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Abstract: As particulate organic carbon (POC) from lakes plays an important role in lake ecosystem
sustainability and carbon cycle, the estimation of its concentration using satellite remote sensing is of
great interest. However, the high complexity and variability of lake water composition pose major
challenges to the estimation algorithm of POC concentration in Class II water. This study aimed to
formulate a machine-learning algorithm to predict POC concentration and compare their modeling
performance. A Convolutional Neural Network–Long Short-Term Memory (CNN–LSTM) algorithm
based on spectral and time sequences was proposed to construct an estimation model using the
Sentinel 2 satellite images and water surface sample data of Chaohu Lake in China. As a comparison,
the performances of the Backpropagation Neural Network (BP), Generalized Regression Neural
Network (GRNN), and Convolutional Neural Network (CNN) models were evaluated for remote
sensing inversion of POC concentration. The results show that the CNN–LSTM model obtained
higher prediction precision than the BP, GRNN, and CNN models, with a coefficient of determination
(R2) of 0.88, a root mean square error (RMSE) of 3.66, and residual prediction deviation (RPD) of
3.03, which are 6.02%, 22.13%, and 28.4% better than the CNN model, respectively. This indicates
that CNN–LSTM effectively combines spatial and temporal information, quickly captures time-series
features, strengthens the learning ability of multi-scale features, is conducive to improving estimation
precision of remote sensing models, and offers good support for carbon source monitoring and
assessment in lakes.

Keywords: lake carbon cycle; Sentinel 2; POC; inversion

1. Introduction

Particulate organic carbon (POC) in lake water is a category of carbon that is unable to
be dissolved in water but is instead suspended in the water column as an organic particulate
matter [1]. This involves phytoplankton, zooplankton cells, and the associated non-living
debris, terrestrial organic particulate matter, etc. POC, a crucial component of the carbon
cycle in lakes, regulates the behavior of dissolved organic carbon, colloidal organic carbon,
and dissolved inorganic carbon in the water column and is closely linked to biological
life processes and primary productivity [2]. It additionally performs a crucial role in the
substance transformation and energy flow of ecosystems. In recent years, studies of lake
eutrophication have shown that terrestrial inputs are an important source of organic carbon
in lakes and rivers. The organic carbon, about 37% is mineralized as CO2 and CH4, 16% is
input to the oceans by riverine transport and atmospheric deposition, and the remaining
47% is buried in sediments [3,4]. To understand the movement and transformation of
particulate carbon and investigate control strategies for lake eutrophication, it is crucial to
investigate the geographical and temporal properties of POC quantities in water bodies.
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Satellite remote sensing monitoring of POC concentration distribution in surface wa-
ter can provide an effective method for quantifying the long-term trend of POC in lakes,
which can support lake biogeochemical cycle and ecosystem research. Due to the selective
absorption and scattering of POC in visible and near-infrared bands, the increase in the
concentration of POC will lead to a decrease in the propagation distance of light and an
increase in the decay rate, and the intensity of light is closely related to the concentration
and physical properties of particulate matter [5]. At the same time, the different proportions
of organic particles and inorganic particles in the particles have different absorption and
reflection characteristics for different wavelengths of light [6]. Therefore, the visible light
and near-infrared reflection spectra of water can reflect the inherent optical properties
of particulate organic carbon, including the scattering, absorption, and reflection char-
acteristics among different particles. By analyzing the characteristic sensitive bands of
particulate organic carbon, many scholars extracted different characteristic information to
invert POC content, such as the blue-green band ratio [7], Maximum Normalized Difference
Carbon Index (MNDCI) [8], Three-band combination based on the bio-optical model [9],
POC-source color index [10], etc. Meanwhile, they have found that POC has a close cor-
relation with other water quality parameters, such as Chl-a [11], suspended particulate
matter (SPM) [12], turbidity [13], etc. The models built using these features often have the
characteristics of high accuracy, wide mobility, and specificity to the study region, and
promote the application of remote sensing and spectroscopy in the quantitative analysis of
POC in the ocean [14].

