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Abstract: Solid biofuels and Internet of Things (IoT) technologies play a vital role in the development
of smart cities. Solid biofuels are a renewable and sustainable source of energy obtained from organic
materials, such as wood, agricultural residues, and waste. The integration of IoT technology with
solid biofuel classification can improve the performance, quality control, and overall management
of biofuel production and usage. Recently, machine learning (ML) and deep learning (DL) models
can be applied for the solid biofuel classification process. Therefore, this article develops a novel
solid biofuel classification using sailfish optimizer hybrid deep learning (SBFC-SFOHDL) model
in the IoT platform. The proposed SBFC-SFOHDL methodology focuses on the identification and
classification of solid biofuels from agricultural residues in the IoT platform. To achieve this, the
SBFC-SFOHDL method performs IoT-based data collection and data preprocessing to transom the
input data into a compatible format. Moreover, the SBFC-SFOHDL technique employs the multihead
self attention-based convolutional bidirectional long short-term memory model (MSA-CBLSTM)
for solid biofuel classification. For improving the classification performance of the MSA-CBLSTM
model, the SFO algorithm is utilized as a hyperparameter optimizer. The simulation results of the
SBFC-SFOHDL technique are tested and the results are examined under different measures. An
extensive comparison study reported the betterment of the SBFC-SFOHDL technique compared to
recent DL models.

Keywords: agricultural residues; biofuel classification; solid fuel; deep learning; sailfish optimizer;
IoT environment; smart cities

1. Introduction

Forestry and agricultural practices yield enormous quantities of waste derived from
farm yields [1]. The yearly production of biomass waste worldwide offers management
issues, as discarded biomass could have adverse environmental effects [2]. Agricultural
biomass residues or wastes are mainly fruit peels, crop stalks, roots, leaves, nutshells or
seeds that are generally burned or discarded, but they are a potential supply of feedstock
material [3]. Important information for energy applications is the type of fuel to be used
because of the necessity of different chemical processes that are needed for the proper
processing of the material and to gain optimal results [4].
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Additionally, one of the preferred choices for generating power from the fuel is com-
bustion or incineration [5]. However, there are several technological options for minimizing
the total emission of gases and waste into the atmosphere while producing power from
existing fuels [6]. Moreover, the potential technique is selected based on the input fuel
type [7], considering the effect of the energy conversion procedure on air pollution as well
as effects on soil and water. For instance, manufactured biomass generally contains high
amounts of heavy metals (Ni, Cu, Zn and Cr), while coal-type fuels have more sulphur in
them [8]. However, the recovered fuels are heterogeneous mixtures produced from various
kinds of solid fuels to attain high availability. Therefore, a particular classification was
required for the study of the thermal conversion of solid fuels and it is vital to plan to
preprocess and enhance the generation of power [8]. It is essential to consider the effect
of energy conversion on air pollution and its impacts on soil and water as well [9]. A
practical method to categorize the type of fuel is to consider an expert opinion, but it might
be misleading because of human error [10]. Machine learning (ML) is a technique that
allows software applications to accurately predict the outcome without being explicitly
programmed [11]. ML is an accumulation of methods, producing different inferences from
prevailing data through mathematical and statistical approaches [12]. ML has been compre-
hensively used in domains such as forensics, image processing, prediction, cybersecurity,
etc. [13]. There is various research concerning biomass gasification by implementing ML to
constitute a regression method [14]. However, these studies do not illustrate the overall
outcomes of various ML methods for biomass gasification [15].

This article develops a novel solid biofuel classification using a sailfish optimizer
hybrid deep learning (SBFC-SFOHDL) model on the IoT environment. The proposed
SBFC-SFOHDL technique performs IoT-based data collection and data preprocessing to
transform the input data into a compatible format. Furthermore, the SBFC-SFOHDL
technique employs the multihead self attention-based convolutional bidirectional long
short-term memory model (MSA-CBLSTM) for solid biofuel classification. For improving
the classification accuracy of the MSA-CBLSTM algorithm, the SFO algorithm is utilized as
a hyperparameter optimizer. The simulation results of the SBFC-SFOHDL technique are
tested and the outcomes are examined under distinct measures.

