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Abstract: Recently developed Machine Learning (ML) interpretability techniques have the potential
to explain how predictors influence the dependent variable in high-dimensional and non-linear
problems. This study investigates the application of the above methods to damage prediction during
a sequence of earthquakes, emphasizing the use of techniques such as SHapley Additive exPlana-
tions (SHAP), Partial Dependence Plots (PDPs), Local Interpretable Model-agnostic Explanations
(LIME), Accumulated Local Effects (ALE), permutation and impurity-based techniques. Following
previous investigations that examine the interdependence between predictors and the cumulative
damage caused by a seismic sequence using classic statistical methods, the present study deploy
ML interpretation techniques to deal with this multi-parametric and complex problem. The research
explores the cumulative damage during seismic sequences, aiming to identify critical predictors
and assess their influence on the cumulative damage. Moreover, the predictors contribution with
respect to the range of final damage is evaluated. Non-linear time history analyses are applied
to extract the seismic response of an eight-story Reinforced Concrete (RC) frame. The regression
problem’s input variables are divided into two distinct physical classes: pre-existing damage from the
initial seismic event and seismic parameters representing the intensity of the subsequent earthquake,
expressed by the Park and Ang damage index (DIPA) and Intensity Measures (IMs), respectively. In
addition to the interpretability analysis, the study offers also a comprehensive review of ML methods,
hyperparameter tuning, and ML method comparisons. A LightGBM model emerges as the most
efficient, among 15 different ML methods examined. Among the 17 examined predictors, the initial
damage, caused by the first shock, and the IMs of the subsequent shock—IFVF and SIH—emerged as
the most important ones. The novel results of this study provide useful insights in seismic design
and assessment taking into account the structural performance under multiple moderate to strong
earthquake events.

Keywords: seismic sequence; interpretable machine learning; successive earthquakes; seismic
damage prediction; seismic damage accumulation; machine learning; explainable machine learning

1. Introduction

Earthquake series that occurs in succession causes additional damage on already
damaged buildings and therefore increases the risk of a collapse. Historical examples of
seismic sequences include the New Madrid (1811–1812) sequence [1], which comprised
three primary shocks and several aftershocks. The events caused extensive structural
damage, affecting regions as far as Canada on the north side and eastern United States.
The 1960 Chilean sequence [2] initiated by the historic 9.5 magnitude mainshock led to
massive devastation and life losses in Chile and triggered a series of tsunamis. One
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notable seismic sequence occurred in central Italy in 2016 where over a period of several
months, there was a succession of earthquakes with a 6.2 magnitude mainshock leading to
significant destruction and casualties [3,4]. Experts studying the series of seismic events
found that they transpired on pre-existing fault lines that had been under stress for a
considerable period of time. Moreover, they ascertained that the earthquake sequence had
shifted the stress distribution within the region, hence potentially increasing the probability
of subsequent seismic events. Another example is the 2019 Ridgecrest sequence [5] in
California, which included a mainshock of 6.4, then several aftershocks including of a
7.1 seismic event. This sequence resulted in extensive damage to infrastructure and homes
in the region. Accordingly, it demonstrated the potential for aftershocks to be almost as
powerful as the mainshock. In February 2023, southeastern Türkiye and parts of Syria
were hit by two strong earthquakes resulting in numerous aftershocks and significant loss
of life and injuries [6,7]. The earthquakes had magnitudes of 7.8 and 7.5 and occurred
approximately nine hours apart. As an outcome of all the above examples, the assessment
of cumulative damage and vulnerability of structures or buildings to multiple earthquakes
needs to be determined to avert or minimize potential losses.

Several studies focus on the effect of multiple earthquake events on the seismic perfor-
mance of Reinforced Concrete (RC) structures. Abdelnaby in his PhD thesis [8] examines
the consequences that successive seismic events have on RC buildings’ degradation. Later,
Hatzivassiliou and Hatzigeorgiou [9] investigate the effect of seismic sequences on the
response of three-dimensional RC buildings, while Kavvadias et al. [10] examine the impact
of aftershock severity characteristics on the seismic damage of a RC frame. Trevlopou-
los and Guéguen [11] propose a framework to assess the vulnerability of RC structures
during aftershock sequences based on period elongation. Additional research in this field
encompasses the work of Shokrabadi et al. [12], who explore the influence of coupling
mainshock-aftershock (MS-AS) ground motions on seismic behaviour. Furthermore, Fur-
tado et al. [13] evaluate the structural damage of reinforced concrete (RC) buildings with
infill walls subjected to MS-AS scenarios. Di Sarno and Pugliese [14] study the seismic
fragility of existing RC buildings with corroded bars under earthquake sequences, while
Iervolino et al. [15] examine the accumulation of seismic damage in multiple MS-AS se-
quences. Rajabi and Ghodrati Amiri [16] develop behaviour factor prediction equations
for RC frames under critical MS-AS sequences using Artificial Neural Networks (ANNs).
Soureshjani and Massumi [17] investigate the seismic behaviour of RC moment-resisting
structures with concrete shear walls under MS-AS seismic sequences. Khansefid [18] stud-
ies the effect of structural non-linearity on the risk estimation of buildings under MS-AS
sequences in Tehran metro city. Additionally, Hu et al. [19] introduce a framework for the
seismic resilience assessment of buildings that considers the effects of both mainshock and
multiple aftershocks. Finally, Askouni [20] investigate how repeated earthquakes affect
RC buildings with in-plan irregularities. Overall, the research findings demonstrate the
importance of considering the effects of multiple earthquakes in the design and assessment
of RC structures.

The capability of Machine Learning (ML) to predict the behaviour of structures has
spurred interest in earthquake and structural engineering. The early papers [21,22] in
this field are applications of ANNs either for purposes of response prediction of simple
structures or non-destructive elastostatic identification of unilateral cracks. Later stud-
ies [23,24], dealt with non-linear seismic responses of 2D and 3D buildings using ANN and
proved that this ML method can be used to accurately predict the behaviour of complex
structures. In addition, Hybrid ML techniques have been investigated for the prediction of
structural damage under earthquake excitation [25–27], while Mangalathu et al. [28], as
well as Wang et al. [29], used ML techniques for classifying buildings on post-earthquake
observations. Recent papers [30–32] also have explored the use of deep learning, which has
shown great promise in rapid seismic response prediction of RC frames. Physics-guided
neural networks have been used for data-driven seismic response modelling [33], elastic
plate problems [34], and static rod and beam problems [35]. In that respect, more recent
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papers investigate the application of ML in seismic response prediction. For example,
Morfidis and Kostinakis [36] predicted the damage state of RC buildings using ANNs
while Hwang et al. [37] predicted both seismic demand, as well as collapse for ductile
RC building frames using ML methods. In some other cases too, earthquake scenarios
for building portfolios have been developed [38], rapid seismic response prediction has
also been conducted [39], plus multivariate seismic classification [40]. Kazemi et al. [41]
presented a ML-based approach for the classification of the structural behaviour of tall
buildings with a diagrid structure. Karbassi et al. [42] and Ghiasi et al. [43] proposed
decision tree and support vector machine algorithms, respectively, to predict damage in
RC buildings, while Chen et al. [44], and Jia and Wu [45] investigated probabilistic ML
methods for predicting the performance of structures and infrastructures. Furthermore, the
literature has showcased numerous instances of using ML to evaluate the seismic fragility
and risk of civil engineering structures [46–51]. Moreover, Morfidis et al. [52] developed a
user-friendly software application that leverages ANNs for rapid damage assessment of
RC buildings in earthquake scenarios. Lastly, Lazaridis et al. [53,54] presented studies on
forecasting the structural damage experienced by a RC frame subjected to both individual
and successive seismic events using ML methods. Additional information regarding the
application of ML in the field of earthquake and structural engineering can be found in the
respective review papers [55–64].

