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Abstract: China has made a commitment to achieve carbon neutrality by 2060, and promoting a
green lifestyle is an essential means to this end. The primary aim of this study is to investigate the
asymmetric impact of green household technology on environmental sustainability in China. To
that end, we have employed linear and non-linear auto-regressive distributed lag models to identify
this complicated effect. The empirical results suggest that green household technology’s positive
change exerts significant and negative effect on carbon emission in the short and long terms. And
the impacts of green household technology’s negative change on carbon emission are significantly
negative but smaller than its positive change in the long run, while insignificant in the short term. The
estimates endorse the asymmetric impact of green household technology on carbon emissions both in
the short and long term. This finding suggests that the improvement of green household technology
can reduce carbon emissions, while a decline in it causes carbon emissions to rise, and technological
retrogression plays a less influential role than its development. This research is a groundbreaking
point in discussing the way towards environmental sustainability from a green household technology
perspective, which considers the asymmetric effect and provides meaningful insights for China to
achieve sustainable development.

Keywords: green household technology; environmental sustainability; China

1. Introduction

The purpose of this study is to explore the effects of green household technology on
environmental sustainability in China and further provide valuable policy insights. The
accumulated amount of CO2 emissions is strongly correlated with the expected increase in
global warming. Since the middle of the last century, the world’s temperature has risen
noticeably, mostly due to greenhouse gas (GHG) emissions produced by human activities.
Most of the world’s CO2 emissions come from power plants, which are responsible for
about 75% of all pollutants. Two-thirds of total CO2 production come from the use of fossil
fuels energy sources, whereas methane (CH4) and nitrous oxide (N2O) is produced by
the agriculture sector, and are both potent GHGs. Therefore, investing in research and
development and new technologies is essential if we want to successfully combat climate
change and rising temperatures. If we want to reduce GHG emissions and encourage
the development of green markets, we must employ innovation and technology in more
effective and sustainable ways. According to Qin et al. [1], developments in renewables,
solarphotovoltaics (solar PV), and hybrid cars help cut emissions and trash. This indicates a
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universal belief that advances in science and technology provide the finest opportunities for
establishing eco-friendly economies [2–6]. Nevertheless, such a plan requires investment
and the purposeful creation and implementation of environmentally friendly policies by
both authorities and businesses [7,8]. More importantly, this study investigates the impact
of green household technology on CO2 emissions in the context of China. According to
Yamano and Guilhoto [9], China is the largest emitter of CO2 from fuel combustion among
non-Organization for Economic Co-operation and Development (OECD) economies, which
accounts for about 46% of non-OECD emissions in 2015. Additionally, China is the largest
consumer, accounting for about 43% of non-OECD consumption-based emissions. Based
on the BP Statistical Review of World Energy, China is the world’s largest emitter of CO2
emissions (10.5 billion tons), with about 30% of world’s carbon emission in 2021 (the second
one is the U.S. with 4.7 billion tons). Therefore, selecting China in the context of this analysis
can provide fruitful results for the world’s sustainable future.

World leaders and economic experts are now primarily focused on promoting global
knowledge of and action for sustainable growth and environmental conservation. In
the midst of rising concerns about dealing with the aforementioned environmental prob-
lems [10], considerable thought has been devoted to many important aspects, such as
demographic features, energy consumption, wealth creation, and others [11]. Among these
factors, green technological development at the household level is important to control the
CO2 emissions from the production and demand sides. Some researchers have focused on
the issues of green technology applied in households and its influencing factors. Vorobeva
et al. [12] suggest that new technological solutions (e.g., an innovative waste manage-
ment system) could stimulate the higher levels of waste separation and lower household
waste production. Gui and Gou [13] report that complex socioeconomic, lifestyle, and
living conditions would affect the utilization of household energy technologies. Rahmani
et al. [14] reveal that the subjective norms, attitudes, perceived risk, perceived behavioral
control, evaluation of the regulatory framework (ERF) and perceived usefulness of power
purchase agreements (PPAs) exert significant effects on households’ intentions to invest
in renewable energy technologies. Wu et al. [15] point out that risk, ambiguity, and time
preferences significantly and positively influence the possibility of the adoption of rooftop
photovoltaic technology in rural households, where time preference plays an essential
favorable moderating role in the adoption of technology. Ahmad and Jabeen [16] highlight
that there is a favorable impact to formal and informal credit borrowing which could in-
crease the likelihood of biogas production technology adoption in agricultural households.
Milovantseva [17] underlines that respondents with higher scores on greater engagement in
pro-environmental behavior, general environmental beliefs, and positive attitudes toward
recycling small electronics are more inclined to pay a premium to buy green cell phones.