The rest of the paper is organized as follows. Section 2 provides the related works and
Section 3 offers the proposed model. Then, Section 4 gives the result analysis and Section 5
concludes the paper.

2. Related Works

Al-Wesabi et al. [16] present a new approach named IEVB-SFC (intelligent ensemble
of voting-based solid fuel classification technique) for harvesting energy from agronomic
residue. First, the data preprocessing takes place in three ways similar to data normalization,
data transformation and class labeling. As well, the presented approach has three different
DL methods: convolutional neural network-based LSTM (CNN-LSTM), GRU and LSTM.
At last, an ensemble of three DL methods was carried out through the voting method and
determined the suitable solid fuel class labels. In [17], two types of digestate have been
observed as effective feedstock to prepare hydrochar implemented as a solid biofuel and
porous material. First digestate samples are a clean digestate from common biogas plants,
executing the anaerobic digestion of common agronomic residues such as cow dung.

Zheng et al. [18] aim to resolve the low efficiency while extracting novel energy
from agricultural waste (AW). The consumption and development of AW were deeply
elaborated upon by merging the recent technological progression. To choose the product
team organization pattern, the adaptive decision approach of the product team organization
pattern was intensely learned for the successful implementation of novel energy mining
schemes, and the FNN approach was applied as a decision technique. Bot et al. [19] aimed
to examine the economic viability and power utilization of biomass briquettes generation
from agricultural waste. This study concentrated on the briquetting conversion of banana
peels, coconut shells, sugarcane bagasse and rattan waste depending on small-scale plant
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production in Cameroon. Bosona et al. [20] aimed to develop and define a traceability
system (TS) to ensure the quality of pruning biomass for the generation of solid biofuel and
to offer assurance to users that the biomass was in better condition. It was devised for an
agricultural pruning supply chain where transporters, agronomists, end users and biomass
traders are major actors.

Jifara et al. [21] intended to use a combination of khat stem and corn cob using an
integration of co-pelletization and torrefaction processes. To inspect the optimization
of co-pelletization parameters, the response surface approach was utilized. A particle
size and Torrefied biomass blending ratio were selected as independent factors. The
dependent variable was durability, heating value and bulk density of torrefied mixed
pellets. Samadi et al. [22] created a study with the purpose of framing a stoichiometric
equilibrium technique for predicting the energy production of gasification. This method
was authenticated with an experimental dataset for determining the syngas composition.
For determining optimum performance characteristics, the impacts of a parameter of
operating conditions on the performance of gasification were assessed later. Further, the
developed method was utilized for predicting the amount of heat and power gained from
various farming residues by gasification.

In [23], numerical simulations were carried out employing computational fluid dynam-
ics (CFD) for evaluating the fluid dynamic strategy and the combustion model of biomass
particles under a horizontal cyclonic combustion chamber. Michal et al. [24] examined a
conceptual scheme of WSN intended to estimate the SmartCity air quality in realtime. The
sensor devices would autonomously monitor the flue gas temperature, CO and particulate
matter concentrations. Koval et al. [25] estimated if residential heating affects the quality of
air by modeling three provided conditions of a solid fuel boiler altered at chosen places and
compared the outcomes with measured data. Akarsu et al. [26] aimed to comparatively
estimate the outcome of a hydrothermal carbonization (HTC) condition on the produce
and fuel properties of hydrochar attained in food waste (FW) and its digestate (FD).

Though several models are available in the literature, it still remains a challenging
problem. Due to incessant deepening of the model, the number of parameters of DL
models also rapidly increased and led to model overfitting. At the same time, different
hyperparameters have a significant impact on the efficiency of the CNN model, particularly
the learning rate. The learning rate parameter also needs to be modified to obtain better
performance. Therefore, in this study, we employ an SFO technique for the hyperparameter
tuning of the MSA-CBLSTM model.