However, influenced by exogenous river input, surface runoff, and human activities
in inland lake water, the changes in the concentration and composition of water compo-
nents have resulted in the high complexity and diversity of water optics [15]. We only
rely on a single sensitive feature band or bio-optical characteristics, whether empirical,
semi-analytical, or analytical methods, which are difficult to have good adaptability in
complex aquatic environments [16]. In recent years, with the rapid development of artificial
intelligence technology, many scholars have used machine-learning algorithms and trained
many data to try to find out the characteristic signals of POC in visible and near-infrared
spectra to predict the concentrations of different forms of carbon in water bodies [17–19].
Machine-learning models have powerful feature learning capabilities, can automatically
learn complex spatial and spectral features from satellite remote sensing data, and effec-
tively capture nonlinear relationships through multi-level data transformation and feature
extraction, thus improving the performance of classification and identification, which has
become a hot spot in the research of remote sensing inversion of water quality parameters,
such as partial least squares regression (PLSR) [20], artificial neural networks (ANN) [21],
support vector machines (SVM) [22], and convolutional neural network (CNN) [23], which
have good performance in predicting the concentration of POC in water.

These machine-learning algorithms provide beneficial exploration for predicting the
concentration of POC in water bodies. However, the machine-learning models are subject to
the effects of the particular environmental conditions in the lakes because they lack physical
mechanical qualities [24]. In the estimation of POC, relevant feature vectors need to be
extracted, but in lakes, the complexity of water bodies may make it difficult to fully mine the
key information of these features. Traditional spectral and spatial information is often faced
with the difficulty of insufficient information and difficult to capture features [25]. As a
result, it is necessary to further assess the potential of various machine-learning algorithms
for lake waters. With the continuous development of machine learning, especially deep
learning, we have added time-dimensional information to the deep learning algorithm,
captured the time-dependent relationship signal of lake water in time series from the
perspective of space–time multi-dimensionality, and integrated time-series features to
model [26]. This method has been studied in the field of water color remote sensing, but in
complex lake water, the estimation of POC concentration by this method has rarely been
reported. CNN–LSTM is a hybrid model combining CNN and LSTM. LSTM network can
effectively process time-series data and capture time-series features. Combined with the
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efficient extraction ability of spatial and spectral features of the CNN model, the hybrid
model can learn and extract multi-dimensional scale feature information [27], which is
conducive to improving the inversion precision of POC concentration.

In the present study, we used Sentinel 2 satellite imagery and water sample data to
evaluate the performance of machine-learning algorithms in predicting POC concentrations
in lake water. The main objectives of the study are: (i) to formulate a machine-learning
algorithm including time dimension to evaluate the predicted precision of POC concen-
tration in lake water; (ii) to evaluate the performance of satellite remote sensing based on
improved algorithms in mapping the spatial distribution and quantitative estimating the
long-term trend of POC in lakes.

2. Materials and Methods
2.1. Study Area

As one of the five major freshwater lakes in China, Chaohu Lake is situated in the
southern portion of Hefei City in central Anhui Province, near the middle and lower reaches
of the Yangtze River. The lake is a shallow, artificially controlled body of water with an
overall “long and narrow” shape and is 55 km long from east to west, 21 km wide from
north to south, 176 km surrounding its perimeter, an average depth of 2.89 m, a storage
capacity of 20.7 × 108 m3 and an area of 780 square kilometers. Nine major rivers enter
and exit the lake, with the Hangbu River having the greatest input, with approximately
60% of the total water entering the lake, and most of the lake’s water flows into the Yangtze
River through the Yuxi River in the east. The overall management of Chaohu Lake has
risen recently, and the lake’s ecosystem and water quality have both significantly improved.
However, the endogenous lake has an elevated level of nutrients, the water is still eutrophic,
and there are occasional outbreaks of cyanobacterial blooms [25]. As a result, synthetic
management and scientific control strategies need to be strengthened. Figure 1 shows the
study area and the locations of the sampling sites.
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Figure 1. (a) Location of study area; (b) Sampling points of Chaohu Lake.