Some research has explored how green technological development in the economy
impacts environmental sustainability, and we summarize these in Table 1. Through summa-
rizing the extant literature, we can propose a hypothesis that utilizing green technology to
combat global warming and promote environmental sustainability is viable. Existing stud-
ies measure green technology by environmentally efficient technology [18], patents [19–25]
and green investment [26–28], and quantified environmental sustainability through carbon
emissions [18,19,22–25] and performance [21,26]. However, not enough studies have inves-
tigated green household technology’s impact on CO2 emissions. The strain that human
consumption of products and services puts on the environment has contributed signifi-
cantly to the current threats of environmental contamination, ecological imbalances, and
global warming. Consumption of renewable energy sources and adopting green technolog-
ical development at the household level are important in controlling CO2 emissions [29].
Therefore, to combat ecological damage and lower CO2 emission levels, there is a need
to invest more in renewable and green technologies at the household level. To our lim-
ited knowledge, this is the first ever study investigating the impact of green household
technology (access to clean fuels) on environmental sustainability (CO2 emissions) in China.
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Table 1. The extant literature pertaining to how green technological development impacts environ-
mental sustainability.

Authors Objects Variables Methods Conclusions

Behera et al. [18] 18 emerging economies
environmentally efficient

technology;
carbon emissions

cross-sectional
auto-regressive
distributed lag

(CS-ARDL) model

green technology significantly
mitigates carbon emissions in

the short and long term

Umme et al. [19] E7 countries
registered patents related

to the environment;
carbon emission

cross-sectional
dependence test; Panel
Granger causality test

green technology decreases
carbon emissions in the

long term

Tan and Cao [20] G7 and BRICS countries

patent counts of green
technology;

CO2 emissions and CO2
intensity

panel random and fixed
effect models

a single type of green
technological innovation

exerts no significant effect on
emission reduction, while the

interaction of two types
is significant

Zhang and Liu [21] China
the amount of green

patent;
carbon emission efficiency

panel fixed effect model

The synergistic effect of digital
finance and green

technological innovation
promotes local carbon
emission efficiency but

suppresses it in
surrounding cities

Chang et al. [22] China total green patent count;
CO2 emissions panel fixed effect model

green knowledge innovation
plays an essential role in

decreasing CO2 emissions

Saqib and Dincа [23]
Leading countries in

renewable energy
investment

patents on environment
technology;

carbon emissions

cointegration tests;
causality test

green technology is negatively
correlated with carbon

emissions

Shan et al. [24] Turkey

registered patents related
to the environment;

carbon emissions per
capita

bootstrapping bound
ARDL test

green technological innovation
declines carbon emissions

Sun [25] China green patents;
carbon emissions spatial econometric model

green technological innovation
not only reduces local carbon

intensity but also imposes
spatial spillover effects

Liu et al. [26] HJ company

HJ company’s green
technology innovation

investment;
carbon performance

nonlinear regression
model

green technological innovation
is an efficient way to improve

carbon performance

Chen and Li [27] – – differential game model

emission reduction efficiency
brought about by green

technology is worse than
green funds when it exceeds a

certain threshold

In addition, the previous studies primarily employ the panel random and fixed effect
models [20–22,30], spatial econometric model [25,31], CS-ARDL model [18,32] and so on,
but no research has addressed the complex asymmetric effects. Relying on the asymmetric
assumption is another novelty of this study, which allows us to examine the impact of
the rise and fall in green household technology, separately, on carbon emissions. To that
end, we have employed the nonlinear auto-regressive distributed lag (NARDL) model of
Shin and Yu [33] that can investigate both short- and long-term estimates, which makes
this analysis different from all previous ones, as most existing studies only focus on long-
term estimates. Moreover, this study adds to the current literature both empirically and
theoretically. Finally, this research yields important results, from which we may draw
important policy recommendations for interested parties.