The majority of the above ML applications in earthquake engineering consider only
the damages from individual earthquakes, ignoring that in most cases the seismic events
occurred in succession and cause cumulative damage to buildings. To the best of authors’
knowledge, the influence of potential predictors on cumulative structural damage un-
der sequential earthquakes, using ML interpretation methods, has not been presented
in the literature yet. In related past studies, the effect of predictors on the cumulative
structural damage has been evaluated by employed Pearson or Spearman correlation co-
efficients [10,65,66] and consequently did not efficiently model this multi-parametric and
complex non-linear problem. Moreover, ML techniques have been used for the explanation
of seismic damage prediction in other studies [67], considering structural damage caused
only by individual earthquakes. Additionally, the problem of cumulative seismic damage
prediction has been examined by the authors of [54] without providing insights or interpre-
tation of the ML models. Moreover, the cumulative damage to buildings from successive
earthquakes has not been considered in seismic codes, until now.

In this study, the extension of interpretation techniques to include the concept of
cumulative damage during a sequence of earthquakes has been undertaken. The primary
objective of this study is to discover the key parameters which ought to have high priority
by the earthquake and structural engineering community while designing against seismic
events involving a sequence of earthquakes. In addition, it will also show how ML can help
in handling the high non-linear problem of structural response under sequential earthquake
excitations. For this scope, 15 ML methods which are appropriate for tabular data, as the
data examined in this study, were selected from the literature. Using the randomized
search cross-validation process, different variants with different hyperparameter values
for every method were picked. Each variant was trained and evaluated using the K-fold
cross-validation strategy on the training set to indicate the best model and complete the
hyperparameter tuning. The global interpretation techniques are applied to the best model
for identification of general predictors behaviours, while local and global explanation
methods are used for extracting feature importances. In summary, the primary questions
addressed in the present paper include: identifying the most important predictors for
damage accumulation, understanding how these variables impact the final damage, and
determining the range of cumulative damage in which their contributions lie.
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2. Feature Selection and Dataset Configuration and Preprocessing

The input variables for our regression problem fall into two distinct physical classes:
the pre-existing damage from the initial seismic event, along with the seismic parameters
representing the intensity of the subsequent earthquake. The objective is to predict the
cumulative damage occurred by two consecutive earthquakes. The first class of feature, as
well as the target, is expressed in terms of the Park and Ang damage index (DIPA) [68]. For
the second category, a preliminary feature selection process has been conducted. During
this process, the outcomes of several studies [36,69–77] investigating the interdependence
between seismic parameters and damage indicators of RC structures have been taken into
account. As a result, 16 prominent Intensity Measures (IMs) have been selected as seismic
damage predictors to express the severity of the second shock. The selected IMs, as well as
the damage index, are described in the following section.

2.1. Ground Motion IMs and Damage Index
2.1.1. Ground Motion IMs

Seismic ground motion IMs are metrics employed to quantify the intensity or severity
of seismic acceleration signals. These measures play a crucial role in evaluating a site’s seis-
mic hazard, predicting seismic demand on structures, and designing earthquake-resistant
structures. Various IMs have been suggested over time, each with its own pros and cons.
Peak Ground Acceleration (PGA) [78] is among the most commonly used ground motion
signal IMs. PGA represents the maximum absolute acceleration of ground motion during
an earthquake and is extensively used in seismic hazard analysis and building design, as it
offers a straightforward indication of ground shaking intensity. Furthermore, our suite of
IMs encompass amplitude parameters such as the maximum absolute values of ground
velocity (PGV), and ground displacement (PGD) signals. The Arias intensity (IA) [79]
and Cumulative Absolute Velocity (CAV) [78] are additional seismic ground motion IMs
that supply information about the overall amount of ground motion energy during an
earthquake. Both IA and CAV are determined as integrals of ground motion acceleration
over time, offering a more comprehensive depiction of the seismic signal compared to PGA
or PGV, as they account for both the amplitude and duration of the signal.

The frequency content of ground motion signals significantly influences a structure’s
response. This content can be assessed in a simplified manner using the corresponding
frequency PGA/PGV or by calculating the average zero-crossing count of the acceleration
time history per unit time. If the number of zero-crossings is denoted as uo, the fraction of
IA over u2

o is recognized as the potential destructiveness measure, according to Araya and
Saragoni (IAS) [80]. The strong motion duration of seismic excitation considering as the
time interval during which most of the total intensity is released, is another vital parameter.
Two definitions of strong motion duration, Trifunac and Brady (SMDTB) [81] and Reinoso,
Ordaz, and Guerrero (SMDROG) [82], are based on the Arias intensity’s time evolution. The
bracketed duration after Bolt (SMDBolt) [83], which is calculated based on the initial and
final instances when the acceleration exceeds 5% of g, is also utilized.

Advanced measures can be obtained by merging the above parameters, such as
power P90 [78], arms [78], characteristic intensity (Ic) [78], the potential damage metric by
Fajfar, Vidic, and Fischinger (IFVF) [84], and the intensity measure by Riddell and Garcia
(IRG) [85]. However, spectral values reliant on the fundamental structural period are not
applicable due to the increase in the fundamental period during the initial earthquake. As
an alternative, the Housner intensity (SIH) [86], which aggregates the values of pseudo-
velocity spectrum (PSV) to a constant interval of periods and exhibits a strong correlation
with seismic damage, is utilized. A brief depiction of the formulas for the studied IMs is
given in Table 1.
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Table 1. Mathematical formulas of the examined IMs [54].

Num Name Expression Ref. Num Name Expression Ref.

1 PGA max|ag(t)| [78] 9 SMDROG t(Hd = 97.5%) – t(Hd = 2.5%) * [82]

2 PGV max|vg(t)| [78] 10 SMDBolt t
ag>0.05g
last – t

ag>0.05g
1st [83]

3 PGD max|dg(t)| [78] 11 P90
IA(Hd=95%)–IA(Hd=5%)

SMDTB
[78]

4 IA
π
2g
∫ tend

0 a2
g(t)dt [79] 12 arms

√
1

SMDTB

∫ t95%
t5%

ag(t)2dt [78]

5 CAV
∫ tend

o |ag(t)|dt [78] 13 Ic a1.5
rms · SMD0.5

TB [78]

6 PGA/PGV PGA
PGV [78] 14 IFVF PGV · SMD0.25

TB [84]

7 IAS
IA
u2

o
[80] 15 IRG PGD · SMD

1
3
TB [85]

8 SMDTB t(Hd = 95%) – t(Hd = 5%) * [81] 16 SIH
∫ 2.5

0.1 PSV(T, ξ = 0.05)dT [86]

* Hd: Husid diagram [87].

2.1.2. Damage Index

Seismic damage in structures manifests as a reduction in resistance to external forces,
resulting in instability. The Park and Ang damage index (DIPA) is a reliable seismic damage
metric that represents structural damage as a linear combination of excessive deformation
and damage developed by repeated cyclic loading effects. This index is calculated by
summing the maximum bending responses and the energy absorbed by plastic hinges
during an earthquake, as shown in Equation (1). Due to this fact, the Park and Ang
damage index can effectively represent the evolution of cumulative flexural damage, both
for individual shocks and during a sequence of seismic events (Figure 1), in contrast with
other damage indicators which capture only maximum responses and cannot represent
the accumulation of damage investigated in this study. Kunnath’s modified version of the
index [88] is calculated using Equation (2). The total damage index (DIG,PA) is obtained
as an adjusted mean of sub-damage values, where each sub-damage belongs to each
structural member. The weight of each sub-damage is proportional to the energy used by
its corresponding structural member, according to Equation (3). A low value of DIG,PA,
close to zero, indicates that the structure has experienced minimal damage and exhibited an
elastic response. Conversely, a value around the unity and larger signifies that the structure
is near collapse. Overall damage indices, such as DIG,PA, offer a quantitative assessment of
a structure’s seismic damage and have been utilized in several studies [36,69–72,76,89] to
evaluate the post-earthquake condition of buildings.