2.2. Data Acquisition and Pre-Processing
2.2.1. Water Sampling and Laboratory Analysis

A total of 38 water samples were taken in the lake as part of the field water sample
collection on 3 October 2022 and 10 June 2023. A water sampler was used to collect water
samples from 30 cm to 50 cm below the water’s surface during the sampling procedure.
The obtained water samples were stored in 500 mL sampling vials, each one bearing a
unique number, and kept at a temperature between 2 and 4 ◦C. Then they were tested to
determine the mass concentration of POC. The water samples were filtered with GF/F,
and the filtered samples were subsequently cauterized for four hours at 450 ◦C in a muffle
furnace. To eliminate inorganic carbon, the samples were subsequently acidified in strong



Sustainability 2023, 15, 13043 4 of 15

hydrochloric acid for 12 h. After being acidified, the samples were dried for 24 h at 60 ◦C in
an oven before being weighed and packaged. The POC concentration at each location was
then estimated after the percentage carbon content of the sample was determined by an
elemental analyzer (EA3000) [28,29]. The statistical description of the POC concentration of
the water samples is shown in Table 1.

Table 1. Statistical characteristics of the POC concentration of the water samples.

Number Min
(mg/L)

Max
(mg/L)

Mean
(mg/L)

Standard
Deviation (mg/L) Kurtosis Skewness

38 11.8 54.6 24.69 12.15 1.144 0.186

2.2.2. Remote Sensing Data

Remote sensing data were obtained from current Sentinel-2A MSI images from the
European Space Agency (https://scihub.copernicus.eu (accessed on 20 June 2023)), which
were acquired on 3 October 2022 and 10 June 2023, respectively. The inversion of POC
concentration is based on the data from 3 October 2023. The image files are at the L2A level
and have been pre-processed by radiometric calibration and atmospheric correction. In
this study, all bands of the images were resampled to a spatial resolution of 10 m using
the SNAP 7.0 software officially recommended by the European Space Agency and were
imported into the ENVI 5.3 software for mosaic and cropping. Finally, ArcGIS 10.6 software
was used to extract the multi-band remote sensing reflectance of 38 sample points on two
different date images.

2.2.3. Data Pre-Processing

The sensitive band was chosen following the correlation coefficient by examining
the correlation between the single-band reflectance, the combination of band reflectance,
and the POC concentration of the sample locations. Then, to determine which waveband
combination had the strongest connection with POC concentration, the wavebands with the
highest POC correlation were ultimately selected and merged. The correlation coefficient is
expressed as.

R =
∑ (x− _

x)(y− _
y)√

∑ (x− _
x)2
√

∑ (y− _
y)2

(1)

where R is the correlation coefficient and x and y are the mean values of the variables x and
y, respectively [30].

Finally, a matrix with a sample matrix of 38 × 10 is obtained. Among them, 38 is the
number of sample points, and 10 is the number of wavebands and waveband combinations.

The resulting band reflectance is normalized, which is beneficial to reduce the influence
of environmental factors on spectral reflectance and avoid the noise generated by spectral
reflectance by other interference factors. The calculation formula is as follows:

Y =
X− Xmin

Xmax−Xmin
(2)

In Equation (2), X is the band reflectance, Xmin is the minimum band reflectance, Xmax
is the maximum band reflectance, and Y is the normalized band reflectance [31].

2.3. Methods
2.3.1. Backpropagation Neural Network (BP)

BP is a commonly used artificial neural network model, mainly for solving classi-
fication and regression problems. It consists of three layers: input, hidden, and output
layers, each of which consists of multiple neuron nodes. By creating weighted connections
between nodes, the network may transfer signals and compute outcomes [32].

https://scihub.copernicus.eu
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The training process of the BP neural network is based on a backpropagation algorithm.
The network is initially supplied with input samples, and then forward propagation is used
to generate the outputs. After that, a distinction between the output and the true value
is determined, and the difference is given back to the hidden and input layers through
backpropagation layer by layer to reduce the error. This procedure is repeated until the
error converges or a preset training target is attained. Through iterative optimization, it has
been determined that the number of layers in the BP neural network is 6, and the number
of neurons in the fully connected layer is 100 [33].