The analysis is structured as follows. Section 2 introduces the materials and methods.
The results and discussion are given in Sections 3 and 4. Section 5 elaborates the conclusions.
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2. Materials and Methods
2.1. Data

The analysis selects the annual data from 1995 to 2020 to explore the effect of green
household technology on environmental sustainability in China. Table 2 contains a detailed
summary of definitions, sources and descriptive statistics of concerned variables used in
the regression model. Environmental sustainability is a dependent variable measured via
CO2 emissions (DCO2), which refers to those deriving from the burning of fossil fuels and
the manufacture of cement, including carbon dioxide produced in consumption of solid,
liquid, and gas fuels and gas flaring. Green household technology (HT) is the variable we
have primarily focused on, which is measured via access to clean fuels and technologies
for cooking, as a percentage of the population. Following the definition of variable HT
and Equations (3) and (4), we counted the positive change of HT as HT_POS and the
negative change of HT as HT_NEG. This study has included the role of internet users,
financial development (FD) measured as domestic credit to the private sector as % of
gross domestic product (GDP), education (EDU) measured as tertiary school enrollment
as control variables. Among them, domestic credit to the private sector reveals financial
resources offered to the private sectors by financial corporations through loans, purchases
of non-equity securities, trade credits, and other accounts receivable, which establishes a
claim for repayment. Annual data series for all concerned variables were gathered from the
World Development Indicators (WDI) and authors’ calculation. To avert the adverse effect
of excessive abnormal fluctuation, we transformed the selected sequences by taking the
natural logarithm. The results of descriptive statistics reveal information about the mean,
standard deviation (Std. Dev.), skewness, and Kurtosis. All the obtained mean values are
positive. The mean values are reported as 8.522 for DCO2, 3.919 for HT, 1.863 for Internet,
4.809 for FD, and 2.944 for EDU. The Std. Dev. values are reported as 0.496 for DCO2,
0.311 for HT, 2.758 for Internet, 0.194 for FD, and 0.819 for EDU. The estimates of skewness
measures are positive for FD and negative for DCO2, HT, Internet, and EDU.

Table 2. Variable definitions and descriptive statistics.

Variables Definitions Sources Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis

DCO2
CO2 emissions

(tonnes, millions) WDI 8.522 8.555 9.186 7.855 0.496 −0.127 1.410

HT

Access to clean fuels
and technologies

for cooking
(% of the population)

WDI 3.919 3.917 4.374 3.305 0.311 −0.302 2.135

Internet
Individuals using the

internet (% of the
population)

WDI 1.863 2.945 4.254 −5.307 2.758 −1.389 3.829

FD
Domestic credit to the

private sector (%
of GDP)

WDI 4.809 4.795 5.209 4.433 0.194 0.181 2.439

EDU
School enrollment,

tertiary
(% gross)

WDI 2.944 3.025 4.068 1.479 0.819 −0.374 1.951

Figure 1 depicts the trends of DCO2, HT, Internet, FD and EDU, and we can observe
that the relation between DCO2 and HT is not constant but complicated; hence, it is reliable
to use a relatively advanced NARDL method to investigate the effects of green household
technology on environmental sustainability in China.
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2.2. Methodology
2.2.1. The Co-Integration Regression

Generally, the ordinary least squares (OLS) estimation could be performed only when
the selected sequences were stationary time series. For non-stationary sequences, a direct
regression would result in “spurious regression”. The co-integration regression was de-
veloped, but it could be performed only when the selected sequences were monointegral
series of the same order [34,35]. A co-integration relationship means that two or more time
series are non-stationary, but a linear combination among them is a stationary quantitative
relation. After conversion, it could be transformed into the auto-regressive distributed lag
(ARDL) model [36–38].

2.2.2. The ARDL Model

Clean technology transitions at the household level are significant in mitigating pollu-
tion emissions. Following the work of Gupta et al. [28] and Xin et al. [39], we have assumed
that household CO2 emissions have been determined by green technology. We constructed
the auto-regressive distributed lag (ARDL) model, which is used to describe the variable
relationship in a single time series equation [40–46], which is written as

DCO2t = ω0 + ϕ1HTt +ϕ2Internett +ϕ3FDt +ϕ4EDUt + εt (1)

where CO2 emissions (DCO2) in China are dependent on green household technology (HT),
the development of internet (Internet), financial development (FD), and education (EDU);
from the estimation of Equation (1), only long-term estimates were made.