DIPA =
δm

δu
+

β

Qyδu

∫
dE (1)

DIPA, component =
θm – θr

θu – θr
+

β

θuMy
Eh (2)

DIG,PA =
∑ EiDIPA,component

∑ Ei
(3)

The damage index equation comprises several variables associated with structural
element capacity and response, such as the maximum displacement response (δm), the
ultimate displacement capacity (δu), the strength deterioration model constant (β) [90],
the absorbed cumulative hysteretic energy (

∫
dE), the yield strength (Qy), the maximum

rotation of the member throughout the response (θm), the member’s ultimate rotation
capacity (θu), and the recoverable rotation during unloading (θr).
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Figure 1. Indicative seismic signal comprising two successive ground motions and the accompanying
evolution of seismic damage.

2.2. Description and Modelling of the Examined Building

The majority of the existing RC buildings in Greece and globally were designed
according to obsolete building codes, raising concerns about their potential behaviour
during strong seismic events. In this study, a representative example of the above category
is investigated. The examined structure is an eight-story RC frame (Figure 2a) designed
by Hatzigeorgiou and Liolios [91], only for gravity loads, without seismic provisions [92]
or retrofitting [93–98]. Additionally, according to the design methodology adopted in
Greece before 1984, this building lacks capacity design and shear walls. The finite element
simulation is performed using IDARC 2D [99], and the distributed plasticity concept with a
three-parameter Park hysteretic model [100] is employed. This hysteretic model, governed
by the HC parameter, determines the deterioration of stiffness during load-reload cycles.
The HBE/HBD parameter, in turn, controls the degradation of strength. Additionally, the
HS parameter reflects the degree of slip experienced by the longitudinal reinforcement due
to insufficient lap-splices in columns and inadequate anchoring in beams. It should be noted
that a construction without seismic provision is characterized by having poor anchoring
and lap-splice details, and would not consist of standardized quality materials. As such, in
the current case, moderate to severe degradation of strength and stiffness, as well as slip
parameter, is considered. The Figure 2d depicts a representative hysteretic loop of a cross-
section belonging to the building under investigation. Moreover, there is an assumption
of adequate shear reinforcement to prevent premature brittle failure. This applies to both
beams and columns, as well as to the corresponding joints. Consequently, only flexural
damage is considered, quantified by the Park and Ang damage index. The concrete and
steel materials are modeled based on their effective strength and strain properties. The
concrete has a mean compressive strength of 28 MPa, is characterized by the initial modulus
of elasticity (E0 = 31.42 GPa), strain at the maximum stress (εc0 = 2h), ultimate strain in
compression (εcu = 3.5h), stress at tension cracking (σt = 0.0022 GPa), and the slope of
the post-peak falling branch (Efb = –6.2 GPa) (Figure 2b). The building also features S500s
grade steel, studied using a bilinear curve (Figure 2c) that incorporates hardening. This
steel exhibits yield and ultimate strengths of 550 MPa and 660 MPa, respectively, with
strains corresponding to these strengths being 2.75h and 45h. The building’s initial elastic
fundamental period is equal to 1.27 s. The GNU Octave [101,102] code is also written to
automate the creation of IDARC 2D input files and the subsequent processing of the results.
In summary, this building’s study presents a valuable examination of structures designed
without earthquake provisions, offering insights into their performance and the steps that
could be taken to improve their earthquake resilience.
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Figure 2. (a) The examined RC frame [54], (b) concrete and (c) steel stress-strain rules, (d) the
implemented hysteretic rule.

2.3. Dataset Creation

This study employs an extensive dataset that includes seismic damage predictors as
input features and the associated cumulative damage arising from sequential earthquakes as
the target variable. Due to the lack of real successive ground motion recordings, the dataset
primarily comprises artificial sequences. These artificial sequences were generated from a
set of 318 real, individual seismic records. Each seismic record from this set was randomly
combined six times with another record from the same collection, leading to the formation
of 1908 artificial seismic sequences. It is important to note that out of the initial 1908 artificial
seismic sequences, only 1528 were deemed usable for the study. The remaining sequences
were discarded due to either Non-Linear Time History Analysis (NLTHA) convergence
issues or the lack of structural damage following the initial earthquake. On the other hand,
the natural sequences portion includes 111 real pairs of sequential earthquakes, which are
presented in Table A1 in Appendix A. The selected natural sequences occurred between
the years 1972 and 2020, with each subsequent shock in a sequence taking place over
a fifteen-month period. As a result, the complete dataset for this study comprises 1639
(1528 + 111) examples. All seismic records are sourced from the ESM [103] and PEER
NGA West [104] databases. To generate the composite signal for each sequence, a 20-s zero
ceasing time gap was inserted between consecutive records (as depicted in Figure 1), to
eliminate overlapping structural responses. Non-linear time history analyses are conducted
using both individual initial seismic shocks and seismic sequences. This process is carried
out to extract the initial damages, which are considered as input features, as well as the
cumulative damages, which are considered the target variable of the dataset. The remaining
input features (IMs) derived from the second shocks seismic signals, are calculated using
Python [105] and NumPy [106] code, whereas the computation of acceleration spectra is
performed using OpenSeismoMatlab [107]. The histograms and the probability density
curves for all variables across the total dataset are provided in Figure A1 in Appendix A.
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2.4. Data Preprocessing (Feature Scaling)

In Figure A1 in the Appendix A, it can be observed that the examined features vary
over five orders of magnitude, from 1× 100 to 1× 104. For example, the values of DIG,PA,1st
lie between 0 and 1.2 while those of Ic range from 0 to 15,000. Different scales in features
of a dataset can cause slower convergence during the training of ML method. Such cases
may happen especially when the fitting of an algorithm is based on optimization of a cost
function such as in case of neural networks or linear models. For that reason in our study,
the input feature values are rescaled through standard scaling process to obtain zero mean
and unit variance for each predictor. The transformation applied to the kth feature value
xmk of the mth example is presented in Equation (4). According to this, from every value of
the dataset, the corresponding feature mean value µk is subtracted and the result is divided
by the feature’s standard deviation σk.

xscaled
mk =

xmk – µk
σk

(4)

3. Machine Learning Methods, Hyperparameter Tuning and Interpretation Techniques

Machine Learning (ML) falls under the umbrella of artificial intelligence disciplines. It
focuses on the development and creation of algorithms that possess the ability to learn from
data, generalize their understanding to novel instances, and enhance their performance
through iterative feedback processes. There exists a particular subdivision in ML called
supervised learning. This branch deals with designing models that stand out by their
ability to predict target outputs based on input features. In more detail, the weights of
parametric models are initialized randomly and in succession refined through the use
of the training dataset in an attempt to reduce the cost function (J) (Equation (5)). A
loss function (L) estimates the difference between prediction (ŷ)–actual (y) output for
individual data while a cost function computes total error across all the m data points.ML
techniques can exhibit overfitting (high variance) and underfitting (high bias), the former
preventing effective model generalization to unseen data, while the latter could result
from an insufficient amount of complexity or inappropriate input features leading to poor
performance. Concerning solving overfitting, the regularization value should be added
to the cost function acting as a penalty to prevent excessive parameters, or at least not
unreasonably large magnitude parameters to improve generalization.