3. The Proposed Model

In this study, we concentrated on the improvement of the SBFC-SFOHDL model in
the IoT platform. The main purpose of the proposed SBFC-SFOHDL methodology lies
in the proficient detection and classification of solid biofuels from agricultural residues
in the IoT platform. To achieve this, the SBFC-SFOHDL system includes IoT-based data
collection, data preprocessing, MSA-CBLSTM-based solid fuel classification and SFO-based
hyperparameter tuning. Primarily, the input data are preprocessed to transform the input
data into a compatible format. Next, the classification process take place using the MSA-
CBLSTM model, which categorizes the solid biofuels into different classes. Finally, the
SFO algorithm is executed to adjust the hyperparameter values of the DL model. Figure 1
demonstrates the workflow of the SBFC-SFOHDL algorithm.
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3.1. Data Preprocessing

In the initial stage, the actual data is preprocessed in three various approaches such as
data normalization, data transformation and class labeling. Primarily, the data in categorical
values can be suitably transformed as mathematical values. Secondarily, the class labeling
procedure can be carried out but the data samples can be assigned to suitable class labels.
Eventually, the experimental value can be changed as a standard method by discarding
and scaling the mean to unit variance.

3.2. Solid Biofuel Classification

To classify solid biofuels in the IoT environment, the MSA-CBLSTM technique can
be used. In this study, the training module considered is a bidirectional LSTM (Bi-LSTM)
with a multi-head self-attentive model in conjunction with one-layer CNN architecture,
represented as an MSA-CBLSTM model [27]. LSTM takes place in the consecutive signal
analysis via sharing weight, and then the weight between the output and hidden layers is
recycled. It is a chain model to process time sequences and it could efficiently compensate
for the disappearing gradient problems. The bidirectional EEG signal extraction model
extracts dynamic data from the prior and latter segments in comparison to the unidirectional
EEG signal extraction model. An LSTM contains three gating control mechanisms of input
and the forget gates and the computation formula are shown as follows:

ft = σ
(

W f · [ht−1, xt]
)
+ b f

)
, (1)
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it = σ(Wi · [ht−1, xt]) + bi), (2)

∼
C = tanh(WC · [ht−1, xt]) + bC), (3)

Ct = ft × Ct−1 + it ×
∼
Ct (4)

Ot = σ(WO · [ht−1′xt]) + bO), (5)

ht = tanh(Ct)×Ot, (6)

From the expression, Ot signifies the output gate, W represents the weight matrix, xt
refers to the time series at t time, Ct denotes the cell state, ht represents the hidden layer, σ

shows the sigmoid function,
∼
Ct indicates the temporary cell state, it indicates the memory

gate, b signifies the bias vector of respective weight and ft denotes the forget gate. The
memory gate is accountable for updating the cell state of the LSTM, where the input gate
controls the output values to the following LSTM cell:

yt = σ
(
Wh ·

[
ht′h

′
t
])

+ bh
)
, (7)

The Bi-LSTM adds a backward layer for learning the upcoming data, which is the addition
of historical data. The Bi-LSTM perfectly combines the bidirectional characteristics and gating
structure such that further details can be processed and remembered by the two LSTM compo-
nents. The time series data are inputted into the algorithm, then the forward layer interconnects
the feature data in the historical sequence with current data, later the backward layer connects
the future data, and lastly, the forecast values are outputted using Equation (7).