2.2.3. The Error Correction Model (ECM)

In order to estimate the short-term effects of green household technology on CO2
emissions, we constructed an error correction model (ECM) that enables the analysis of
the regulatory mechanism of the long-term equilibrium relationship, which is constantly
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adjusted according to short-term fluctuations [47–52]. A modified form of Equation (1)
shows an error correction model as follows:

∆DCO2t = ω0 +
n
∑

k=1
β1k∆DCO2 t−k +

n
∑

k=0
β2k∆HTt−k +

n
∑

k=1
β3k∆Internet t−k

+
n
∑

k=0
β4k∆FDt−k +

n
∑

k=0
β5k∆EDUt−k + ω1DCO2t−1 + ω2HTt−1

+ω3Internett−1 + ω4FDt−1 +ω5EDUt−1 + εt

(2)

The arrangement of Equation (2) is based on the work of Pesaran et al. [53]. This
approach has some benefits over other approaches. Firstly, both short- and long-term
effects are estimated jointly, as in Equation (2). Short-term effects are indicated in the
coefficient estimates assigned to the variables. The ultimate result is normalized estimates.
The Pesaran et al. [53] method involves the application of the F-test with new critical values
tabulated in the function. Another benefit of this technique is that there is no need to apply
unit root tests separately, and I (0) and I (1) are maintained in the same model. Lastly, as a
short-term dynamic alteration procedure is involved in this model, it permits any feedback
effect amongst variables to be applied, which drops endogeneity and multicollinearity [53].

2.2.4. The Non-Linear Autoregressive Distributed Lag (NARDL) Model

As previously stated, Equation (2) assumes that the effects of variable changes on CO2
emissions are symmetric; thus, this paper uses the non-linear autoregressive distributed lag
(NARDL) model developed by Shin and Yu [33]. The NARDL model is an advanced method
based on an ARDL approach, which allows the nonlinear asymmetry and cointegration
relationship of small samples to be discussed in a single equation, in order to identify the
effect of decomposition of explanatory variables into positive and negative changes on
the explained variables [54–58]. In the extant literature, the NARDL model is widely used
in the analysis of environmental problems [59–67]. Equation (2) is divided into two parts
for the asymmetric analysis: a positive green household technology shock and a negative
shock. As a result, we developed a structure that incorporates positive changes, specifying
green household technology, and describes negative changes, suggesting green household
technology. Shin and Yu [33] suggest that the partial sum idea be employed to generate the
two measures given below:

HT_POSt =
t

∑
n=1

∆HT_POSt =
t

∑
n=1

max (∆HT_POSt, 0) (3)

HT_NEGt =
t

∑
n=1

∆HT_NEGt =
t

∑
n=1

min (∆HT_NEGt, 0) (4)

After separating the upward and downward trends of green household technology,
the NARDL model can more carefully explore the asymmetric effects of core variables in
different directions. With regard to error correction of the NARDL model, the long- and
short-term asymmetric relationships between the explanatory variable and the explained
variable can be examined. Thus, we substituted the HT variable in Equation (2) through
the two partial sum variables to arrive at:

∆DCO2t = ω0 +
n
∑

k=1
β1k∆DCO2t−k +

n
∑

k=0
β2k∆HT_POSt−k +

n
∑

k=0
δ3k∆HT_NEGt−k

+
n
∑

k=0
β4kInternett−k +

n
∑

k=0
β5kFDt−k +

n
∑

k=0
β6kEDUt−k +ω1DCO2t−1

+ ω2HT_POSt−1 + ω3HT_NEGt−1 +ω4Internett−1 +ω5FDt−1
+ω6EDUt−1 + εt

(5)

The above Equation (5) is generally employed for the NARDL model, whereas Equa-
tion (2) is normally applied for linear ARDL models. Shin and Yu [33] demonstrated that
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these models are used for similar estimation processes and diagnostic tests. If Equation (5)
is estimated, then asymmetric assumptions can also be investigated.