J
(
model weights

)
=

1
m

m

∑
k=1

L
(
yk, ŷk

)
+ regularization terms (5)

3.1. Linear Models

In linear models, the output variable is defined by computing the weighted average
of input features, adding a constant termed as the bias term or intercept (Equation (6)).
Different types of linear regression [108,109] include Ordinary Least Squares (OLS), Lasso
Regression [110], Ridge Regression (RR) [111], and Elastic Net (EN) [112]. OLS minimizes
the sum of squared differences between actual and predicted values, and is a basic com-
parison standard. Lasso adds an l1 regularization term to the cost function, leading to
sparse solutions and potential feature selection but can aggressively shrink coefficients.
Ridge adds an l2 regularization, causing coefficients to approach zero, offering stability
and overfitting prevention. Elastic Net combines Lasso and Ridge, introducing both l1 and
l2 penalties to the cost function (J) (Equation (7)), controlled by a mixing parameter and
regularization parameter. Adjusting these parameters can optimize the model balance.

ŷ
(
xj
)

= b +
n

∑
j=1

wjxj (6)
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J(wj, b) =
1

2m

m

∑
k=1

(
ŷ(xjk) – yk

)2

︸ ︷︷ ︸
OLS

+ αρ
n

∑
j=1

∣∣wj
∣∣

︸ ︷︷ ︸
l1

+
α(1 – ρ)

2

n

∑
j=1

w2
j︸ ︷︷ ︸

l2

(7)

3.2. Non-Parametric Algorithms

Non-parametric algorithms, such as K-Nearest Neighbors (KNN) [113], have no train-
able parameters. KNN is an instance-based technique that memorizes the training dataset,
using the ‘K’ nearest training data examples to the examined point for predictions. The goal
of Decision Trees (DTs) [114] is to find the best splits for maximum data separation and ho-
mogeneity within subsets, using criteria such as information gain or Gini impurity for data
splitting at each node. A feature’s importance is inferred from its usage depth as a decision
node in the tree and its frequency in split points leading to impurity reduction. DTs offer
interpretability, compatibility with continuous and categorical data, user-friendliness, and
fast prediction times, but may overfit and generate complex, hard-to-interpret trees [114].
Solutions include ensemble algorithms such as Random Forests (RFs) [115] and boosting
techniques such as gradient boosted decision trees [116].

3.3. Ensemble Trees

Random Forest (RF) [115] is one of the ensemble ML techniques which make use of
many Decision Trees (DTs) as weak learners, in an attempt to eliminate overfitting common
in a single decision tree. DTs in RF are generated using random subsets of data and
features, with the final predictions made by averaging individual trees’ outcomes. Despite
its computational demands and complex interpretability, RFs remain popular mainly for
their simplicity, adaptability and performance. Extremely Randomized Trees (ERTs) [117] is
another variant of RF which further reduces overfitting by coming up with randomness at
feature selection and thresholding at each split in DTs which enhances prediction stability as
well as generalization, especially for the noise data. Boosted Trees, e.g., Adaboost [118,119]
and Gradient Boosting (GBoost) [116], promote different advantages. In Adaboost, hard-
to-predict instances are given more weight and easy-to-predict examples are given less
weight during the training of a weak learner. Iterations of training and weight adjustments
culminate in a final prediction from the weighted majority vote of weak learners. GBoost
starts by fitting a decision tree to the data followed by successive trees fitted to residuals
of the previous trees predictions. It uses the gradient information obtained from the loss
function to guide the model improvement, with subsequent trees fitted to the negative
gradient of the loss function. The weights βn are optimized to minimize cost function J

(Equation (8)) which is a measure of difference between true values and model predictions.

F(x) = Fn–1(x) + βnTn(x), J(βn) =
m

∑
i=1

L(yi, Fn–1(xi) + βnTn(xi)) (8)

where F(x) is the final prediction of the model, Fn–1(x) is the prediction of the previous
iteration, Tn(x) is the n-th tree model in the ensemble, βn is the weight assigned to the n-th
tree model, and m is the number of samples.

Gradient boosting presents several benefits over other ML methods, including its
ability to handle complex non-linear relationships and perform effectively with noisy
and incomplete data. However, gradient boosting can be resource-intensive and may
overfit the training data if there are excessive trees or if the learning rate is excessively
high. The learning rate, also referred to as shrinkage or step size, governs the increase in
adjustment in each iteration. A smaller learning rate results in slower convergence but
generally produces more precise models. Furthermore, interpreting gradient boosting
models can be more difficult compared to linear models or individual DTs. Among the
several variations of gradient boosting, LightGBM [120] is a Microsoft model known for
speed and effectiveness on large, high-dimensional datasets, utilizing a gradient-based
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one-side sampling (GOSS) method to improve performance. CatBoost [121,122] prevents
overfitting with techniques such as regularization and early stopping. XGBoost (eXtreme
Gradient Boosting) [123] handles missing values and outliers by segmenting data, fitting
trees to subsets, and uses regularization and parallel processing for rapid performance.
Lastly, Natural Gradient Boosting (NGBoost) [124] provides model interpretability through
a probabilistic decision tree framework, enabling uncertainty estimation and generating
meaningful feature importances.

3.4. Feedforward Neural Networks

The Multilayer Perceptron (MLP) [125–127], also known as Feedforward Neural Net-
work, is used to describe an ANN type usually composed by artificial neurons or units
arranged in layers: input predictors, output with target variable, and intermediate hidden
layers. Every neuron i in a hidden layer (l) performs computations on activations (al–1

j )
received from the previous layer (l – 1) and passes them to the subsequent layer. The
value of each neuron is estimated applying a non-linear activation function on the linear
combination of previous layer units activations. The coefficients of the linear combination
are divided into two tensors: (Wl

ij) and biases (bl
i ). The components of these tensors are

the trainable parameters of the MLP. Propagation of information (Equation (9)), through
forward succession, maps input features to the output target. During training, the partial
derivatives with respect to trainable parameters of the cost function (J) are estimated
according to Equation (10), known as the back-propagation process [128,129]. The train-
able parameters are updated in each step according to the gradient descent optimization
algorithm (Equation (11)) to minimize losses. MLP complexity is affected by the number of
hidden layers, units and regularization parameter (λ) (Equation (12)).

ali = σ

(
∑

j
Wl

ija
l–1
j + bl

i

)
︸ ︷︷ ︸

zli

(9)

where L is the number of layers, n is the number neurons of layer l, m is the number
neurons of layer l – 1, and λ is the regularization parameter.

∂J

∂Wl
ij

=

(
∂J

∂ali
� ∂ali

∂zli

)
al–1

j ,
∂J

∂bl
i

=
∂J

∂ali
� ∂ali

∂zli
(10)

where � denotes element-wise multiplication.

Wl
ij ←Wl

ij – α
∂J

∂Wl
ij

, bl
i ← bl

i – α
∂J

∂bl
i

(11)

where α is the learning rate, and← denotes assignment.

Jreg(Wij, bi) = J(Wij, bi) + λ
L

∑
l=1

n

∑
i=1

m

∑
j=1

(
Wl

ij

)2
(12)

The ML methods examined in this paper were deliberately chosen to align with the
structure of the data being used. This data is characterized as tabular data according to
data science terminology, and the chosen methods are designed to process such data. Our
selection includes classic methods such as OLS, AdaBoost, and RF, and recently developed
ones such as XGBoost, CatBoost, LightGBM, and NGBoost, all of which are skilled at
addressing tabular data.

3.5. Hyperparameter Tuning and K-Fold Cross-Validation

Hyperparameters of ML models are set before training, unlike trainable parameters
that are calibrated through minimizing the cost function. Variations in hyperparameter
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values offer different ML method instances. Optimal hyperparameters are decided through
the process of comparison among multiple models. This aims to improve particular aspects,
in particular reducing bias and variance effects, to finally improve the ability of the model
to generalize. Frequently, hyperparameter tuning employs grid search [130]; however,
randomized search Cross-Validation (CV) [131] is able to be more efficient for numerous
hyperparameters reducing computational cost. It randomly picks value combinations of
hyperparameters and utilizes K-fold CV [132] in the performance evaluation. The dataset
is partitioned into K sections; each ML algorithm is fitted K times on distinct training sets
of having K-1 parts and evaluated using the remaining part. The best-performing model is
identified by comparing the mean cross-validation performances from the K-fold CV. The
overall workflow of the ML model building is represented in Figure 3a and was carried out
in scikit-learn [133]. In our study, the randomized search CV resulted in 10,000 variations
with different hyperparameters values for each ML method and their mean performances
were assessed using a 10-fold CV. A schematic representation of the 10-fold CV process
could be found in Figure 3b. Additionally, more details about the implementation of
hyperparameter tuning for each method are provided in Section 4.1.
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Figure 3. (a) The machine learning workflow followed in this study and (b) the K-fold CV schematic
representation.

