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Abstract: Using agronomic measures to remediate heavy metal chromium (Cr) on farmland is the
main measure to achieve the safe utilization of crops. This study was conducted under field trial
conditions using locally formulated fertilizers (urea–ammonium phosphate–potassium chloride)
as the control. Different fertilizer-type treatments such as ammonium sulfite, calcium magnesium
phosphate, and diammonium phosphate were set up. Biochar and soil conditioner PX5B were chosen
to compare the impacts of each to study the effects of different fertilizer types on maize yield, Cr
content in each part, the bioconcentration factor, the translocation factor, and the available content
of Cr in the soil. The results show that, compared with the formulated fertilizer, all treatments
improved pH and soil organic matter and reduced the effective state of Cr content in the soil
by 15.05% to 42.66%. The Cr content of maize grains under biochar and soil conditioner PX5B
treatments were 0.80 mg·kg−1 and 0.88 mg·kg−1 with a 39.95% and 33.83% reduction, respectively,
whereas the Cr content of maize grains under various fertilizer treatments was in the range of
0.82~1.32 mg·kg−1 with a 0.75%~38.19% reduction, respectively. Among the different fertilizer
treatments, urea–calcium magnesium phosphate–potassium chloride, urea–diammonium phosphate–
potassium chloride, ammonium sulfite–calcium magnesium phosphate–potassium chloride, and
ammonium sulfite and urea–calcium magnesium phosphate–potassium chloride treatments reduced
the Cr content of maize grains to within the range of the national food safety standard of China
(1.0 mg·kg−1). The best reductions in the effective state Cr content of the soil and the Cr content
of maize grains were achieved by ammonium sulfite–calcium magnesium phosphate–potassium
chloride treatment, which was able to achieve similar reductions to the two conditioners. It also had
a reduction effect on the Cr content of maize roots and straws, the aboveground bioconcentration
factor (BCF), and the primary translocation factor (PTF). Therefore, the combination of ammonium
sulfite and calcium magnesium phosphate is the best fertilizer combination to block the absorption of
Cr by maize and has some implications for the fertilization of farmland under acidic soil conditions
of Cr contamination.

Keywords: fertilizer; maize; heavy metal Cr; bioconcentration and translocation

1. Introduction

Chromium (Cr) is considered one of the most toxic heavy metals found naturally [1].
It is influenced by both natural and human causes and is directly tied to the parent material
that forms the soil, the kind of soil, the geological topography, the pH, the climate, and the
type of land use [2]. The Cr pollution in the environment is mainly due to the emission
of waste from industrial production—for example, metallurgical, minerals, steel, metal
plating, textile dyeing, and other industrial fields [3]. There are several different valence
forms of Cr in soil, but Cr (III) and Cr (VI) are the most prevalent and stable states in the
environment [4]. Cr (III) exists in nature mainly in the form of Cr2O3 and tends to produce
Cr(OH)3 precipitation under alkaline to slightly acidic conditions in soil [5,6]. Cr (III) is a
trace element that is necessary for humans and plays a vital part in glucose, protein, and
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fat metabolism [1,7]. Cr (VI) usually presents in the form of CrO4
2− and Cr2O7

2−, which
are easily transported and highly soluble in water [8]. Cr (VI) is significantly more toxic
than Cr (III) because of its high water solubility and membrane permeability [9,10], and
its toxicity is attributed to highly unstable Cr (V/IV) producing reactive oxygen species
within cells [8,11]. Cr is not an essential element for plants, and its presence affects plant
growth and development [12], such as inhibition of seed germination, inhibition of cell
development, pigment degradation, and alteration of antioxidant enzyme activity [13,14],
and the effect of Cr (VI) on plants is greater than that of Cr (III) [15]. When plants are grown
in Cr-contaminated areas, Cr is taken up by the plant and accumulates in the edible parts,
thus entering the food chain [16,17]. Cr (VI) is a potential carcinogen for humans [18]. It can
also cause a variety of diseases such as asthma, neurological and cardiovascular diseases,
and organ failure when it enters the body through the food chain [19].

Fertilizer application as an agricultural activity is an essential part of agricultural
production, but it has a certain impact on heavy metals in the soil [20]. It has become an
agronomic measure with the potential for heavy metal remediation in recent years due to
its simple operation, low cost, and easy promotion in large fields [21,22]. Fertilizers not only
increase the nutrients in the soil to improve crop yield and quality but also change the form
of heavy metals in the soil and thus affect the uptake of heavy metals by plants. Fertilizers
not only increase the nutrient elements in the soil to improve crop yield and quality but also
change the morphology of heavy metals in the soil, which in turn affects the uptake of heavy
metals by plants [23]. For example, urea can significantly reduce the water soluble plus
exchangeable fraction of Cu, Cr, and Ni and increase those in Fe–Mn oxide-bound fractions.
KH2PO4 can reduce the soluble plus exchangeable fraction and carbonate-bound fractions
of Cu, Cr, and Ni and increase Cu and Ni in the residual fraction and Cr in the Fe–Mn
oxide-bound fraction [24]. Ammonium iron (II) sulphate ((NH4)2Fe(SO4)2) reduces Cr (VI)
to Cr (III) and forms a precipitate, decreasing the availability of Cr in the soil [25]. However,
different types of fertilizers have different remediation effects on heavy metals as a result
of the different elements they contain [26]. Nitrogen fertilizer affects the activity of heavy
metals such as Cd, Pb, and Zn mainly through inter-root acidification and alkalinization of
nitrate and ammonium nitrogen [27,28], and its transport affects the physical and chemical
environment of soil, the iron film on the root surface, and the subcellular structure of
various organs of the crop. Therefore, the application of nitrogen fertilizers mitigates
the toxic effects of heavy metals such as Cr, Cd, Cu, and Ni on plants [29,30]. Fertilizers
containing phosphorus have a solidifying effect on Cd, Pb, and Cu in the soil by altering
the soil environment, such as pH, cation exchange capacity, and organic matter [31,32], as
well as influencing the uptake and transport of heavy metals (Cd, Pb, and As) by plants
through the regulation of plant physiological metabolism [33]. Some organic fertilizers
and restoration fertilizers can also be very effective in reducing the effectiveness of heavy
metals in the soil and reducing the accumulation of heavy metals by plants. Yi et al. found
that seaweed organic fertilizer reduced Cr bioavailability, and in combination with apatite,
biochar (1:0.5:1.5) resulted in a 65.7% decrease in Cr content in maize grain [34]. However,
it has also been shown that the long-term application of nitrogen and phosphorus fertilizers
can, on the contrary, increase the biological effectiveness of heavy metals [35]. The effects
of different nitrogen and phosphorus fertilizers on heavy metals have been studied in
different ways, which may be related to different fertilizer application rates, crop types, or
soil environmental conditions.