2.3.2. Generalized Regression Neural Network (GRNN)

GRNN is a modification of Radial Basis Function Neural Network (RBF) with a four-
layer neural network structure, usually divided into an input layer, a pattern layer, a
summation layer, and an output layer. GRNN can build generalized regression neural
networks with radial basis neurons and linear neurons, which are suitable for function
approximation. Radial basis functions and competing neurons can build probabilistic
neural networks, which are commonly used in nonlinear regression methods and have a
wide range of applications in problems such as prediction and classification [34].

The output layer’s function is to transfer the input sample data directly to the pattern
layer, and its number of neurons is equal to the number of dimensions of the input samples.
A Gaussian function is utilized as the activation function in the mode layer, which has
the same amounts of neurons as the input layer. Equation (2) is used to determine the
transfer function for each neuron i. Equations (3) and (4) describe the two different types of
neurons in the summation layer, respectively. Equation (5) is used to calculate the number
of neurons in the output layer, which is equal to the output vector’s dimensionality for the
sample data [35]. As GRNN only needs to adjust a single parameter, the optimal value can
be determined through simple experimentation and adjustment. In this case, the value of
SPREAD is set to 0.50.

Ti = e−
(X−Xi)

T (X−Xi)
2σ2 i = 1, 2, . . . , n (3)

SD =
n

∑
i=1

Ti (4)

SN =
n

∑
i=1

(YiTi) (5)

Y =
SN
SD

(6)

where Xi in Equation (2) is the input sample data corresponding to neuron i (where i is 1, 2,
. . . , n). σ is a smoothing parameter, and the choice of σ is closely related to the accuracy
of the model, when σ is set small tends to 0, the model prediction value is close to the
training sample value, resulting in poor generalization ability of the model; when σ is set
larger, the predicted value is close to the mean of all samples; Yi in Equations (3) and (4) is
the i-th sample predicted value. Y in Equation (5) is the output variable with maximum
probability [36].

2.3.3. Convolutional Neural Network (CNN)

A Convolutional Neural Network is a feed-forward neural network that consists
of an input layer, a convolutional layer, a pooling layer, a fully connected layer, and an
output layer. CNN processes data with a grid structure through convolutional operations,
extracting local features and using pooling layers to reduce the feature dimensionality. The
main advantage is the sharing of weights, which can reduce the number of parameters,
simplify the model, and reduce the computational burden [37].

The main difference between CNN and traditional neural networks is the convolu-
tional and pooling layers. The convolutional layer effectively extracts the data features by
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convolving all the input information. The pooling layer compresses the input features to
simplify the computational complexity of the network. This feature extractor, consisting
of a convolutional layer and a pooling layer, maximizes the potential information of the
input values and reduces the bias that can be introduced by human extraction of the data.
For low-dimensional data, one-dimensional convolution is often used, and its output for
sequence feature extraction is:

Y = σ(WX + b) (7)

where Y is the extracted feature; σ is the sigmoid activation function; W is the weight
matrix; X is the time series; and b is the bias vector [38].

2.3.4. Convolutional Neural Network–Long Short-Term Memory (CNN–LSTM)

Long Short-Term Memory (LSTM) is a temporal recurrent neural network specifically
designed to solve the long-term dependency problem that exists in Recurrent Neural
Networks (RNN). All RNNs consist of repeating neural network modules that form a
chain structure. LSTM networks are an improvement on RNNs by introducing a gate
structure that includes forgetting gates, input gates, and output gates. The forgetting gate
determines which information in the cellular memory cell needs to be forgotten, the input
gate determines which new information needs to be added to the cellular memory cell, and
the output gate determines how the information in the cellular memory cell is passed on to
the next step. The LSTM network model can be trained by a temporal backpropagation
algorithm to the LSTM network as a means of determining the relevant parameters of the
LSTM [39].