3. Results

As this study aimed to explore green household technology’s symmetric and asym-
metric impact on environmental sustainability, it is compulsory to check the stationary
properties of all variables. Thus, the study utilized the Dickey–Fuller test with generalized
least squares (DF-GLS) and Phillips and Perron (PP) tests for this task, and both tests’
outcomes are given in Table 3. The results under the DF-GLS test reveal that the EDU series
is I (0) stationary, while DCO2, HT, Internet, and FD series are I (1) stationary. The results
under the PP test reveal that EDU and Internet series are I (0) stationary, while DCO2, HT,
and FD series are I (1) stationary. The results of unit root tests fulfill the prerequisite of the
ARDL and NARDL approaches [53–67], which states that the variable series must meet
the modeling requirements of the first order and below without unit roots (stationary or
first-order stationary). Table 4 lists the results of the Brock–Dechert–Scheinkman (BDS) test.
The BDS test was employed to check the asymmetries. The results of the BDS test reveal
that the null hypothesis is rejected. It states that the variables of concern are asymmetric
and nonlinear.

Table 3. DF-GLS and PP tests.

DF-GLS PP

I (0) I (1) Decision I (0) I (1) Decision

DCO2 −1.456 −2.987 *** I (1) −0.278 −2.875 * I (1)
HT −0.023 −1.654 * I (1) −0.234 −4.251 *** I (1)

Internet −0.954 −1.785 * I (1) −5.652 *** I (0)
FD −0.187 −1.674 * I (1) −0.621 −3.854 *** I (1)

EDU −2.354 ** I (0) −2.678 * I (0)
Note: * p < 0.1; ** p < 0.05; and *** p < 0.01.

Table 4. BDS test.

DCO2 HT

Dimension BDS Statistic S.E z-Stat Prob. BDS Statistic S.E z-Stat Prob.

2 0.192 0.009 20.36 0.000 0.196 0.009 20.92 0.000
3 0.318 0.015 20.77 0.000 0.327 0.015 21.29 0.000
4 0.402 0.019 21.65 0.000 0.414 0.019 22.03 0.000
5 0.455 0.020 23.07 0.000 0.478 0.020 23.70 0.000
6 0.490 0.019 25.15 0.000 0.523 0.020 26.09 0.000

Table 5 lists the results obtained with the ARDL and NARDL models, and the latter
contains two new variables: the positive change of HT (HT_POS) and the negative change
of HT (HT_NEG). The long-term results obtained via the ARDL model suggest that HT has
a negative and significant impact on DCO2. It states that a 1% increase in HT reduces DCO2
by 0.598% in the long term. The long-term results obtained via the NARDL model indicate
that an increase in HT has a significantly negative impact on DCO2, revealing that increases
in HT tend to reduce DCO2 in China. A 1% increase in positive shock of HT tends to reduce
DCO2 by 0.714% in China. However, a negative shock in HT has a significantly positive
impact on DCO2, meaning that an upsurge in HT tends to enhance DCO2 in China. A 1%
increase in negative shock of HT tends to increase DCO2 by 0.474% in China. Through
the ARDL model, the internet was found to be negatively and significantly associated
with DCO2 in the long term. It was found that a 1% increase in the use of the internet
tends to decrease DCO2 by 0.154% in the long term. The results obtained via the NARDL
model reveal that the internet has a significantly negative impact on DCO2, meaning that
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internet use plays a significant role in reducing DCO2 in China. A 1% increase in internet
use tends to reduce DCO2 by 0.262% in China in the long term. The impact of EDU on
DCO2 was found to be statistically insignificant via both the ARDL and NARDL models,
revealing that EDU has no impact on environmental sustainability in China in the long
run. The impact of FD on DCO2 was found to be significantly negative with both the
ARDL and NARDL models, revealing that financial development significantly improves
environmental sustainability in China in the long run. Coefficient estimates indicated
that a 1% increase in FD reduces DCO2 by 0.279% in the ARDL model and 0.223% in the
NARDL model.

Table 5. ARDL and NARDL estimates.

ARDL NARDL

Variable Coefficient S.E t-Stat Prob. Variable Coefficient S.E t-Stat Prob.