Soil conditioners have been widely used in recent years due to their effectiveness in
the remediation of heavy metals in agricultural fields [36]. For example, sewage sludge
biochar tubule can significantly decrease the total Cr and Pb content in contaminated soil
by adsorption, ion exchange, complexation, and precipitation, which was concluded from
a characteristic analysis [37]. Nanoscale zero-valent iron (nZVI) and modified nZVIs can
reduce Cr (VI) to Cr (III) in contaminated soils, which in turn generates Cr(OH)3 precipitate,
thereby reducing its bioavailability and plant bioaccumulation [38,39]. It has also been
found that the use of some soil conditioners may cause some damage to the nutrients,
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structure, and microbial community of the soil [40]; add additional costs; and affect whether
they can be used all year. Therefore, it is necessary to study the effect of fertilization on
heavy metals [41].

In this research, maize was used as the planting crop, urea and ammonium sulfite
were selected as nitrogen fertilizers, and ammonium phosphate, calcium–magnesium
phosphate, and diammonium phosphate were selected as phosphorus fertilizers. Different
fertilizer combinations were set up and two soil conditioners (biochar and soil conditioner
PX5B) were selected that were more effective in repairing heavy metals in previous trials
in this laboratory to carry out an effect comparison to investigate the effects of different
fertilizer combinations on maize yield, characteristics of Cr accumulation in various parts
of maize, soil effective state Cr content, and physicochemical properties under mild to
moderate Cr-contaminated soils and to screen for suitable fertilization measures for local
Cr-contaminated soils.

2. Materials and Methods
2.1. Study Area Overview

The test site was located in a village of Jianxi Town, Mingguang City, Anhui Province,
China, which has a warm–temperate continental monsoon climate with four distinct
seasons, rain and heat, enough light, and an average annual temperature of 15.2 ◦C. Rice,
maize, and wheat are the main crops grown locally. The crop in the experiment was maize,
which was previously planted as rice. The soil type is volcanic ash soil (also known as Guan
Shan chicken dung soil), which has a medium soil fertility level. Before the test plot was
divided, a background soil sample of one mixed soil sample from 0 to 20 cm was obtained
using the five-point sampling method to determine the background values of each index in
the test site. The physicochemical properties and total Cr content of the soil in the test site
are shown in Table 1.

Table 1. Physicochemical properties and total Cr content of soil.

Detection Indicators Concentration Unit

pH 5.23 /
Soil organic matter 18.81 g·kg−1

Total nitrogen (N) 1.31 g·kg−1

Hydrolytic nitrogen (N) 154.82 mg·kg−1

Available phosphorus (P) 10.57 mg·kg−1

Available potassium (K) 164.00 mg·kg−1

Total Cr 255.73 mg·kg−1

2.2. Experimental Materials and Design

The field trial was conducted in Ming Guang City in 2021. The test maize variety
was Denghai 605, which was purchased at the local agricultural market. The test con-
ditioner included biochar and soil conditioner PX5B. The biochar was purchased from
Woda Environmental Protection Material, and the soil conditioner PX5B was purchased
from Gefeng Environmental Protection Technology (GFTEM) and was mainly composed of
nanomaterials, clay minerals, and ferrous sulphate. Fertilizers for testing included locally
formulated fertilizers (18-12-15), urea (N > 46%), ammonium sulfite (N > 24%), calcium
magnesium phosphate (P2O5 > 12%), diammonium phosphate (N > 18%, P2O5 > 46%), and
potassium chloride (K2O > 60%). Locally formulated fertilizers (18-12-15) were purchased
and provided by local farmers, and the rest of the fertilizers were purchased from GFTEM.

Trial sites were divided into a zone of additional conditioner application (Zone D), a
zone of different fertilizer types (Zone Y), and a control group (CK), for a total of 8 treat-
ments. Fertilizers used in Zone D were the same as for CK, and only nitrogen and phospho-
rus fertilizers were changed in Zone Y. All treatments were potassium chloride. Treatment-
specific fertilizer and conditioner applications and dosages are shown in Table 2. The
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fertilizer dosage is the discounted pure amount of each element, and the conditioning agent
dosage is the actual amount of each conditioner.

Table 2. Specific application rates of fertilizers and conditioners for each treatment.