3.6. Interpretation Methods

The ML methods, when compared to traditional examples of numerical modelling
in civil engineering [134–139], have been criticized as being “black boxes”. While the
interpretation of a single decision tree can be relatively straightforward by examining
its structure, considering the impurity decrease at each node, gradient boosting models
encompass numerous regression trees, making understanding them through individual
tree examination more challenging. Moreover, the complexity of ANNs exacerbates inter-
pretability difficulties of high-level ML methods. To address this issue, model-agnostic
interpretation approaches have been developed recently [140]. These kind of techniques
could be used to explain the predictions of any previously described ML method, without
consider the internal structure of the model. In the field of earthquake and structural
engineering, these ML interpretation methods have been applied by Mangalathu et al. [141]
for seismic performance assessment of infrastructure systems, by Wakjira et al. [142] in
flexural capacity prediction of RC beams strengthened with FRCM and by Junda et al. [143]
in seismic drift estimation of CLT buildings. In this section, several methods that have been
developed to distill and interpret advanced and complex ML models, such as gradient
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boosting models or ANNs, are described. A comprehensive visualization of the examined
ML interpretation and regression methods is provided in Figure 4.
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Figure 4. A comprehensive visualization of the ML methods and the interpretation techniques used
in this study.

3.6.1. Global Interpretation Methods

Contrary to local methods, which emphasize in particular instances, global interpreta-
tion approaches elucidate the mean performance of ML models. By employing expected
values contingent on data distributions, these approaches facilitate the identification of
prevailing trends. An illustrative example is the Partial Dependence Plot (PDP) [116,144], a
type of feature effect plot that presents the projected outcome whilst marginalizing extrane-
ous features. In essence, the PDP can be seen as the anticipated target response based on
the input features of interest. Due to human perceptual constraints, the set of input features
of interest should be limited, typically encompassing one or two features. For a single
selected feature, the partial dependence function, at a specific feature value, indicates the
average prediction when all data points are assigned that particular value. Additionally,
Accumulated Local Effects (ALE) [145] plots extend the concept of PDP by accounting
for potential feature interactions and correlations. In addition, the permutation feature
importance, introduced by Breiman [115], is another global method that assesses the impact
of individual features by measuring the change in model performance when the feature
values are randomly shuffled, thereby breaking the relationship between the feature and
the target.

3.6.2. Local Interpretation Methods

On the other hand, local interpretation methods such as Local Interpretable Model-
agnostic Explanations (LIME) [146] and SHapley Additive exPlanations (SHAP) [147]
focus on explaining individual predictions. More precisely, these methods evaluate the
contribution of a feature to an individual prediction which may be positive, negative or
neutral. LIME creates an artificial dataset in the vicinity of the examined data point using
the predictions of the complex model as the ground truth. Next, fit an interpretable model
such as a linear one or decision tree on the artificial dataset so that it locally approximates
the complex model with a simpler one. This process provides insights into the behaviour
of the model for a given data instance. SHAP, grounded in cooperative game theory [148],



Sustainability 2023, 15, 12768 13 of 31

offers a unified measure of feature importance, assessing each feature’s influence on a
prediction by considering all possible feature combinations. SHAP values represent the
contribution of each feature considering its interactions with other features and their sum
equals the difference between the prediction and average prediction. The choice between
SHAP and LIME depends on context, as neither is universally better than the other.

A visualization which summarizes all the examined ML regression and interpretation
methods could be found in Figure 4.

4. Results and Discussion

In this section, a comparative analysis is initially conducted to assess the efficacy
of various Machine Learning (ML) methods in predicting cumulative seismic damage.
Subsequently, ML interpretation techniques are introduced to the most efficient and finely
tuned ML model, to identify the critical predictors that hold the greatest influence on the
resulting damage and understand it impact.This issue has been researched by studies in
past, especially for individual earthquakes with much less regard for seismic sequences. To
date, seismic codes have not sufficiently considered the succession of earthquakes hence
leading to additional damage as well as collapses. Our goal is to highlight the features that
are responsible for the accumulation of damage, to put them at the forefront in the creation
of future hazard maps and also in the revision of seismic design codes.

4.1. Hyperparameter Tuning and ML Models Comparison

An extensive examination of 10,000 distinct variations for the majority of ML methods
outlined in Section 3 was conducted, utilizing the randomized search CV procedure. Each
variation, also referred as an instance of an ML method, was configured with different
values and combinations of hyperparameters. A total of 15 ML methods were assessed to
determine the most efficient method for predicting the cumulative seismic damage under
MS-AS sequences. The best-performing instances for each of the examined ML methods are
presented in Figure 5, which showcases their performance in terms of the determination
coefficient R2. This coefficient was calculated for both the training and CV sets during
the K-fold process, as well as for the final test set, which was reserved for unbiased
evaluation and comprised 15% of the overall dataset. An absolute improvement of 10% in
R2 values was observed when comparing linear models to the most recently developed and
advanced ML methods (ensemble, MLP). Our results highlight the high efficiency of the
majority of ensemble methods, including both boosted and randomized trees, for predicting
the cumulative seismic damage. The MLP model exhibits a slightly more effective bias-
variance balance, as it achieves more similar performance across training, CV, and test sets
in comparison with the other advanced models. The most efficient model showcased an
instance of the LightGBM method which demonstrated the better CV and test performance,
while the the poorest performance was demonstrated by KNN, with R2 ≈ 0.4.

In the case of linear models (Section 3.1), regularization factors ranging from 0 to 1 were
employed as hyperparameters. For DT, the splitting criterion options included squared
error, Friedman MSE, absolute error, and Poisson, while the maximum tree depth ranged
from 0 to 100, both serving as hyperparameters. In the context of random forests, the
number of trees varied from 0 to 200, with the splitting criterion, maximum tree depth, and
maximum number of features for selection during the splitting procedure all functioning
as hyperparameters. In contrast, the splitting criterion is not an individual hyperparameter
for boosted trees, and consequently, exploration regarding this aspect is not conducted for
this ML method family. However, the learning rate, a hyperparameter which controls the
magnitude of updates during the training process of boosted trees, is included. Figures 6–8
demonstrate the performance of examined ML methods versus hyperparameters. These
graphics aid hyperparameter tuning, highlighting model efficiency and robustness during
optimization. This could benefit structural engineers working with similar data.
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Figure 5. Side-by-side bar plot comparing the performance of different ML methods on training
(10-fold), CV (10-fold), and test sets.

In Figure 6, the evolution of R2 against the number of trees is compared for different
types of boosted trees. The coloured bands show the influence of the other hyperparameters
with a 95% confidence interval. AdaBoost has the poorest performance while lacking
control over the overfitting as an increase in the number of trees occurs. On the contrary,
LightGBM and XGBoost demonstrate the most optimized and robust performance with
higher R2 values and lower variability as the number of trees increases. Moreover, CatBoost,
GBoost and NGBoost, in descending order, show intermediate R2 values. GBoost is more
stable than the rest when the number of trees varies. In summary, most boosted trees
methods exhibit high prediction performance, exceeding 0.9 in terms of R2. Figure 7 shows
a comparison between the two analysed methods of randomized trees. The figure shows
the evolution of the mean determination coefficient versus the number of base learner
trees. The shadow band represents the amount of uncertainty contributed by the remaining
hyperparameters with that value as in the case of the boosted trees confidence interval.
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Figure 6. The evolution of R2 versus the number of base learner trees for boosted trees.
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Figure 7. The evolution of R2 versus the number of base learner trees for random forest algorithms.