The Transformer method is an autoregressive generative model that largely exploits
sinusoidal location data and a self-attentive mechanism. Each layer involves a dropout,
a pre-feedback network, a time-self-noticing and residual network sublayers. Figure 2
represents the architecture of a Bi-LSTM.
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The attention mechanism usually allows for a weight factor to be applied to all the
elements in the EEG series, and if one component is stored, the attention mechanism is
computed as a similarity between Q and K that reflects the significance of the extracted V
value, and the weight is summed and weighted to attain the attention value:

Attention (Q, K, V) = so f tmaχ

(
QKT
√

dk

)
V (8)

The multi-head self-attention module attains various representations of h (Q, K, V),
evaluates the self-attention of every h representation and interconnects the outcomes and is
represented as follows:

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
, (9)

MultiHead(Q, K, V) = Contact(headi, . . . , headh)W0, (10)

In Equation (10), Wi and W0 make the parameter matrix. Meanwhile, as Bi-LSTM
considers the location data, it is not necessary to set up further position encoding. We apply
scaled dot product attention in the process of implementing the self-attention module in
Bi-LSTM. The output HD of the last time step is multiplied with the WQ matrix as Query,
whereas the output Ot of all the time steps is linearly converted as Keyt and Value:

Query = ωQHD, (11)

Valuet = ωVOt′ (12)

Keyt = ωKOt′ (13)

et =
QueryKeyT

t√
dk

, (14)

at =
exp(et)

Σn
t=0exp(et)

, (15)

The Query does not change with the time step and ωQ, ωK, ωV denote the parameter
of the NN that is adapted with BP. Valuet and weights at at all the time steps are summed
and weighted to attain the emotional feature vector with a self-attentive model:

z(Q, K, V) = ∑
t

atValuet (16)

The abovementioned formula is accomplished h times to attain multi-head self-
attention features z1, . . . , zh, which is merged and linearly converted:

MultiHead (Q, K, V) = Concat(z1, . . . , zh)ωz (17)

3.3. Hyperparameter Tuning Using SFO Algorithm

For hyperparameter tuning of the MSA-CBLSTM algorithm, the SFO algorithm is
utilized to improve the classifier results. Sailfish are a group of predators that contribute
to harassing and catching their beasts [28]. In the group game, the hunter uses different
approaches to assault. The sailfish culture can be determined as an alternative attack
strategy. It comprises the group leader who targeted and harmed or killed the sardine (prey
school) itself, whereas others saved the resource. It changes its location with sailfish that
attack the beast farm. Furthermore, the fish are capable of migrating to the sardine location
and maximizing the prey chasing. The target group (sardine) changes the location the party
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member is wounded to avoid the future attack from the sailfish. Thus, the sailfish optimizer
technique is applied. As compared to the other optimization techniques, the SFO algorithm
includes succeeding features. In recent work, the metaheuristic approach has proficiently
managed different optimization problems because of its ability for flexible exploration and
diversification, which are the two notable characteristics of the metaheuristic method that
could search the whole solution space in all the iterations for better solutions, except for local
optimal, intensification or exploitation, and it leads to quick convergence and determines
the potential solution. An optimal metaheuristic method attempts to balance exploitation
and exploration. The stepwise process of the SFO technique is shown as follows:

3.3.1. Initialization of Population

The sardine and sailfish populations are initialized at random. The arbitrary position
for all the sailfishes is wq

χ and the arbitrary place is vq
y for all the sardines, where χ ∈

{Sailfish}, y ∈ {Sardines} and q ∈ {Iteration value}. The location of all the sailfishes wq
x or

sardines vq
y is a possible choice for q-th iterations.

3.3.2. Mechanism and Evaluation of Elitism

According to the fitness function (FF), Fnes as the location for all the newest pop-
ulations is determined by all the quest agents (sardine or sail). As the sardine injured
is processed as vq

ini, inj ∈ {Sardineset}, for instance, Fnes (vq
inj) ≤ Fnes ( vq

y

)
, ∀q, this is

the most efficient sardine in the sardine population. Furthermore, as the elite fish wq
elit,

elit ∈ {Sailfish set}, i.e., Fnes (wq
elite) ≤ Fnes ( wq

x

)
, ∀q in impedance conundrum, the better

sailfish with lower fitness in the sailfish population is sustained.