Treatment
Application Materials Material Usage (kg·hm−2)

Fertilizer Conditioner N P K Conditioner

CK Formulated fertilizer (urea–ammonium
phosphate–potassium chloride) /

81.00 54.00 67.50

/

D1 Formulated fertilizer (urea–ammonium
phosphate–potassium chloride) Biochar 4500.00

D2 Formulated fertilizer (urea–ammonium
phosphate–potassium chloride) Conditioner PX5B 4500.00

Y1 Urea–calcium magnesium phosphate–potassium chloride / /
Y2 Urea–diammonium phosphate–potassium chloride / /

Y3 Urea–calcium magnesium phosphate, diammonium
phosphate–potassium chloride / /

Y4 Ammonium sulfite–calcium magnesium
phosphate–potassium chloride / /

Y5 Ammonium sulfite, urea–calcium magnesium
phosphate–potassium chloride / /

Note: In the table, “calcium magnesium phosphate, diammonium phosphate” indicates that calcium magnesium
phosphate and diammonium phosphate are applied in a ratio of 1:1; “ammonium sulfite, urea” indicates that
ammonium sulfite and urea are applied in a ratio of 1:1.

Each treatment plot was set up with three replications, and the plot experimental
design was randomized in groups, with a total of 24 treatment plots with an area of 24 m2

(4 m × 6 m), surrounded by a small trench of about 20 cm. Conditioner was applied one
week before planting, turned into the soil after application, and mixed well. Fertilizer was
applied as a base fertilizer one day after the balance of the conditioner application. Maize
was sown by hole sowing with 130 holes per plot. Urea 225 kg·hm−2 was applied to each
plot as a top-dressing when the maize reached the trumpet stage. Irrigation was carried
out with clean water sources to cut off the source of pollution, and the maize was sampled
for harvest when it was ripe.

2.3. Sample Collection and Determination

When samples were harvested, whole maize samples (including roots, straws, and
grains) and soil samples were collected in batches from each plot. The plant samples were
separated according to the roots, straws, and grains, and the roots, straws, and grains were
first washed with tap water, then with deionized water, followed by killing in an oven at
105 ◦C for 30 min and drying at 40 ◦C to constant weight. The dried plant samples were
crushed, sieved, and put in dry self-sealing bags for the determination of Cr content. The
Cr extraction method from plants was as follows: 0.3~0.5 g of plant sample was weighed
in a polytetrafluoroethylene ablation tube; 4 mL of HNO3, 2 mL of H2O2, and 2 mL of
deionized water were added; and the sample was left for 2 h. It was then placed in the
microwave ablation apparatus for ablation. The digestion procedure involved gradually
increasing the temperature to 180 ◦C for the first 20 min, then holding the temperature
at 180 ◦C for 20 min, and then reducing the temperature to room temperature during
the last 25 min. After completion of the ablation, it was placed on a thermostatic hot
plate at 160 ◦C to drive the acid until nearly dry, then transferred to a 25 mL volumetric
flask to fix the volume, and finally, inductively coupled plasma emission spectroscopy
was used for the determination. The soil was dried naturally to remove debris, ground,
and individually passed through 2 mm (10 mesh) and 0.149 mm (100 mesh) nylon mesh
sieves for analytical determination. The physical and chemical properties of the soil were
determined by referring to the Soil and Agrochemical Chemistry Analysis [42]. The method
for the determination of Cr in soil was as follows: 5.00 g (passed through a 2 mm sieve) of
soil sample were weighed and placed in a conical flask, and 50 mL of DTPA (0.005 mol·L−1

DTPA–0.1 mol·L−1 TEA—0.01 mol·L−1 CaCl2) leaching agent were added. Then, the lid
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was covered and it was put into a reciprocating oscillator to oscillate 180 times per minute
for 2 h before being removed for filtration. Finally, inductively coupled plasma emission
spectroscopy was used for the determination.

2.4. Statistical Data Analysis

The experimental data were calculated using Microsoft Excel 2016, with Origin 2018
applied for the graphs. Statistical analysis and ANOVA between different treatments were
calculated using IBM SPSS Statistics 22.0 software, and the differences mentioned in the
text were significant, all referring to p < 0.05. The aboveground bioconcentration factor
(BCF), primary translocation factor (PTF), and secondary translocation factor (STF) in the
upper part of the maize ground were used to characterize the uptake and translocation
capacity of maize for Cr.

Relevant indicators were calculated according to the following formulae:

BFC = Cr content in maize aboveground parts (mg·kg−1)/soil total Cr (mg·kg−1) (1)

PTF = Cr content in maize straws (mg·kg−1)/Cr content in maize roots (mg·kg−1) (2)

STF = Cr content in maize grains (mg·kg−1)/Cr content in maize straws (mg·kg−1) (3)

3. Results
3.1. Effect of Fertilizers and Conditioners on Maize Yield

Figure 1 illustrates how several treatments affected the yield of maize, which ranged
from 5945.40 to 6800.40 kg·hm−2. Compared to CK (6511.50 kg·hm−2), maize yield was
enhanced to 6733.35 kg·hm−2 under the D2 treatment, with an increase of 2.5%, whereas
the D1 treatment led to a decrease in maize yield but with no significant difference.
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Figure 1. Effect of fertilizers and conditioners on maize yield. Note: Different letters indicate
significant differences (p < 0.05), the same as below. D1 is formulated fertilizer + biochar; D2 is
formulated fertilizer + conditioner PX5B; Y1 is urea–calcium magnesium phosphate–potassium
chloride; Y2 is urea–diammonium phosphate–potassium chloride; Y3 is urea–calcium magnesium
phosphate, diammonium phosphate–potassium chloride; Y4 is ammonium sulfite–calcium magne-
sium phosphate–potassium chloride; Y5 is ammonium sulfite, urea–calcium magnesium phosphate–
potassium chloride.

