. In a study, iron sulphide (FeS) nanoparticles stabilized by carboxymethyl
cellulose (CMC-FeS) exhibit selectivity for Hg and show higher Hg sorption capacity
and faster sorption rate [159]. After applying zero valence, iron nanoparticles to the
HMs-contaminated soils, a significant reduction in the availability of Hg and arsenic is
observed [205]. Selenium (Se) nanoparticles are also proven successful in immobilizing
Hg0. Se nanoparticles converted 45–57% and 39–48% of the Hg0 present in the soil into
the insoluble mercuric selenide (HgSe), under aerobic and anaerobic conditions, respec-
tively [206]. However, the fate and movement of nanoparticles in the environment and
their impact on human health are poorly understood [192]. According to another study,
the goethite-impregnated carbon foam also has the potential improvement for additional
Hg, and/or other metal(loid)-contaminated industrial and/or abandoned mining loca-
tions without impacting the soil’s electrical conductivity [207]. Researchers reported that
Hg0 immobilization capacity with molybdenum selenide (MoSe2) improve by the doping
of iron/copper/nickel (Fe/Co/Ni) [208]. MoSe2-based adsorbents show Hg0 removal
effectiveness of 96.4–100% [208].

Although this technology exhibits remarkable efficiency in immobilizing Hg and is
acknowledged as an affordable and accessible way to treat mercury-polluted soils, it is
in the early stages of research, and new materials are emerging. AOPs are renowned
for bridging the gap between the treatability attained by conventional physicochemical
and biological methods, and the stringent day-to-day regulations set by environmental
legislation. Photocatalytic methods can also be used for mercury removal [209]. Table 5
briefs merits and demerits of different remediation techniques. Among several methods,
microbial treatment and biochar methods are most efficient and cost-effective.

Table 5. List of advanced and innovative techniques, and their positive and negative points in
mercury removal from the environment.

Sr. No. Name of the
Technique Positives Negatives References

Biological remediation

1. Phytoremediation More affordable;
eco-friendly; easy to usage

Time-consuming; root depth and Hg
concentration limit this process [163,164,166–168]
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Table 5. Cont.

Sr. No. Name of the
Technique Positives Negatives References

2. Microbial treatment High effectivity; economic;
and environmentally benign

Less studied; not always
appropriate for the other ecosystems [66,174]

3. Algae-based treatment

Cosmopolitans in nature;
low-cost adsorbents;
environmentally friendly; no
secondary hazardous
products formation

Time-consuming, less effective,
some controversial where hazardous
MeHg production takes place

[181,182]

4. Biochar-based method Excellent removal efficiency;
cost-effective

Time- consuming; involve the use of
caustic acids and bases and other
hazardous chemical reagents

[186,194]

Physicochemical remediation

5. Advance oxidation
processes (AOPs)

Strong oxidation capability
and low energy usage

Use of expensive chemicals;
generation of poisonous sludge, and
other associated by-products

[198]

6. Immobilization method

High and fast mercury
sorption rate; good
selectivity for Hg; affordable
and accessible

Environmental unfriendly;
generation of toxic secondary
products

[208]

6. Challenges and Future Perspectives

Due to the persistent nature of Hg, its biomagnification is of great concern. From
above discussions, it is noted that global warming, climate change from anthropological
aspects, are major factors for increased Hg exposure. In addition to marine foods, recent
observations demonstrated that rice consumers are subjected to MeHg exposure [210].
Researchers have established that Hg is one among the cause of infertility and the exposure
is mainly through fluorescent light bulbs, broken thermometers, dental amalgams, skin
lightning cream, batteries, and intake of sea foods. To establish the Hg impact on health,
it is necessary to assess a dose-dependent response. However, it is challenging due to
exposure source, toxicity, target organs and metabolism, which varies with each chemical
form. For instance, MeHg has highest bio-absorptivity in gastrointestinal tract, hence
entering central nervous system after passing blood–brain barrier. Elemental Hg exposure
majorly from occupational incidents such as amalgam, and targets the kidney and brain.
Although liquid Hg absorption is minimal, but after vaporization it can cause interstitial
pneumonia. Over time, gaseous Hg is oxidized to Hg2+, which accumulates in the kidney.
The biological half-life of gaseous Hg is 2–4 days and 90% is excreted through faeces and
urine [183]. In this section, challenges and future perspectives are presented, focusing on
Hg fate, exposure assessment, biomarkers, reduction in toxicity and biomonitoring.

Previous studies on risk assessment often assumed Hg in fish is 100% MeHg and
its complete absorption. However, few studies established that the processing method
significantly changes bioaccessibility of HMs. For instance, cooking of meagre through
grilling decreased bioaccessibility of Hg and MeHg to 54% and 64%, respectively [211]. In
addition, the bioaccessibility of Hg and MeHg in fresh and marine fishes ranges from 21.4 to
51.7% and 19.5 to 59.2%, respectively [212]. Hence, a conservative approach of considering
Hg in fish is 90–100% bioavailable can overestimate intake by 50% and additional research
is necessary to characterize and categorize different species of fish with correction factors
for proper risk assessment.