The cellular memory unit in the LSTM network gives it good memory capability and
is widely used in fields such as time-series prediction. Its specific formula is:

ft = σ(W f [ht−1, xt]) (8)

it = σ(Wi[ht−1, xt] + bi) (9)

∼
Ct = tanh(Wc[ht−1, xt + bc]) (10)

Ct = ft ⊗ Ct−1 + it ⊗
∼
Ct (11)

ot = σ(Wo[ht−1, xt] + bo) (12)

ht = ot ⊗ tanh(Ct) (13)

where Wf, Wi, Wc, Wo are the weight matrices; bf, bi, bc, bo are the corresponding bias
vectors; tanh is the hyperbolic tangent function; ⊗ is the dot product; ht−1 is the output
at the previous moment; ft is the retained degree value; Ct−1 is the memory state at the

previous moment; it is the added degree value of the state at the current moment;
∼
Ct is the

intermediate state; Ct is the current state; ot is the output degree value; ht is the output at
the current moment; xt is the input at the current moment [27].

Figure 2 depicts the CNN–LSTM structure, which combines CNN and LSTM to create
a new network structure. Data exceptions like data noise and jumps are removed through
processing and optimization of the incoming data. From the time-series data of the unit
operation-related parameters, CNN is utilized to extract features. The CNN algorithm is
used to extract the relationships between the data in the parameters, reduce noise, and
make the sequence features of each parameter more obvious, to obtain the data sequence
features of the parameters related to the unit operation. The LSTM network is then used to
extract the time-series features of the reconstructed data, and the regularization method
is added after the LSTM network to lessen the overfitting phenomenon. To complete the
prediction, inverse normalization is applied to the LSTM network’s output data [40].
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In deep learning models such as CNN and LSTM, some hyperparameters need to
be set for model training. Among them, the number of epochs represents the number of
iterations of learning the entire training dataset, and the batch size represents the number
of samples used in each training iteration. Due to the possibility of neural networks
overfitting, we introduce dropout and early stopping strategies and choose the Adam
algorithm to optimize the learning rate. Regarding activation functions, we adopt the
ReLU function [26]. In this study, the main model structure consists of a ten-dimensional
input, one-dimensional output, three convolutional layers, and two long LSTM layers. The
convolutional layers perform deep feature extraction using a kernel size of 3 × 1 and a
“Same” padding strategy. The pooling layers then perform sampling on the data from
the convolutional layers using a kernel size of 2 × 1 and a “Same” padding strategy. The
Flatten layer transforms all the features into a one-dimensional form. For the CNN, we
set the number of epochs to 800, mini-batch size to 16, dropout rate to 0.3, and learning
rate to 0.001.

2.4. Model Evaluation

The model is assessed by the coefficient of determination (R2), root mean squared
error (RMSE), and residual prediction deviation (RPD) metrics. R2 serves as the primary
indicator of the degree of correlation between various variables; the higher the correlation
coefficient, the more significant the correlation. A measurement of the mean error in the
data is the RMSE. The RMSE is capable of demonstrating how variable the data are, and
the lower it is, the more accurate the model’s forecast is. A statistical metric called RPD is
used to evaluate the effectiveness of models for quantitative analysis. When RPD ≤ 1.5,
the model results are poor, and accurate values cannot be obtained; when 1.5 < RPD < 2
the model is considered moderately effective and when RPD ≥ 2 the model has excellent
predictive power [41].

R2 = 1−
∑
i

(
ŷi − yi

)2

∑
i
(

_
y− yi)

2 (14)

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(15)
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RPD =
SD

RMSE
(16)

where ŷi is the predicted value of the i-th sample, yi is the measured value of the i-th sample,
_
y is the mean value, n is the total number of samples and SD is the standard deviation.