Under several other fertilization conditions (Y1–Y5), the highest maize yield of
6800.40 kg·hm−2 was achieved under the Y4 treatment, which was the treatment with
the best effect on maize yield improvement compared to both the CK and D2 treatments,
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which increased it by 4.44% and 1.90%, respectively. Although the maize yields under the
Y1, Y2, Y3, and Y5 treatments varied from 5945.33 to 6124.44 kg·hm−2, all of them were
lower than the CK, D1, and D2 treatments, but none of them differed significantly from
each other.

3.2. Differences in Cr Content of Various Parts of Maize by Fertilizers and Conditioners
3.2.1. Cr Content in Maize Grains

The main concern for the safe use of agricultural products mainly lies in the edible
parts. The Cr content of maize grains under different treatments is shown in Figure 2.
The Cr content of maize grains in the CK treatment was 1.33 mg·kg−1, which exceeds the
national food safety standards of China. Therefore consumption of maize grown in this
area could lead to a threat to human health. With the addition of the two conditioners, the
Cr content in maize grains was 0.80 mg·kg−1 and 0.88 mg·kg−1, with a reduction rate of
39.95% and 33.42%, respectively, and the Cr content in maize grains was reduced to within
the national food safety standards of China.
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Figure 2. Effect of fertilizers and conditioners on Cr content in maize grains. Note: The solid red
line represents the national food standard limit of Cr in China (1.0 mg kg−1). D1 is formulated
fertilizer + biochar; D2 is formulated fertilizer + conditioner PX5B; Y1 is urea–calcium magnesium
phosphate–potassium chloride; Y2 is urea–diammonium phosphate–potassium chloride; Y3 is urea–
calcium magnesium phosphate, diammonium phosphate–potassium chloride; Y4 is ammonium
sulfite–calcium magnesium phosphate–potassium chloride; Y5 is ammonium sulfite, urea–calcium
magnesium phosphate–potassium chloride. Different letters indicate significant differences (p < 0.05).

Under several other fertilization conditions (Y1–Y5), the Cr content of maize grains
ranged from 0.82 to 1.32 mg·kg−1, which was reduced compared to CK, with the rate
of reduction ranging from 0.75% to 38.19%. The Cr content of the Y1, Y2, Y4, and Y5
treatments ranged from 0.82 to 0.97 mg·kg−1, all of which reduced the Cr content in maize
grains to less than 1.0 mg·kg−1. The maize grains had the lowest Cr concentration of all in
Y4, the best treatment, with a decrease rate of 38.19% in comparison to CK. When compared
to the D1 and D2 treatments, the reducing effect of the Y4 treatment was superior to D2,
and there was no significant difference from D1. The Y1 and Y5 treatments were also
effective in reducing the Cr content of maize grains, with reduction rates of 30.15% and
31.91%, respectively, and the reduction effects were similar to those of the D2 treatment.
The reduction rate of the Y2 treatment was only 26.89%. However, the Y3 treatment had
little effect on reducing the Cr content of maize grains, and the grain Cr content was
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1.32 mg·kg−1, which was only 0.01 mg·kg−1 less compared to CK. The reduction effect was
not significant and exceeded the limit value standard of China.

3.2.2. Cr Content in Maize Roots and Straws

After the uptake of heavy metal Cr by maize, the distribution of Cr in various plant
tissues eventually affects the content in the maize grains. Figure 3 shows the Cr content in
maize roots and straws under different treatments, combined with Figure 2, which shows
that the different treatments had some effect on the Cr content in various parts of the
maize. The Cr content of maize roots, straws, and grains under the CK treatment was
94.99, 16.93, and 1.33 mg·kg−1, respectively, which showed a rapidly decreasing pattern of
root > straw > grain Cr content in each tissue. The Cr content in roots reached more than
5 times the Cr content in straws and 10 times the Cr content in grains. The Cr level of
roots under the D1 and D2 treatments was 76.89 mg kg−1 and 83.85 mg kg−1, respectively,
whereas the Cr content of straws was 10.51 mg kg−1 and 13.73 mg kg−1, respectively. The
Cr content of roots and straws was significantly lower under the D1 and D2 treatments
compared to the CK treatments, just like with the grains. The decrease in Cr concentration
in all components of maize was improved by both conditioners, and the D1 treatment had
a better reduction impact than the D2 treatment.
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Figure 3. Effect of fertilizers and conditioners on Cr content in maize roots, straws. Note: D1 is
formulated fertilizer + biochar; D2 is formulated fertilizer + conditioner PX5B; Y1 is urea–calcium
magnesium phosphate–potassium chloride; Y2 is urea–diammonium phosphate–potassium chloride;
Y3 is urea–calcium magnesium phosphate, diammonium phosphate–potassium chloride; Y4 is
ammonium sulfite–calcium magnesium phosphate–potassium chloride; Y5 is ammonium sulfite, urea–
calcium magnesium phosphate–potassium chloride. Different letters indicate significant differences
(p < 0.05).