Short-term
HT −0.086 0.180 −0.478 0.641 HT_POS −0.251 ** 0.122 −2.057 0.046

Internet −0.041 0.031 −1.323 0.213 HT_POS (−1) −0.043 0.173 −0.249 0.809
Internet (−1) −0.023 0.049 −0.469 0.642 HT_NEG −0.062 0.116 −0.534 0.601
Internet (−2) −0.097 *** 0.034 −2.853 0.010 Internet −0.006 ** 0.003 −2.000 0.045

EDU −0.262 * 0.136 −1.926 0.076 Internet (−1) −0.054 0.064 −0.844 0.414
EDU (−1) −0.054 0.179 −0.302 0.768 EDU −0.118 0.143 −0.825 0.428

FD 0.344 *** 0.117 2.940 0.009 EDU (−1) −0.069 0.172 −0.401 0.694
FD (−1) 0.153 0.109 1.404 0.183 FD 0.190 * 0.109 1.743 0.098

Long-term
HT −0.598 * 0.313 −1.911 0.095 HT_POS −0.741 *** 0.223 −3.323 0.006

Internet −0.154 ** 0.066 −2.333 0.047 HT_NEG −0.474 ** 0.225 −2.107 0.047
EDU −0.496 0.531 −0.934 0.386 Internet −0.262 * 0.135 −1.941 0.074
FD −0.279 * 0.162 −1.722 0.100 EDU −0.149 0.111 −1.342 0.203
C −6.029 ** 2.577 −2.340 0.048 FD −0.223 * 0.122 −1.828 0.099

C −9.646 *** 1.998 −4.828 0.000

Note: * p < 0.1; ** p < 0.05; and *** p < 0.01.

The short-term dynamics demonstrate that HT has no impact on DCO2, according to
the results from the ARDL model. According to the NARDL model, a positive shock in
HT causes a significant reduction in DCO2 in the short term. However, a negative shock in
HT has an insignificant impact on DCO2 in the short term. Internet use is insignificantly
associated with DCO2 in the ARDL model, but the association is significantly negative in
the NARDL model. In contrast, EDU is significantly and negatively associated with DCO2
in the ARDL model, but the association was found to be insignificant in the NARDL model.
The impact of FD is reported to be significant and positive on DCO2 in the short term in
both the ARDL and NARDL models.

Table 6 lists the results of the diagnostic estimates, including those from the F-test,
ECM, lagrange multiplier (LM), Breusch-Pagan (BP), stability test, and regression specifica-
tion error test (RESET test). These tests are compulsory in order to validate the findings
of ARDL and NARDL estimates. The outcomes of the F-test and ECM tests with negative
symbols confirm the long-term cointegration relationship among variables. The outcomes
of the LM and BP tests confirm the absence of autocorrelation and heteroskedasticity issues.
Both models are correctly specified, as demonstrated through the results of the RESET test.
The results of the CUSUM and CUSUM-sq tests reveal that both models are stable.
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Table 6. Diagnostic tests.

ARDL NARDL

Variable Coefficient S.E t-Stat Prob. Coefficient S.E t-Stat Prob.

F-test 13.21 *** 9.658 ***
ECM (−1) * −0.254 *** 0.021 −12.11 0.000 −0.194 *** 0.033 −5.922 0.000
LM 1.652 2.012
BP 0.302 1.650
RESET 0.320 0.021
CUSUM S S
CUSUM-sq S S

Note: * p < 0.1; and *** p < 0.01.

4. Discussion

Previous studies have only identified monotonic and positive relations between green
technology and carbon emissions [18–27], which not only lacks a household-level analysis,
but also ignores the asymmetrical effects. Thus, the inclusion of this analysis would add
to the current literature both empirically and theoretically, which addresses two research
questions that also reinforce the existing work.

On the one hand, few studies have explored the way towards environmental sustain-
ability via green household technology [18–28], and this analysis investigates the effect of
green household technology on CO2 emissions. Due to the rapid increase in production and
consumption activities worldwide, the industrial revolution has significantly contributed
to increasing the nations’ affluence. However, the massive rise in production and con-
sumption have also proved to be significant factors in the large-scale infusion of carbon
into the atmosphere. As a result, the issue of climate change and global warming has
erupted, which has jeopardized the subsistence of life on Earth. Several factors have been
proposed by the empiricists and policymakers to tackle the issue of climate change and
global warming, among which green technological development is widely acknowledged
as a significant factor in curbing carbon emissions, and the vast majority of the literature
supports this notion [18,26,27,68]. The shift to clean and green technology is regarded
as being among the most effective ways to combat global warming and excessive energy
consumption [69], making it an important factor in determining energy efficiency. One
of the greatest advantages of green technology is that it might significantly decrease the
expense of carbon reduction by creating more economical and energy-efficient devices [70].
In addition, Song et al. [71] suggested that the most reasonable choice available to nations
in mitigating climate change and global warming is to rely more on green technologies,
because green technologies help improve production efficiency by reducing waste. House-
holds are an important component of the economy and contribute significantly to carbon
emissions. Therefore, the adoption of green technology by households, such as clean energy
and fuels, can play a significant role in reducing CO2 emissions.