3.3.3. Sailfish Position Updating

In the iteration, any sailfish member of a group can change its location. The modifica-
tion in the place of the sailfish operation can be performed by taking free space on the prey
farm or by changing the attack technique. The transition of Sailfish is focused mostly on
elite and injured sardine locations demonstrated in Equation (18).

wq+1
χ = wq

elit − λq ∗
(

β ∗
((

wq
e lite + gq

inj

2

)
− wq

χ

))
, (18)

where wq+1
χ represents the new location of the sailfish at (q + 1)th iterations. The location

wq
χ becomes the sailfish existing location q. β shows the random integer amongst [0, 1],

wq
elite signifies the location of the existing elite sailfish and gq

ini signifies the location of
the presently injured sardine. λq denotes the coefficient produced at every q-th iteration
as follows:

λq = (2× β× Dst)− Dst, (19)

In Equation (19), β represents the arbitrary integer in the range of zero and one, and
Dst shows the scale prey density. It results in the reduction in prey attacking the prey farm;
sailfish are injured and eat the sardines. The variable Dst can be determined as follows:

Dst = 1−
(

NMsail
NMsard + NMsail

)
, (20)

In Equation (20), NMsard indicates the number of sardines and NMsail shows the
number of sailfish. The primary sardine is greater than the sailfish population. It is
predicted to be NMsard = 3× NMsail . The λq fluctuation value is an essential component
in the model because every fish adjusts its position by raising the λq fluctuation value.
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3.3.4. Sardine Position Update

Initially, at stalking, the capability for sardines and power attacks is appreciated to
escape. The defensive skill of sailfish and the capability to escape the sardines diminishes
with time. The sailfish harm the sardine without the ability to capture them. The sailfish
is mainly responsible for making an effort to modify assault skills, whereas the sardine
is responsible for corporeal damage. The growth rate in finding sailfish is increasing. In
response to the sailfish attack, sardine action must be considered. All the sardines are used
for adjusting their position as follows:

vq+1
y = z×

(
wq

elit − vq
y + PRatk

)
, (21)

In Equation (21), vq+1
y denotes the new sardine location and vq

y shows the present
sardine location. z indicates the random integer within [0, 1], wq

elit represents the better
location of elite sailfish and pRatk defines the sailfish attack strength at all the iterations,
implemented as:

Patk = Q× (1− (2×|r× ε)) (22)

In Equation (22), the two factors Q and ε denote a decrease in the existing iteration
value of attack power (PRatk) and the number of existing iterations. At first, the success
rate is poor since most sardine transition positions prevent the attack. The sardine’s ability
to escape though decreases after fishing, thereby increasing the success rate. The quantity
of sardines that can be modified reduces over time. At last, hunting is taken into account,
once the power attack PRotk is less than 0.5. Finally, the number of sardines rises in the
location based on the assault of power (PRatk < 0.5) as follows:

α = NMsard × PRatk, (23)

In Equation (23), PRatk is less than 0.5, and only the selected number modifies its
position. At the same time, each sardine should be modified if the PRatk is higher than
0.5. Once the sailfish x is hunched, the sardine place is replaced with the sardine y. The
succeeding Fnes

(
vq

y

)
< Fnes (wq

χ), ∀q is thereby attained as follows:

wq
χ = vq

y i f Fnes
(

vq
y

)
< Fnes

(
wq

χ

)
, (24)

In Equation (24), wq
χ indicates the position of sailfish x at q-th iterations and vq

y repre-
sents the location of the sardine at qth iterations. While extracting the sardine, the sardine
should be isolated in the population. Algorithm 1 demonstrates the pseudocode of the SFO.