Under several other fertilization conditions (Y1–Y5), the Cr content in maize roots and
straws under the Y2, Y4, and Y5 treatments ranged from 63.92 to 93.06 mg·kg−1 and from
11.52 to 16.47 mg·kg−1, respectively, which all reduced the Cr content in maize roots and
straws compared to CK. Among them, the Y4 treatment had the best effect on reducing Cr
content in maize roots and straws, with a reduction rate of 32.71% and 31.96%, respectively.
The reduction effect for roots was better than with the D1 and D2 treatments, and the
reduction effect for straws was slightly worse than with the D1 treatment but better than
with the D2 treatment. Second, the Y5 treatment produced the same reduction impact as
the D2 treatment, with reductions of 14.69% and 15.03% on roots and straws, respectively.
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Although the Y2 treatment reduced the Cr content in maize roots and straws, the effect
was not significant, whereas Y3 did not reduce the Cr content of maize roots and straws
compared to CK and the D1 and D2 treatments.

3.3. Effect of Fertilizers and Conditioners on Bioconcentration and Translocation Factor of Maize

Crops’ own enrichment and heavy metal transport capacity are important factors
influencing the content of heavy metals in various parts of the plant. The bioconcentration
factor reflects the magnitude of the plant’s ability to absorb heavy metals from the soil,
and the translocation factor reflects the magnitude of the crop’s ability to transport heavy
metals between sites after uptake. Figure 2 shows the bioconcentration and translocation
factor of Cr in maize under different treatments. The enrichment capacity of Cr in the
upper portion of the maize ground was lower, as shown in Figures 2 and 3, and it was
primarily concentrated in the roots after being absorbed by the maize. After Cr entered
the maize roots, it started to transport to above ground, and the PTF of maize to Cr was
significantly stronger than the STF (Figure 4). Both the D1 and D2 treatments reduced BCF,
PTF, and STF, and the D1 treatment was more effective in reducing BCF and PTF than the
D2 treatment, with a reduced rate of 38.31% and 23.55%, respectively, but D2 was more
effective in reducing STF than the D1 treatment, with a reduced rate of 17.80%.
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Figure 4. Enrichment and translocation factor of Cr in maize. Note: D1 is formulated fertilizer+
biochar; D2 is formulated fertilizer + conditioner PX5B; Y1 is urea–calcium magnesium phosphate–
potassium chloride; Y2 is urea–diammonium phosphate–potassium chloride; Y3 is urea–calcium mag-
nesium phosphate, diammonium phosphate–potassium chloride; Y4 is ammonium sulfite–calcium
magnesium phosphate–potassium chloride; Y5 is ammonium sulfite, urea–calcium magnesium
phosphate–potassium chloride. Different letters indicate significant differences (p < 0.05).
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The Y2, Y4, and Y5 treatments were equally effective at reducing BCF and STF in
maize compared to CK. The reduction of BCF under these three treatments reached 4.21%,
31.77%, and 15.88%, respectively, with the Y4 treatment showing the best reduction effect,
even better than the D1 and D2 treatments. The reduction of STF reached 25.00%, 8.06%,
and 20.34%, respectively, and the reduction effect of Y2 and Y5 was better than that of
the D1 and D2 treatments. The Y4 treatment was better than the D1 treatment but not as
good as the D2 treatment. The Y1 and Y3 treatments also reduced STF of maize, with the
reduction rate reaching 41.53% and 32.21%, respectively, and the reduction effect was also
better than the D1 and D2 treatments, with the two treatments having the best effect in
reducing STF of maize despite leading to an increase in BCF and PTF.

Overall, it appears that the Y2 treatment reduced both BCF, PTF, and STF of maize,
similar to the D1 and D2 treatments, but it was less effective at reducing BCF and STF than
the D1 and D2 treatments, whereas the other fertilization treatments only partially reduced
BCF, PTF, and STF of maize.

3.4. Effect of Fertilizers and Conditioners on Available Content of Cr

The available content of heavy metal is an important indicator of the bioavailability
of heavy metals, and its level can be used to determine whether different treatments can
achieve certain remediation effects. The effects of different treatments on soil available
content of Cr are shown in Figure 5, and the available content of Cr in the soil under
the CK treatment reached more than 0.7, showing that this location has a high level of
bioaccessibility of Cr in the soil. The available content of Cr in D1- and D2-treated soils
was 0.50 mg·kg−1 and 0.55 mg·kg−1, respectively, which significantly reduced the effective
state of Cr compared with CK, with a reduction of 31.24% and 24.62%, respectively, which
had a better effect on reducing the available content of Cr.
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Figure 5. Effects of fertilizers and conditioners on available Cr in soil. Note: D1 is formulated
fertilizer + biochar; D2 is formulated fertilizer + conditioner PX5B; Y1 is urea–calcium magnesium
phosphate–potassium chloride; Y2 is urea–diammonium phosphate–potassium chloride; Y3 is urea–
calcium magnesium phosphate, diammonium phosphate–potassium chloride; Y4 is ammonium
sulfite–calcium magnesium phosphate–potassium chloride; Y5 is ammonium sulfite, urea–calcium
magnesium phosphate–potassium chloride. Different letters indicate significant differences (p < 0.05).
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Under several other fertilization conditions (Y1–Y5), the Y1 to Y5 treatments signifi-
cantly reduced the effectiveness of soil Cr compared to CK, with the content ranging from
0.42 to 0.59 mg·kg−1 and the reduction rate ranging from 15.05% to 42.66%. The reduction
effect of the Y1–Y5 treatments was Y4 > Y5 > Y1 > Y2 > Y3. Both the Y4 and Y5 treatments
achieved a better effect of reducing the available content of Cr, with the reduction rate
reaching more than 30% in all cases. Compared to the conditioners, the Y4 treatment
reduced the available content of Cr better than the D1 and D2 treatments, with 11.42% and
18.05% higher reduction rates than D1 and D2, respectively. The available content of Cr in
the soil under the Y5 treatment was 0.50 mg·kg−1, which was not as effective as Y4 but had
a similar remediation effect as the D1 treatment. The Y1, Y2, and Y3 treatments were not
as effective as the D1 and D2 treatments in reducing Cr in the available soil, with the Y3
treatment being the least effective at reducing the available content of Cr.