2.5. Modeling

Using Sentinel-2A remote sensing images and water surface sample point data, four
machine-learning models were applied to a remote sensing inversion model of the POC
concentration in Chaohu Lake. For modeling, the waveband reflectance datasets and
water surface data of 38 sample points were used as input datasets, and the datasets were
randomly divided into training datasets and test datasets, of which the training datasets
were 26 groups and the test datasets were 12 groups, as shown in Table 2. The range of
POC content in the training set included the range of the validation set, which ensured
the applicability of the established models to the validation set. The best prediction model
for POC concentration was selected and comparatively analyzed by revealing the effect
of different feature variations on the accuracy of the four models. The POC concentration
prediction process is shown in Figure 3.

Table 2. Descriptive statistics of sample sets.

Sample Set Number
POC Content (mg/L)

Min Max Mean Standard Deviation

Training Set 26 11.80 54.60 25.77 12.90
Validation Set 12 13.80 52.00 22.34 11.09
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3. Results and Discussion
3.1. Relevant Analysis

In the remote sensing inversion of water quality parameters, the magnitude of Pear-
son’s correlation coefficient is usually used as an evaluation index. The optimal band is
selected from the different combination forms of remote sensing image bands for mod-
eling, and the correlation coefficients are calculated for the different band combination
forms. Band1, Band5, Band6, Band7, Band8, Band9, and Band11 of Sentinel-2A images
are selected and the image spectra of sampling points are collected for further analysis.
The correlation coefficient matrix between single-band reflectance and POC concentration
is given in Figure 4, labeling the areas of higher correlation coefficients between band
combinations and POC concentration. It can be seen that the single bands are positively
correlated with the POC concentration and have a good correlation, with Band 6 having the
highest correlation with the POC concentration (0.626). After conducting band combination
and correlation coefficient analysis, we can use the exhaustive method to select the best
band combination and perform operations such as summing, differencing, ratioing, and
ratio combination (ri + rj)/(ri − rj) on the spectral values of Sentinel-2A imagery. Here, ri
and rj represent the reflectance of the i-th and j-th bands (i 6= j) [42]. It shows that there is a
high correlation among the variables when different bands are combined, with correlation
coefficients ranging from −0.500 to 0.677. Sensitivity analysis helps us identify variables
that have a significant impact on the model’s output, enabling us to recognize the key
variables that affect the model’s performance. Multiple experimental results have shown
that the model based on sensitive spectral variables and POC concentration, as shown in
Table 3, has an R2 of 0.60 to 0.90. The sensitive spectral variables used for modeling include
B5, B6, B7, B8, B9, B9/B1, B9/B11, B11-B9, *B1, and *B2. This involved a total of ten band
combinations participating in the BP, GRNN, and CNN–LSTM algorithms to construct a
remote sensing prediction model for POC in Lake Chaohu.
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Table 3. Precision Analysis of different POC models.

Model Type
Training Set Validation Set

R2 RMSE RPD R2 RMSE RPD

BP 0.76 6.17 2.09 0.61 7.38 1.50
GRNN 0.82 5.70 2.26 0.75 5.57 1.99
CNN 0.87 4.84 2.67 0.83 4.70 2.36

CNN–LSTM 0.93 3.41 3.78 0.88 3.66 3.03

3.2. Model Analysis of POC Prediction

From Table 3 and Figure 5, the prediction results of the four models of BP, GRNN,
CNN, and CNN–LSTM were compared, and CNN–LSTM has a good predictive value in
predicting POC concentrations. By comparing the training set and validation set, the BP
model performs the worst in terms of performance indicators, with a weaker ability to fit the
data and a lower degree of agreement between predicted results and measured values. The
R2 values are 0.76 and 0.61, the RMSE values are 6.17 and 7.38, and the RPD values are 2.09
and 1.50, respectively. The GRNN model has shown some improvements in performance
indicators on both the training set and validation set, with R2 values of 0.82 and 0.75, RMSE
values of 5.70 and 5.57, and RPD values of 2.26 and 1.99, respectively. Compared to them,
the CNN model has significantly improved predictive indicators, performing well on both
the training set and validation set, with R2 values of 0.87 and 0.83, RMSE values of 4.84 and
4.70, and RPD values of 2.67 and 2.36, respectively. Finally, the CNN–LSTM model, as the
optimization of the CNN, has the best prediction effect with R2, RMSE, and RPD of 0.88,
3.66, and 3.03, respectively, with 6.02% and 28.4% improvement in R2 and RPD over the
CNN, and 22.13% decrease in RMSE.
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Sustainability 2023, 15, 13043 11 of 15