Hair is the preferred biomarker for MeHg exposure because sulphur containing pro-
teins rich in hair bind to MeHg. As recommended by WHO, Hg hair to blood ratio 250 can
be used to estimate Hg in blood. However, constant ratio consideration may be unreliable
based on exposure type, gender, age, genetical make up, and geographical area [213].
Hence, future exposure assessments should also include blood measurement due to human
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health concerns. In addition, selection of biomarkers should be categorically normalized
to individual type of exposure. For instance, during pregnancy MeHg target is foetal
brain and biomarkers reflecting the exposure is important to predict child development.
Moreover, MeHg concentration in foetal blood reaches 2-fold higher than mothers due to
active transportation across placenta. Hence, umbilical cord tissue or blood, and placenta
should be preferred biomarkers to assess pre-natal exposure of Hg isomers [214,215]. In
addition, Hg exposure is highly correlated with OS, hence OS markers such as glutathione
can be considered to assay the extent of exposure. However, Hg can interact with SH
group of glutathione, which reduces glutathione concentration and negatively correlates to
Hg exposure [216]. Contradictorily, during Hg exposure, increased glutathione synthesis
may be possible in response to OS induced by Hg [217]. Nevertheless, gender-dependent
differences in antioxidant defence systems cannot be overruled.

In agreement with the high Hg ingestion in the Amazon, the highest levels of human
exposure to Hg occur in South America. Although Hg concentration in blood has declined
globally since the 1960s, [218] its emission to the atmosphere through anthropogenic sources
have increased [219]. Nakamura et al., suggested high intake of selenium can provide
protection against Hg toxicity [220]. As rice is the most preferred staple food in the globe
and major Hg biotransporter, efforts were made to study the effect of selenium on Hg uptake
by plant. It was evidenced that selenium supplementation in soil reduced inorganic Hg in
brown rice: 26–74%; straw: 15–58%; and root: 0–48% [221]. In addition, increased plasma
selenium and omega fatty acids decreased colour vision loss [222]. Several nutrients found
in food such as selenium, iodine, and lycopene have exhibited protection against MeHg
toxicity [183]. Recent studies received attention for showcasing the role of gut microbiota
in excreting MeHg [223]. Hence, future studies focusing on Hg toxicity and potential
reduction should consider nutritional interventions through diet and agronomic practices.

Monitoring of Hg concentration in biota is essential in reducing the risk of exposure.
Many studies have characterized Hg concentrations at the organism level; however, it
is necessary to define exposure nature and source. Mass independent fractionation of
Hg stable isotopes in hair, blood, and urine can differentiate source of exposure, i.e.,
sea food (MeHg) and occupational exposure such as dental amalgam (Hg0). Whereas
mass dependent fractionation can be used to study the processes involved in chemical
transformations of Hg inside the body such as demethylation of MeHg. Sherman et al.,
provided new insights of human mercury exposure using ∆199Hg, they concluded that Hg
measured in hairs are majorly derived from sea foods, however, MeHg derived from fish
demethylated within the body and excreted through urine along with amalgam derived
inorganic Hg [224]. This disproves a generally held hypothesis that Hg in urine is originated
from exposure to inorganic Hg. Hence, consideration of internal mechanisms and tissue
location leading to Hg isotope change will help in better biomonitoring. In birds, MeHg
conjugates with cysteine residues of protein which exhibit bidirectional exchange in blood
stream. However, its toxicological risk is governed by dietary intake rather than internal
demethylation, depuration to feathers and maternal transfer [225]. Hence, stable isotope
technique can improve understanding of internal cycling of Hg in birds and expansion
beyond seabirds to others helps in understanding environmental risk of Hg. In addition,
interspecies toxicity tolerance of Hg particularly between aquatic and terrestrial mammals
exists. For instance, the demethylation site for marine and terrestrial mammals is the liver
and kidney, respectively [226,227]. Hence, additional Hg isotopes measurement expands
deep understanding of neurological developments during exposure. In summary, it is a
challenge to track Hg exposure and its cycle between the populations and sub-populations
as biomarkers and its fate changes with the type of exposure. However, with harmonized
experimental designs and advanced technologies in the near future, Hg can be removed
at both industrial and pilot scale with low cost and biobased strategies which reduces the
probability of Hg exposure.

Taking in to consideration the various levels of toxicity associated with Hg, there is a
huge research gap existing in understanding the multiple routes of entry into terrestrial
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and aquatic environment, transformation of Hg in various tropic levels, pattern of Hg
accumulation in various organisms, interaction of Hg with cellular and subcellular compo-
nents, impact of Hg pollution on physiology, biochemistry, and genetic makeup of various
organism and the final fate of Hg components in various ecosystem. Most of the available
analytical methods used for detecting the presence of mercury has a sensitivity range
below which the concentration of Hg cannot be detected from environmental samples.
Thus, development of more sensitive Hg biosensors that can detect even trace quantities
of Hg from environment samples is a major concern in understanding the level of Hg
contamination. Further, most of the reported studies are dealing with higher trophic levels,
whereas the data related to Hg toxicity towards planktons, insects, nematodes, fungi, and
bacteria are lacking in the available literature. A great deal of research studies is required
in the future to understand the chemistry of Hg toxicity in these organisms.

7. Conclusions

This review highlights the Hg bioavailability, remediation, toxicity, and its distribution
in ecological cycle. Human exposure to mercury through a contaminated food chain can
exert a potential threat to health. Monitoring of Hg concentration in biota is essential in
reducing risk of exposure. Various defence mechanisms at the cellular level, especially
antioxidant generation and OS regulators monitoring, have been identified as potential
biomarkers to assess extent of Hg exposure. Many studies have characterized Hg concentra-
tions at the organism level; however, it is necessary to define exposure nature and source. In
addition, various remediation strategies are emerging; however, reducing the gap between
the treatability attained by conventional physicochemical and biological methods, and the
stringent day-to-day regulations set by environmental legislation is highly necessary to
cope with future challenges.
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