On the other hand, the existing efforts neglect the complicated effects of the selected
variables [18–28,30–32], and this study relies on the asymmetric assumption, allowing us to
determine the impact of the positive and negative shocks in green household technology on
environmental sustainability in China, represented by carbon emissions. The results of the
DF-GLS and PP tests confirm that the selected variables meet the modeling requirements of
the ARDL and NARDL approaches, and the results of the BDS test prove that the sequences
are asymmetric and nonlinear; thus, it is reliable to use the NARDL model to conduct
the empirical analysis. In addition, the results of the F-test, ECM, LM, BP stability test,
and RESET test indicate that the results of the ARDL and NARDL approaches are robust.
From the ARDL and NARDL model estimates, we can infer that household use of green
technology helps reduce carbon emissions. The use of environmentally friendly technology
has the potential to convert the source of a household’s energy supply from non-renewable
to renewable sources, contributing to a reduction in CO2 emissions. Green household
technology has the potential to provide beneficial external effects in the form of increased
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awareness, making it easier for renewable energy sources to be accepted and disseminated
at the household levels [71]. In addition, the influence of green household technology on
CO2 emissions in the long term is greater than in the short term, mainly due to the fact that
the adoption of new technology would have a continuous incentivizing effect [72,73]. More
importantly, the results suggest that positive changes in green household technology have
a more positive influential effect on carbon emissions than negative in the short and long
term, emphasizing the asymmetric impact of the NARDL model.

5. Conclusions

The primary aim of this study was to investigate the relationship between green
household technology and environmental sustainability in China. To that end, we have
employed linear and non-linear ARDL models, but before that, we tested the stationary
status of the variables via DF-GLS and PP tests, which suggested that our variables are
either I (0) or I (1). The results of the stationary test permits us to employ the ARDL model
because it can deal with the combination of I (0) and I (1) variables. Then, to confirm
whether we can apply the NARDL model or not, we utilized the BDS test, which validates
the application of the NARDL model. The of the results obtained via the ARDL model
suggest that the long-term effects of HT are negative and significant, while the short-term
estimates are negative but insignificant. On the other side, the long-term estimates from
the NARDL model suggest that the estimate attached to HT_POS is negatively significant,
and the estimate of HT_NEG is also significant and negative. This finding suggests that
a positive change in green household technology could help to reduce CO2 emissions,
while the reduction in green household technology causes CO2 emissions to rise. Hence,
households’ higher usage of green technology has a significant positive impact on the
environment in the long term. In the short term, the estimate of HT_POS is negatively
significant; however, the estimate of HT_NEG is insignificant. The estimates attached to
positive and negative components emphasize the asymmetric impact of green household
technology on CO2 emissions both in the short and long term. Furthermore, higher levels
of internet usage and education have a positive impact on the environment, while greater
financial development has a negative impact.

The above findings can offer policy advice to the concerned parties. Given the dis-
parate effects of the positive and negative shocks on green technology adoption at the
household level, the findings imply that policymakers should approach these two types
of changes independently. Moreover, the relevant authorities in China should try to in-
vest more in research and development activities that can help generate more green and
renewable technologies that are crucial in lowering CO2 emissions. Furthermore, the role
of information and communication technology (ICT) should be increased because that
can lead to the digitalization and dematerialization of the economy, which can help to
ameliorate environmental issues. Lastly, education levels must be increased in order to
increase awareness about environmental degradation, which will encourage people to
adopt pro-environmental practices that promote environmental sustainability.

The limitations of the analysis are twofold. On the one hand, we have focus too
much on reducing greenhouse gas emissions, instead of speaking out against all kinds of
environmentally harmful emissions and wasteful economic activities in general. On the
other hand, this paper primarily focuses on China, but there is no comparison between
China’s effect and other countries around the world (Asia, America, Europe or Australia).
In future research, we would consider other environmentally harmful emissions (e.g.,
sulfur dioxide) and wasteful economic activities, in order to represent environmental
sustainability more comprehensively. Moreover, we would include data from all over the
world to compare and put forward specific implications, which is an essential topic that
deserves further exploration.
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