3.3. Inversion Results and Analysis

For the four models, the distribution of POC concentrations was calculated in the
research region, respectively. As shown in Figure 6, the CNN–LSTM inversion results
show that the mean POC concentration in the lake area is 22.88 mg/L, with a standard
deviation of 10.19 mg/L, a maximum of 49.2 mg/L, and a minimum of 20.81 mg/L. This is
consistent with the trend of the mean concentration of 22.34 mg/L, a standard deviation
of 11.09 mg/L at the sample points. POC concentration is lower in the lake’s eastern and
central regions and higher in the western section of the lake, demonstrating a trend of
spreading from west to east. In addition, because of shipping and human activities near
the islands in the lake, the POC concentration is higher near the shipping line extending to
the islands.
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The main reasons for the spatial distribution of POC may be a mix of factors including
water quality, plant development, bottom sediment, and pollutant input, according to the
lake’s spatial distribution of POC concentration. In some regions of the western shore, due
to the high terrain, large lake runoff, plentiful aquatic plant and herbaceous plants along
the coast, high concentration of pollution particles, and organic carbon being stirred and
transported, facilitating the transmission and diffusion of pollutants, these result in high
POC content in some areas of the west bank. In the center and the eastern half of the lake,
the water quality is higher, and the water flow is less erratic, which favors the deposition
of organic carbon and has a lower POC content. Along the coastal area around the lake
and some of the lake inlet areas, several rivers converge into the lake, including the Nanfei
River, Fifteen Mile River, Pai River, Shuangqiao River, and Yuxi River. Due to the influence
of rivers and lakes, the intake of organic matter from land-based sources has increased the
input and output of pollutants, resulting in high POC content.
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4. Discussion

CNN–LSTM is a high-performance spatiotemporal deep learning model with strong
feature extraction and model expression capabilities. However, establishing a POC concen-
tration inversion model with high applicability and predictive accuracy remains challenging
in complex lake water bodies. In this study, we used the CNN–LSTM model to investi-
gate the performance of POC concentration inversion based on Sentinel-2 multispectral
satellite data.

Through a comparison of four models, we found that the CNN–LSTM model out-
performed the BP, GRNN, and CNN models in estimating POC concentration in lakes.
The R2 and RPD values of the CNN–LSTM model increased by 44.26% and 102.0% com-
pared to those of the BP model, 17.33% and 52.26% than those of the GRNN model, and
6.02% and 28.39% than these of the CNN model. Moreover, the RMSE values decreased by
50.41%, 34.29%, and 22.13%, respectively for the BP, GRNN, and CNN models. CNN–LSTM
uses time-series modeling to learn and extract multi-scale features in the spatiotemporal
dimension, effectively capturing nonlinear relationships in spatiotemporal data, which
is the key to good prediction [43]. This is consistent with the findings of Baek [26] and
Yang [44], indicating that the CNN–LSTM model demonstrates good performance in terms
of inversion accuracy and model stability. It suggests that the CNN–LSTM model is feasible
and has high accuracy for remote sensing modeling and prediction of POC concentration.

From the perspective of model prediction results, the BP model performs poorly in
terms of accuracy and stability. It is sensitive to initial weights and tends to become stuck
in local optima. The GRNN model, on the other hand, generally performs well. GRNN
is a sample-based non-parametric regression algorithm that learns quickly, but it is not
sensitive to original parameters and may not perform well with complex temporal data
in large datasets. CNN can achieve good performance in predicting POC concentration,
but convolution often searches for patterns from high-dimensional data, and the size of
the kernel limits the search for spectral representation. Additionally, CNN requires a
large training dataset and computational capabilities [37]. The CNN–LSTM model is a
hybrid model that effectively reduces the number of training parameters. It can extract
high-dimensional features and time-series features from data. Using activation functions,
it can create a nonlinear mapping relationship between optimal characteristics and POC
concentration, demonstrating strong generalization ability and effectively improving the
accuracy and stability of POC prediction [27].