3.5. Effect of Fertilizers and Conditioners on pH and Soil Organic Matter

The pH and soil organic matter (SOM) have a significant impact on how well plants
absorb Cr. The most important factor influencing the effectiveness and morphological
distribution of heavy metals is pH; the higher the pH, the less effective the heavy metals
are and the less likely they are to be utilized by plants. SOM is also useful in reducing the
effectiveness of heavy metals by increasing the content of SOM because it exhibits a large
number of groups and also has certain adsorption properties. After maize maturity, soil
pH (Figure 6a) and SOM (Figure 6b) under the CK treatment were 5.28 and 20.91 g·kg−1,
respectively. The D1 and D2 treatments led to an increase in both pH and SOM. pH was
increased by 0.29 and 0.36 units, with an increase of 5.49% and 6.82%, respectively, whereas
SOM was increased by 24.44 g·kg−1 and 22.22 g·kg−1, with an increase of 16.88% and
6.27%, respectively.
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Figure 6. (a) Effects of fertilizers and conditioners on pH; (b) effects of fertilizers and conditioners
on SOM. Note: D1 is formulated fertilizer + biochar; D2 is formulated fertilizer + conditioner
PX5B; Y1 is urea–calcium magnesium phosphate–potassium chloride; Y2 is urea–diammonium
phosphate–potassium chloride; Y3 is urea–calcium magnesium phosphate, diammonium phosphate–
potassium chloride; Y4 is ammonium sulfite–calcium magnesium phosphate–potassium chloride;
Y5 is ammonium sulfite, urea–calcium magnesium phosphate–potassium chloride. Different letters
indicate significant differences (p < 0.05).
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Under the amended fertilizer treatments (Y1–Y5), both soil pH and SOM content also
increased, with increases ranging from 1.33% to 5.62% and 1.32% to 8.00%, respectively.
The best increase in soil pH was achieved by the Y1 treatment (5.58), with an increase
of 0.3 units compared to CK. However, the effect of changing the fertilizer type on SOM
was only significant for the Y4 treatment, where SOM reached 22.58 g·kg−1, an increase
of 1.67 g·kg−1 compared to CK. In contrast, compared to the D1 and D2 treatments, all
fertilizer treatments were less effective at increasing pH than the D2 treatment, whereas
all treatments were less effective at increasing SOM than the D1 treatment. The Y1 and D1
treatments were similar in their ability to increase pH to around 5.57. The effect of the Y4
treatment on SOM enhancement was not as good as that of D1, but it was non-significant
and better than D2 compared to D1.

3.6. Effect of Fertilizers and Conditioners on Soil Nutrient Content

The impact of different fertilizers on soil nutrients is crucial, as is limiting the uptake
of Cr by maize, and changes in fertilizer can also result in changes in soil nutrients (Table 3).
Total N in the soil was 1.53 g·kg−1 during the CK treatment, whereas hydrolytic N, available
P, and available K were each 162.86, 12.02, and 253.33 mg·kg−1, respectively. The soil total
N and available P content of this plot in the maturity stage of maize were moderate, and
available K was high, with good soil nutrients, according to the grading standard for
the primary traits of arable land quality in Anhui Province. After the conditioners were
added, the total N and available K levels under the D1 treatment were 1.43 mg·kg−1

and 219.67 mg·kg−1, respectively, which were lower than those under the CK treatment.
However, the available P and hydrolytic N levels increased relative to the CK treatment
by 2.21 mg·kg−1 and 23.02 mg·kg−1, respectively. Except for available P, which was
considerably lower, by 8.57%, compared to the CK treatment, none of the other nitrogen
content measurements—total N, hydrolytic N, and available K—were significantly different
under the D2 treatment than those under CK.

Table 3. Effects of fertilizers and conditioners on soil nutrients.

Treatment Total N (g·kg−1) Hydrolytic N (mg·kg−1) Available P (mg·kg−1) Available K (mg·kg−1)

CK 1.50 ± 0.05 a 162.86 ± 5.17 b 12.02 ± 0.59 bc 253.33 ± 22.50 a
D1 1.43 ± 0.04 ab 185.88 ± 7.08 a 14.23 ± 0.31 a 219.67 ± 3.21 c
D2 1.46 ± 0.12 a 163.07 ± 2.74 b 10.99 ± 0.55 cd 245.33 ± 9.24 ab
Y1 1.32 ± 0.02 bc 143.96 ± 5.97 c 12.24 ± 0.33 b 160.33 ± 7.23 e
Y2 1.32 ± 0.11 bc 137.59 ± 8.70 c 8.79 ± 0.94 e 228.33 ± 3.51 bc
Y3 1.30 ± 0.1 bc 133.62 ± 6.46 c 10.02 ± 0.62 d 217.33 ± 1.15 c
Y4 1.23 ± 0.0 6c 134.58 ± 5.22 c 12.28 ± 0.56 b 230.33 ± 4.16 bc
Y5 1.23 ± 0.04 c 137.59 ± 4.75 c 12.67 ± 0.84 b 186.00 ± 8.54 d

Note: The data are the mean ± standard deviation (n = 3). D1 is formulated fertilizer + biochar; D2 is for-
mulated fertilizer + conditioner PX5B; Y1 is urea–calcium magnesium phosphate–potassium chloride; Y2 is
urea–diammonium phosphate–potassium chloride; Y3 is urea–calcium magnesium phosphate, diammonium
phosphate–potassium chloride; Y4 is ammonium sulfite–calcium magnesium phosphate–potassium chloride;
Y5 is ammonium sulfite, urea–calcium magnesium phosphate–potassium chloride. Different letters indicate
significant differences (p < 0.05).