In the case of Multi-Layer Perceptrons (MLPs), the regularization parameter ranged
from 0 to 1. MLPs consisted of one, two, or three hidden layers, each containing between 1
and 200 neurons. The activation function of the hidden neurons varied among identity (no
activation function), hyperbolic tangent, and ReLU (Rectified Linear Unit); however, no
activation function was consistently applied to the output neuron because the examined
problem was being addressed as regression. The sigmoid function was not investigated, as
it is more appropriate for use in the output neuron of an MLP classifier.

In Figure 8, the mean R2 score, calculated in the CV sets using the K-fold validation
procedure with K equal to 10, is depicted as being plotted against the total number of hidden
neurons composing the MLP. The MLPs utilizing the ReLU activation function appear to
exhibit better performance, followed by those with the Tanh activation function. The MLPs
with no activation function essentially represent linear mapping, and their R2 scores are
similar to the results from linear models (Figure 5). Additionally, increasing the number of
hidden units beyond 100 seems to have little impact on the method’s performance, as the
R2 score plateaus around a constant value for each activation function after this point.
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Figure 8. The evolution of R2 versus the total number of neurons, for each activation function.
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4.2. Interpretation of the Best ML Model

Generally, input features have varying levels of contribution to predicting the target
outcome, and many of them may not be significant. The main objective of model inter-
pretation is to identify the key features and comprehend their impact on predicting the
target outcome. In this section, the interpretability of the devised ML model is explored,
beginning with a discussion of feature importances.

4.2.1. Features Importances

Many past studies in earthquake engineering have been conducted to identify the
most critical seismic parameters causing structural damage after an individual earth-
quake [36,69–77]. However, only a few [10,65,66] consider the accumulation of damage
due to successive earthquakes and employ classical statistics to achieve this.

Upon concluding the hyperparameter tuning and comparing the evaluated ML meth-
ods, it is evident that eight of them exhibit remarkable efficiency, achieving an R2 score
greater than 0.9. The best ML models are instances of ensemble and MLP methods. Specifi-
cally, the most efficient one is shown to be the LightGBM model with 195 trees, a maximum
depth of 4, a maximum of 17 features (all) and learning rate equal to 0.1589. The permuta-
tion technique, a global model-agnostic interpretation method, is implemented to extract
the feature importances for the best models. The relative feature importances of the most
efficient models are presented in Figure 9. As observed, the majority of models agree
that the most crucial predictor of the final damage is the pre-existing damage DIG,PA,1st,
followed by IFVF, SIH and PGA

PGV .
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PGV

IAS SMDT B SMDROG SMDBolt P90 arms Ic IFV F IRG SIH

Input Feature

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

Im
po

rt
an

ce

Machine Learning Method (R2 > 0.9)
CatBoost (R2=0.95)

ERT (R2=0.95)

GBoost (R2=0.95)

LightGBM (R2=0.95)

MLP (R2=0.94)

NGBoost (R2=0.95)

RF (R2=0.95)

XGBoost (R2=0.95)

Figure 9. Feature importances for the ML methods with R2 > 0.9, according to the permutation method.

Individual DTs inherently perform feature selection by choosing suitable split points
based on impurity reduction, which can be utilized to assess the significance of each
feature. By measuring the decrease in impurity contributed by each feature throughout
the tree, we can estimate its relative importance in the decision-making process. Since
the most suitable ML method for our problem turned out to be LightGBM, a tree-based
ensemble method, the notion of significance can be applied by averaging the impurity-
based feature importance across all trees. In Figure 10, the importances of input features,
computed using three model-agnostic methods (LIME, SHAP, and permutation) and the
impurity-based method, are presented. The y-axis of each subplot displays the features in
descending order of importance according to the respective interpretation method. Both
LIME and SHAP, as previously described, calculate the contributions of each feature for
every data point individually. To obtain comprehensive importances, the mean absolute
attribution and value for each method are calculated, respectively, over the entire dataset.
As depicted in Figure 10, all interpretation methods identify the initial damage DIG,PA,1st
as the most significant feature. The majority of interpretation methods indicate the second
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most important feature and the most significant among intensity measures (IMs) to be IFVF,
except for the impurity-based explanation, which identifies SIH. LIME and SHAP rank
SIH as the third most important IM (third input feature), while permutation suggests PGA

PGV
and impurity proposes IAS. The examined methods also do not agree on the third most
important IM: LIME identifies it as CAV, SHAP as PGA

PGV , permutation as SIH, and impurity
as PGD.

However, feature importances do not provide insights into whether a positive or
negative change in an input variable leads to a corresponding positive or negative influence
on the output variable, or the contrary.
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Figure 10. Feature importances for the best LightGBM model, using different interpretation methods.

4.2.2. Local Explanation Methods (LIME, SHAP)

Local interpretation methods offer many advantages over alternative approaches of
explaining model predictions. These methods are model-agnostic, allowing the explanation
of individual predictions. Furthermore, they constitute a unified approach for interpreting
both linear as well as non-linear models. By considering contributions and interactions
with other features, these methods provide precise explanations of the model’s predictions.
The sum of SHAP values for a given instance equals the difference between prediction and
expected prediction value across the entire dataset. This ensures that the model’s overall
behaviour is taken into account. For the model f(x) which maps input x to a prediction, the
SHAP value of feature i for particular sample x is defined in Equation (13).

φi(x) = ∑
S⊆T

|S|!(|T| – |S|)!
|T|!

[f(xS ∪ xi) – f(xS)] (13)

where T is the set of all feature indices and xS is the input vector with only the features in S
present. The formula represents the average difference that adding feature i to the input
makes over all possible combinations of the remaining features.

LIME assesses the impact of each input variable on an individual example basis. The
distribution of LIME attributions across the entire dataset is depicted in Figure 11a. On the
y-axis, the input features are arranged in descending order based on their mean absolute
LIME per feature, as discussed in the previous section. Features such as DIG,PA,1st, IFVF, and
SIH appear to have a positive impact, while the PGA

PGV ratio suggests a negative impact on
the final damage outcome. The distribution of SHAP values for each predictor throughout
the overall dataset is depicted in Figure 11b. The x-axis values display the SHAP values for
each contributing variable, signifying their impact on the final damage in terms of DIG,PA,
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while the y-axis arranges the predictors according to their importance. The colours in the
figure represent the values of the input features. For instance, increased values of DIG,PA,1st,
IFVF, SIH, and PGV lead to a higher estimated final damage, DIG,PA. On the other hand,
lower values of PGA

PGV and PGA result in higher SHAP values, which negatively influence the
final damage. To examine the contribution variation of pre-existing damage and consequent
seismic shock severity characteristics across different levels of the final damages, the dataset
and the corresponding LIME attributions and SHAP values were grouped according to
the following damage states: Minor (0 < DIG,PA ≤ 0.3), Moderate (0.3 < DIG,PA ≤ 0.6),
Severe (0.6 < DIG,PA ≤ 0.8), Collapse (0.8 < DIG,PA). The mean absolute values for each
of the above-mentioned interpretation methods were calculated per damage state. The
contributions of all the IMs are summarized and compared to those of the initial damage.
In Figure 12, the results of the above process are displayed, with values normalized to unity.
This illustration highlights the comparison between the contributions of seismic parameters
and those of initial damage across each damage state. Quite different results emerge for
each interpretation method, but both agree that the contribution of IMs is larger than that
of DIG,PA,1st for minor damages. According to LIME, both IMs and established damage
contribute equally for the three higher damage states. In contrast, SHAP estimates a larger
impact for IMs, which is maximized for moderate damage and decreases as the damage
level increases.