This study also validated the feasibility of CNN–LSTM on a small sample dataset. The
results showed the predicted value of the model had an R2 value of 0.88, an RMSE value of
3.66, and an RPD value of 3.03. This has been confirmed by El Bilali [45] and Talukdar [46],
who effectively improved the accuracy of model prediction using the Deep Dense Neural
Network model with 20–60 small sample datasets. Their results showed high Nash Sutcliff-
Efficiency values up to 0.91 and an R2 value of 0.98. The CNN–LSTM model uses a small
sample dataset to achieve efficient feature extraction and time-series modeling in a short
training time, avoiding high noise and excessive details in large datasets during training,
and reducing overfitting risks. Additionally, the model can accurately and quickly capture
spatiotemporal multi-scale features from limited data, make accurate feature discrimination,
and improve the performance of the model in small sample environments [47].

There are also limitations in using small sample datasets. First, a small sample dataset
may not fully cover the various complex water environments in lakes, making it difficult to
learn the potential structures and features in the samples. This can limit the algorithm’s
ability to generalize. The randomness and incompleteness exhibited by small sample
datasets make the model more sensitive to slight variations in the input data, potentially
affecting the stability of the model. Second, the spectral resolution of Sentinel-2 satellite
multispectral data is limited, and a small number of band sequences may result in the loss
of some spectral feature details. The accuracy and robustness of model predictions need
further testing [48].



Sustainability 2023, 15, 13043 13 of 15

5. Conclusions

Taking Chaohu Lake as an example, the predictive performance of machine-learning
algorithms is explored for estimating POC concentration using Sentinel-2A satellite and
measurement data from water samples. A CNN–LSTM model is presented for estimating
the POC concentration of Class II water in lakes by comparing BP, GRNN, and CNN. A
thematic map of the spatial distribution of POC concentration is presented through model
prediction. The following are the primary conclusions:

(1) The BP, GRNN, and CNN models for POC in Class II water have good prediction
ability, with R2 above 0.6, RSME 3.66~7.38 mg/L, in which the CNN model has better
performance with R2 0.83, RSME 4.7 mg/L, and RPD 2.36, indicating that CNN has
strong feature learning and nonlinear modeling ability, and can better simulate the
spatial characteristics of POC in complex water bodies.

(2) When time dimension information is incorporated into the CNN model, CNN–LSTM
uses a gating mechanism with higher memory and generalization capabilities and has
good prediction ability, stability, and robustness with R2 0.88, RMSE 3.66 mg/L, and
RPD 3.03, which is 6.02% and 28.4% higher than CNN’s R2 and RPD, and 22.13% lower
than RMSE. This is in a good performance range, indicating that the CNN–LSTM
model can better predict the temporal and spatial characteristics of POC in lake water.

(3) According to Sentinel 2 satellite inversion results, the average POC concentration
was 22.88 mg/L, with a standard deviation of 10.19 mg/L in Chaohu Lake. POC
concentrations were significantly greater in the western region of the lake and lower in
the lake’s central and eastern regions, indicating a spreading situation from west to east.

As can be seen, the CNN–LSTM model for POC remote sensing assessment of Class II
lake water can be used as a reference method for the quick acquisition of POC data on the
lake water surface. This will significantly provide real-time data support for the dynamic
management of the ecological environment in the lake basin. However, the prediction of
POC concentration in water usually requires many continuous and complete time-series
data. A small sample dataset may lead to insufficient training of the model [49]. As spectral
and time-series dimensional information increases and the sample dataset continues to
expand, the predictive performance of the model needs further testing in the future. Mean-
while, the POC concentration in water may be affected by multiple environmental factors,
such as surface environment variables, water flow speed, meteorological conditions, etc.
These factors may result in features not being fully captured, and the adaptability of the
model to the new environmental variables needs to be further evaluated [50].
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