Under several other fertilization conditions (Y1–Y5), the Y1, Y4, and Y5 treatments
increased the soil available P content with an increase ranging from 1.80% to 5.41%, but
none of them were significant, whereas the Y2 and Y3 treatments led to a decrease in
soil available P content. All fertilizer treatments resulted in a reduction in soil total N,
hydrolytic N, and available K contents. The reduction in total N ranged from 12.00% to
18.00%, hydrolytic N from 11.60% to 17.96%, and available P from 9.08% to 36.71%. Total N
was decreased by 12.0% to 18.0%, hydrolytic N by 11.60% to 17.96%, and available P by
9.08% to 36.71%.
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4. Discussion
4.1. Effect of Different Fertilizers on Cr Content, Bioconcentration, and Translocation Factor of
Various Parts of Maize

Different fertilizers can influence the growth of crops and the uptake of heavy metals by
affecting the physiological activity of plants due to the presence of different elements [33,43].
After changing the type of fertilizer, only the ammonium sulfite–calcium magnesium
phosphate–potassium chloride treatment showed an increase in maize yield compared
to the locally formulated fertilizers, which may be because of the fact that the reduction
of effective state Cr in the soil was best under this treatment, having reduced the toxic
effects of Cr on maize [44,45]. However, the efficiency of releasing nutrients in the soil
varies depending on the type of fertilizer [46], which could be the reason why the other
treatments led to a reduction in maize yield compared to the locally formulated fertilizers.

It was found that phosphorus fertilizer reduced Cr uptake and accumulation by
rice roots and migration to above ground and also reduced Cr uptake by crops such as
tomato [47,48]. Mahmut Tepecik et al. found lower Cr content in herbs with different
fertilizer applications with added mono-ammonium phosphate treatment compared to
NPK compound fertilizer (15:15:15) treatment [49]. The effectiveness of different types
of phosphate fertilizers on the remediation of different heavy metals also varies. Zhang
et al. found that calcium magnesium phosphate can reduce the uptake of heavy metals
Cd and Pb by vegetables [50], and Dong et al. found that calcium magnesium phosphate
can reduce the uptake of Cd and As by maize [51]. Shen et al. found that diammonium
phosphate had a significant blunting effect on soil heavy metal Cd and reduced the content
of As, Pb, Cd, and Zn in rape roots, stems, husks, and rape grains [52], but the effects of
different types of phosphorus fertilizers on Cr uptake have rarely been reported. In this
study, no significant effect of each treatment on maize yield was found. Cr content in maize
grains was significantly reduced by replacing phosphate fertilizer with calcium magnesium
phosphate or diammonium phosphate, and the reduction effect of calcium magnesium
phosphate was better. Cr is mainly concentrated in maize roots after being absorbed by
maize, which is consistent with previous studies [53,54]. The uptake and translocation of
heavy metals can be characterized differently in different crops [55], and the same crops can
be characterized differently in the uptake and translocation of different heavy metals [56].
Generally, most plants use roots as the main organ for heavy metal accumulation [57],
whereas some hyperaccumulator plants accumulate more heavy metals in stems and leaves
than in roots [58]. Zayed et al. suggested that the concentration of Cr in the roots may
be influenced by reductase activity in the root system [59]. Wang et al. concluded that
plants immobilize or confine heavy metal ions within the root cortex to mitigate heavy
metal toxicity [60]. Cr begins to transit through the xylem to above ground after being
taken up by maize [61]. Although both calcium magnesium phosphate and diammonium
phosphate reduced the straw-to-grain translocation of Cr in maize, calcium magnesium
phosphate increased the aboveground bioconcentration and root-to-straw translocation
of Cr in maize, resulting in increased Cr content in straws. This is different from previous
studies that showed that phosphates such as calcium magnesium phosphate can promote
the synthesis of phytochelatins in rice root, thereby inhibiting the uptake of Cd by the root
and its transport to above ground [62], which may be due to the different types of crops
and the different elements of heavy metals. In contrast, diammonium phosphate had no
significant effect on Cr transport in maize or the aboveground bioconcentration factor or on
Cr content in roots and straws. The 1:1 combination of both calcium magnesium phosphate
and diammonium phosphate not only failed to significantly reduce the Cr content of maize
grains but also increased the Cr content of maize roots and straws, indicating that these
two phosphate fertilizers may not be suitable for simultaneous application.

The Cr content in maize grains, straws, and roots was further reduced by replacing all
or part of the urea with ammonium sulfite. The PCS-AS@PVA-Fe3O4 composite made by
a method with the participation of ammonium sulfite (AS) reduced Cr (VI) to Cr (III) by
SO3

2−, which effectively controlled the migration of Cr (VI) in soil and plant uptake and
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also released ammonium salts to promote plant growth [63]. Meanwhile, the addition of
ammonium sulfite was able to significantly reduce the Cr bioconcentration factor in the
upper part of the maize ground but did not have a significant effect on the Cr translocation
factor of maize, indicating that the main effect of ammonium sulfite may be to reduce the
Cr (VI) in the soil, reduce the uptake of Cr by maize, and then reduce the Cr content in
maize grains, whereas it had less effect on the Cr transport in maize, and the reduction
effect increased with the increase in ammonium sulfite application.