−0.2 0.0 0.2 0.4 0.6

LIME Attribution

PGA

IA

PGV

PGD

IRG

PGA
PGV

CAV

SIH

IFV F

DIG,PA,1st

(a)

−0.25 0.00 0.25 0.50 0.75

SHAP Value

PGA

IAS

PGV

PGD

IRG

CAV

PGA
PGV

SIH

IFV F

DIG,PA,1st

(b)

Low

High

F
ea

tu
re

va
lu

e

Low

High

F
ea

tu
re

va
lu

e

Figure 11. Violin plots represent the distribution of (a) LIME attributions (b) SHAP values.
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Figure 12. Stacked bar plot of grouped (a) LIME attributions (b) SHAP values for IMs and DIG,PA,
normalized to unity.

4.2.3. Global Explanation Methods (PDP and ALE)

Both PDPs and ALE, as global model-agnostic interpretation methods, can describe the
general trends of our ML model with respect to input variables and depict the relationship
between the cumulative seismic damage and a group of relevant predictors.

Figure 13 summarizes both PDPs and ALE results for the majority of the damage
predictors. In each subplot, the y-axis depicts the expected value of the dependent variable,
which in our case is the final damage (DIG,PA), while the x-axis represents the value of
the examined damage predictor. The positive impact of the initial damage on the final
damage across its entire range of values can be observed. There is a sharp increase to the
point where the initial damage takes value equal to unit. Beyond that, the trend levels off
horizontally. IFVF has a positive impact for values between 50 and 150 cm·s–0.75, and zero
impact for smaller and larger values. The corresponding final damage ranges from 0.25
to 0.56 by PDP and 0.25 to 0.65 by ALE. As observed, a larger cumulative damage range
affected by IFVF is identified by ALE. SIH has a notable positive impact on the final damage
for values ranging from 80 to 180 cm. Moreover, final damage values falling between 0.3
and 0.45 appear to be influenced by this parameter. Subsequently, values of PGA

PGV smaller
than 15 s–1 appear to have a negative impact on the final damages and larger values present
zero impact. CAV has an increasing outcome in the interval of 500–1500 cm

s , increasing
the damage from 0.3 to 0.4, and zero effect outside of this range. IRG appears to have
a predominantly negative influence on damage in the range of [0.2, 0.4]. Other seismic
parameters (PGD, PGV, IAS, PGA, SMDBolt, IA) seem to have less influence on shaping
the final damage, affecting its values between 0.3 and 0.4. All the other input parameters
appear to have very small or zero impact on the prediction of final damage, predicting
values around 0.33, which is the mean output of our total sample. As a general observation,
ALE indicates wider ranges of the dependent variable affected in comparison with PDP for
every input feature.

In summary, this section explored the interpretability of the devised ML model by
discussing feature importances, local explanation methods (LIME and SHAP), and global
explanation methods (PDP and ALE). The results showed that initial damage, IFVF, and
SIH are among the most crucial predictors of the final damage. Additionally, the local
explanation methods provided insights into the positive or negative influence of each
input variable on the cumulative seismic damage, while the global explanation methods
described the general trends of the ML model with respect to damage predictors.
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Figure 13. The expected value of DIG,PA with respect to each examined input feature, according to
the PDP and ALE methods.

5. Conclusions

In this study, interpretable ML models to estimate the cumulative damage of an eight-
story RC frame subjected to earthquake sequences were presented and analysed. Through
the application of local and global explanation methods, a more profound understanding
of the impact of individual features and their interactions in the context of ultimate seismic
damage was achieved. Local explanation techniques, LIME and SHAP, delivered in-depth
insights into how each feature influences the prediction on an individual level, while
global explanation approaches, PDP and ALE, facilitated the comprehension of the general
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trends of the ML model concerning input variables. The utilization of these interpretation
methodologies contributes to the creation of more transparent and interpretable models,
which is of paramount importance for the implementation of ML methods in earthquake
engineering problems. Our research investigated the accumulation of damage during a
sequence of earthquakes, identifying crucial predictors and understanding their impact on
the final damage (DIG,PA). The input variables for the regression problem were divided
into two distinct physical classes: pre-existing damage from the initial seismic event and
the characteristics of the subsequent ground motion expressed using the Park and Ang
damage index (DIG,PA,1st) and 16 Intensity Measures (IMs), respectively.

The main outcomes are:

• The most efficient model for predicting final structural damage under seismic sequences
was an instance of the LightGBM method with an R2 greater than 0.95, while the method
with the poorest performance was KNN, with an R2 value of approximately 0.4.

• Among the examined boosted trees, LightGBM and XGBoost demonstrated the most op-
timized and robust performance even against small changes in their hyperparameters.
Moreover, they present great resistance to overfitting as the number of trees increases.

• In the case of Multi-Layer Perceptrons (MLPs), the ReLU activation function appeared to
yield better performance, followed by the Tanh activation function. In addition, the MLP
model presents slightly better bias-variance balance than the other advanced ML models.

• All the interpretation methods identified the initial damage DIG,PA,1st as the most signifi-
cant feature followed by the IMs of the subsequent seismic shock. However, the ranking of
the IMs importance is varying between the adopted approaches. The majority of interpre-
tation methods indicate the IFVF as the most important IM, except for the impurity-based
explanation, which identified SIH. As the second most important IM, LIME and SHAP
ranked SIH, although permutation ranked PGA

PGV , and impurity ranked IAS.
• In case of examining the effect of all the IMs in total, both LIME and SHAP local

explanation methods show that the contribution of the subsequent ground motion is
larger than that of initial damage DIG,PA,1st. In general, the effect of the initial damage
tends to increase as the final increases. However, they differ in their estimation of
contributions for higher damage states.

• The analysis of PDPs and ALE reveals key insights into the effects of damage predictors
on the final damage. The pre-existing damage demonstrates a positive influence across
the entire range of cumulative damage. Additionally, IFVF and SIH present a notable
positive impact on moderate final damages. In contrast, PGA

PGV values smaller than
15 s–1 seems to have a negative impact on moderate final damages, while CAV and
IRG demonstrate more complex effects in a narrower range of the final damage.

An important direction identified for future research is the extension of the approach
presented in this study to encompass different building types. While robust findings were
yielded from the current study, which focused on an eight-story RC frame, it is understood
that seismic responses could vary among different building typologies, thus leading to dis-
tinct damage patterns. As such, it is recommended that a range of structural configurations,
from low-rise to high-rise buildings, should be incorporated in future studies. Moreover,
it is of utmost significance to take into consideration structures with irregularities in plan
or height, as well as the effects of dual structural systems and infill walls. Furthermore,
future investigations are encouraged to consider variations in construction detailing and
materials. In addition, the inclusion of real-world instances could become a major target
area. The aim is to verify the reliability and validity of our current modelling effort, which
could be accomplished through such applications.
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Abbreviations
The following abbreviations are used in this manuscript:

ML Machine learning
RC Reinforced Concrete
IM Intensity Measure
NN Neural Network
ANN Artificial Neural Network
MLP Multi-Layer Perceptron
LIME Local Interpretable Model-agnostic Explanations
SHAP SHapley Additive exPlanations
ALE Accumulated Local Effects
PDP Partial Dependence Plot
ag(t) ground acceleration signal
vg(t) ground velocity acceleration signal
dg(t) ground displacement signal
Hd Husid Diagram
PSV Pseudo-velocity spectrum
PGA Peak Ground Acceleration
PGV Peak Ground Velocity
PGD Peak Ground Displacement
IA Arias intensity
CAV Cumulative Absolute Velocity
IAS Seismic intensity after Araya and Saragoni
SMDTB Strong motion duration after Trifunac and Brady
SMDROG Strong motion duration after Reinoso, Ordaz and Guerrero
SMDBolt Strong motion duration after Bolt
arms Root-mean-squared of ground acceleration signal
Ic Characteristic Intensity
IFVF Potential damage measure after Fajfar, Vidic and Fischinger
IRG Intensity measure after Riddel and Garcia
SIH Spectral intensity after Housner
DIG,PA,1st The overall Park and Ang damage index after the first seismic shock (input feature)
DIG,PA The overall Park and Ang damage index after the second seismic shock (target)
CV Cross-Validation
AdaBoost Adaptive Boosting
DT Decision tree
ERT Extremely Randomized Trees
GBoost Gradient boosting
KNN K nearest neighbors
LightGBM Light Gradient Boosting Machine
LR Linear Regression
Lasso Lasso Regression
RR Ridge Regression
EN Elastic Net
RF Random forest
NGBoost Natural Gradient Boosting
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XGBoost eXtreme Gradient Boosting
CatBoost Categorical Boosting
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Figure A1. Histograms of input features (DIG,PA,1st and IMs) and target (DIG,PA).
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Table A1. Seismic metadata for the real sequences [54].