4.2. Changes in Effective State Cr Content and pH and Organic Matter of Soils

Soil pH and organic matter are two important factors affecting the effectiveness of
heavy metals, whereas nitrogen, phosphorus, and potassium are not only essential macro
elements for crop growth, but the level of their contents can also affect the effectiveness
of heavy metals in various ways [29,64]. The amount of calcium magnesium phosphate
and diammonium phosphate that was applied to the soil reduced the effective state of
heavy metals Cd and Pb, but after reaching a certain amount, the effective state of heavy
metals did not decrease with the increase of the applied amount, and the effect was bet-
ter with calcium magnesium phosphate in small applied amounts [65], which is similar
to the findings of this paper. In addition, the reduction of effective state Cr was better
with calcium magnesium phosphate, and the available phosphorus in the soil was higher
after the application of calcium and magnesium phosphate fertilizers compared to the
locally formulated fertilizers and other fertilization treatments. Zhou et al. found that
diammonium phosphate significantly reduced soil pH and TCLP-extracted state content
of Cd by passivating Cd-contaminated soil with the different phosphate fertilizers, and
the TCLP-extracted state content was significantly negatively correlated with soil available
phosphorus content [66]. The same relationship may exist between the available phos-
phorus content of the soil and the effective state Cr content. On the other hand, this may
be caused by the different effects of calcium magnesium phosphate and diammonium
phosphate on soil pH. According to several studies, adding calcium magnesium phosphate
raises soil pH while lowering Eh [62,67], but Zhao et al. found that the soil pH was signifi-
cantly increased in the early stage of diammonium phosphate application and began to
decrease after 15 days [68]. Calcium magnesium phosphate, diammonium phosphate, or
calcium magnesium phosphate applied 1:1 with diammonium phosphate all increased soil
pH and organic matter, but the effect on organic matter enhancement was not significant.
Therefore, calcium magnesium phosphate and diammonium phosphate mainly affect the
effective state Cr by influencing soil pH, and calcium magnesium phosphate can raise soil
pH better than diammonium phosphate, which is more effective at reducing the effective
state of Cr.

Ammonium sulfite is often used in industry to treat certain wastes due to its strong
oxidizing effect [69]. The reduction of soil effective state Cr after replacing all or part of
urea with ammonium sulfite was superior to the treatment that changed only phosphorus
fertilizer, which is a result of the reduction of Cr (VI) to Cr (III) under acidic conditions
by utilizing the decreasing property of SO3

2−, which converts Cr (VI) to a precipitate of
hydroxide, thus making the leaching of Cr (VI) less toxic [70]. Simultaneous application
of calcium magnesium phosphate together can increase soil pH, which not only reduces
the effectiveness of Cr [71], but the oxidation rate of ammonium sulfite also increases
with increasing pH at pH < 7 [69]. These may be the reasons that led to a better effect on
the reduction of effective state Cr after changing both nitrogen and phosphate fertilizers
compared to changing only phosphate fertilizers.

Changing both nitrogen and phosphorus fertilizers reduced the content of Cr in maize
grains and the effectiveness of Cr in soil, but there were some differences in the effects and
mechanisms of action, and the effects of different combinations or dosages of fertilizers
on the uptake of Cr in maize under chromium-contaminated conditions could be further
explored subsequently. At the same time, the effect of fertilizers on the nutrients in the soil
is also very important, and it directly affects the growth and development of crops and
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yields. Therefore, the actual application process also requires comprehensive consideration
based on the actual conditions of the soil and planting to choose the most appropriate
fertilization method.

5. Conclusions

The effects of different fertilizer combinations on the uptake of heavy metals by plants
and the activity of heavy metals in the soil vary. The results obtained in this study revealed
that all treatments increased soil pH and organic matter content and decreased the effective-
ness of Cr in the soil compared to formulated fertilizers. However, changing the fertilizer
mix also resulted in lower levels of total nitrogen, hydrolytic nitrogen, and available potas-
sium. Cr is absorbed by the maize and is mainly concentrated in the roots. During trans-
port to above ground, both ammonium sulfite–calcium magnesium phosphate–potassium
chloride and ammonium sulfite, urea–calcium magnesium phosphate–potassium chlo-
ride treatments did a good job of reducing Cr enrichment in above ground. On the
other hand, urea–calcium magnesium phosphate–potassium chloride, urea–diammonium
phosphate–potassium chloride, and urea–calcium magnesium phosphate, diammonium
phosphate–potassium chloride treatments were effective in reducing Cr transport from
straws to grains. Eventually, urea–calcium magnesium phosphate–potassium chloride,
urea–diammonium phosphate–potassium chloride, ammonium sulfite–calcium magne-
sium phosphate–potassium chloride, and ammonium sulfite, urea–calcium magnesium
phosphate–potassium chloride treatments were all able to significantly reduce the Cr con-
tent in maize grains (p < 0.05), bringing the Cr content of maize grains up to the national
food safety standards of China. Among them, ammonium sulfite–calcium magnesium
phosphate–potassium chloride was the most effective and achieved the same effect as the
two conditioners while also increasing maize yields. Therefore, in Cr-contaminated areas,
the effective state of soil Cr content and crop uptake of heavy metal Cr can be reduced by
choosing reasonable fertilizer combinations to improve crop yields and ensure the safe
production of agricultural products.
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