Region
First Shock Second Shock

Station Code/Name Component
PGA1st

(g)
PGA2nd

(g)Date M Date M

Ancona 14-06-1972 4.2 21-06-1972 4.0 ANP N-S 0.220 0.410
Friuli 11-09-1976 5.8 15-09-1976 6.1 BUI N-S 0.233 0.110

E-W 0.108 0.093
GMN N-S 0.328 0.324

E-W 0.299 0.644
Montenegro 15-04-1979 6.9 15-04-1979 5.8 PETO E-W 0.304 0.089

24-05-1979 6.2 BAR N-S 0.371 0.201
E-W 0.360 0.267

HRZ N-S 0.215 0.066
E-W 0.254 0.076

ULO N-S 0.282 0.033
E-W 0.236 0.030

Imperial Valley 15-10-1979 6.5 15-10-1979 5.0 Holtville Post Office 315 0.221 0.254
Mammoth Lakes 25-05-1980 6.1 25-05-1980 5.7 Convict Creek 90 0.419 0.371
Irpinia 23-11-1980 6.9 24-11-1980 5.0 BGI N-S 0.129 0.031

E-W 0.189 0.033
STR N-S 0.224 0.018

E-W 0.320 0.032
Gulf of Corinth 24-02-1981 6.6 25-02-1981 6.3 KORA Trans 0.296 0.121

Logn 0.240 0.121
Coalinga 22-07-1983 5.8 25-07-1983 5.2 Elm (Old CHP) 90 0.519 0.677

0 0.341 0.481
Kalamata 13-09-1986 5.9 15-09-1986 4.8 KAL1 Trans 0.269 0.140

Logn 0.232 0.237
KALA Trans 0.296 0.152

Logn 0.216 0.334
Spitak 07-12-1988 6.7 07-12-1988 5.9 GUK N-S 0.181 0.144

E-W 0.182 0.099
08-01-1989 4.0 08-01-1989 4.1 NAB E-W 0.206 0.217

Georgia 03-05-1991 5.6 03-05-1991 5.2 SAMB N-S 0.354 0.208
E-W 0.504 0.122

Erzican 13-03-1992 6.6 15-03-1992 5.9 AI 178 ERC MET N-S 0.411 0.032
E-W 0.487 0.039

Ilia 26-03-1993 4.7 26-03-1993 4.9 PYR1 Logn 0.109 0.100
Northridge 17-01-1994 6.7 17-01-1994 5.9 Moorpark—Fire Station 90 0.193 0.139

180 0.291 0.184
17-01-1994 5.2 Pacoima Kagel Canyon 360 0.432 0.053
20-03-1994 5.3 Rinaldi Receiving Station 228 0.874 0.529

Sepulveda Hospital 270 0.752 0.102
Sylmar—Olive Med 90 0.605 0.181

Umbria Marche 26-09-1997 5.7 26-09-1997 6.0 CLF N-S 0.276 0.197
E-W 0.256 0.227

NCR N-S 0.395 0.502
Kalamata 13-10-1997 6.5 18-11-1997 6.4 KRN1 Trans 0.119 0.071

Logn 0.118 0.092
Bovec 12-04-1998 5.7 31-08-1998 4.3 FAGG N-S 0.024 0.023

E-W 0.023 0.026
Azores Islands 09-07-1998 6.2 11-07-1998 4.7 HOR N-S 0.405 0.082

E-W 0.369 0.092
Izmit 17-08-1999 7.6 12-11-1999 7.3 ARC N-S 0.210 0.007

E-W 0.132 0.007
ATK N-S 0.102 0.016

E-W 0.167 0.016
DHM N-S 0.090 0.017

E-W 0.084 0.017
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Table A1. Cont.

Region
First Shock Second Shock

Station Code/Name Component
PGA1st

(g)
PGA2nd

(g)Date M Date M

FAT N-S 0.181 0.034
E-W 0.161 0.024

KMP N-S 0.102 0.014
E-W 0.127 0.017

ZYT N-S 0.119 0.021
E-W 0.109 0.029

Athens 07-09-1999 5.9 07-09-1999 4.3 SPLB Trans 0.324 0.059
Logn 0.341 0.071

Chi-Chi 20-09-1999 7.6 20-09-1999 6.2 TCU071 N-S 0.651 0.382
E-W 0.528 0.193

TCU129 N-S 0.624 0.398
E-W 1.005 0.947

25-09-1999 6.3 TCU078 N-S 0.307 0.387
E-W 0.447 0.266

TCU079 N-S 0.424 0.626
E-W 0.592 0.776

Duzce 12-11-1999 7.3 12-11-1999 4.7 AI 010 BOL E-W 0.820 0.060
Bingöl 01-05-2003 6.3 01-05-2003 3.5 AI 049 BNG N-S 0.519 0.147

E-W 0.291 0.068
L Aquila 06-04-2009 6.1 07-04-2009 5.5 AQK N-S 0.353 0.081

E-W 0.330 0.090
AQV N-S 0.545 0.146

E-W 0.657 0.129
AVZ N-S 0.069 0.021

09-04-2009 5.4 AQA N-S 0.442 0.057
Darfield 03-09-2010 7.0 21-02-2011 6.2 Botanical Gardens S01W 0.190 0.452

N89W 0.155 0.552
Cashmere High School S80E 0.251 0.349
Cathedral College N26W 0.194 0.384

N64E 0.233 0.478
Christchurch Hospital N01W 0.209 0.346

S89W 0.152 0.363
Emilia 20-05-2012 6.1 29-05-2012 6.0 MRN N-S 0.263 0.294

E-W 0.262 0.222
03-06-2012 5.1 12-06-2012 4.9 T0827 N-S 0.490 0.585

E-W 0.263 0.234
Central Italy 24-08-2016 6.0 24-08-2016 5.4 AQK E-W 0.050 0.010

26-08-2016 4.8 AMT N-S 0.375 0.336
E-W 0.867 0.325

26-10-2016 5.4 26-10-2016 5.9 CMI N-S 0.341 0.308
E-W 0.720 0.651

CNE E-W 0.556 0.537
30-10-2016 6.5 CIT N-S 0.052 0.213

E-W 0.092 0.325
26-10-2016 5.9 30-10-2016 6.5 CLO N-S 0.193 0.582

E-W 0.183 0.427
CNE N-S 0.380 0.294
MMO N-S 0.168 0.188

E-W 0.170 0.189
NOR E-W 0.215 0.311

30-10-2016 6.5 31-10-2016 4.2 T1213 N-S 0.867 0.185
E-W 0.794 0.212

18-01-2017 5.5 18-01-2017 5.4 PCB N-S 0.586 0.561
E-W 0.408 0.388

Dodecanese Islands 08-08-2019 4.8 30-10-2020 7.0 GMLD N-S 0.450 0.899
E-W 0.673 0.763
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