Algorithm 1 Pseudocode of SFO algorithm

Begin
The population of sailfish and sardine are arbitrarily initialized
Set parameter (q = 4, ε = 0.001)
Evaluate the fitness of sailfish and sardine
Choose the better sailfish and sardine and define them as injured sardine and elite sailfish,
correspondingly
While the ending condition is not fulfilled

For all the sailfishes
Evaluate λq using based on Equation (19)
Upgrade the position of the sailfish based on (18)

End for
Evaluate the attack power based on (22)

I f PRatk < 0.5
Evaluate α based on (23)
Choose a set of sardines based on the α value



Sustainability 2023, 15, 12523 9 of 17

Algorithm 1 Cont.

Upgrade the position of the selected sardine based on Equation (24)
Else

Upgrade the position of the sardine based on Equation (24)
End if

Evaluate each sardine fitness
If the best solution for the sardine population

Exchange the sailfish alongside the wounded sardine
Remove the hunted sardine from the population
Upgrade the better sailfish with sardine

End if
End while
Return better sailfish obtained so far

The SFO methodology not only develops an FF to achieve optimal accuracy of the
classifier, but it also defines a positive integer to signify the enhanced efficiency of solution
candidates. The decline in the classification error rate is observed as FF.

f itness(xi) =
number o f misclassi f ied samples

Total number o f samples
∗ 100 (25)

4. Results and Discussion

The performance analysis of the SBFC-SFOHDL method is tested by the datasets [29]
including 585 samples with four different classes such as manufactured biomass (MB), coal,
wood and agricultural residues (AR).

The confusion matrices of the SBFC-SFOHDL approach on solid fuel classification
performance are exemplified in Figure 3. The outcome highlighted that the SBFC-SFOHDL
method classifies four class labels accurately. It is noticed that the classification increases
with an increase in the number of epochs.
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The overall outcomes of the SBFC-SFOHDL algorithm under various epochs are
demonstrated in Table 1. Figure 4 signifies the average results of the SBFC-SFOHDL
approach with respect to accuy. The results indicate that the SBFC-SFOHDL system obtains
higher accuy values under all epochs. For instance, with 500 epochs, the SBFC-SFOHDL
technique attains an average accuy of 94.27%. Similarly, with 1500 epochs, the SBFC-
SFOHDL technique achieves an average accuy of 97.01%. Concurrently, with 3000 epochs,
the SBFC-SFOHDL method accomplishes an average accuy of 98.63%.

Table 1. Classifier outcome of SBFC-SFOHDL approach with varying epochs.

No. of Epochs Classes Accuy Precn Recal FScore MCC

Epoch 500

Coal 92.82 82.50 70.21 75.86 72.00

Wood 95.04 96.25 92.03 94.09 89.89

AR 91.45 80.95 91.62 85.96 80.16

MB 97.78 89.47 93.15 91.28 90.03

Average 94.27 87.29 86.75 86.80 83.02

Epoch 1000

Coal 95.73 93.67 78.72 85.55 83.50

Wood 97.09 96.80 96.41 96.61 94.07

AR 94.70 87.36 95.21 91.12 87.52

MB 98.80 94.59 95.89 95.24 94.56

Average 96.58 93.11 91.56 92.13 89.91

Epoch 1500

Coal 96.41 92.94 84.04 88.27 86.31

Wood 97.26 96.81 96.81 96.81 94.42

AR 95.38 90.23 94.01 92.08 88.86

MB 98.97 94.67 97.26 95.95 95.37

Average 97.01 93.66 93.03 93.28 91.24

Epoch 2000

Coal 97.09 95.29 86.17 90.50 88.95

Wood 97.61 97.21 97.21 97.21 95.12

AR 96.58 92.00 96.41 94.15 91.79

MB 99.15 95.95 97.26 96.60 96.11

Average 97.61 95.11 94.26 94.62 92.99

Epoch 2500

Coal 98.29 96.67 92.55 94.57 93.58

Wood 98.29 98.39 97.61 98.00 96.51

AR 97.78 94.77 97.60 96.17 94.62

MB 99.15 95.95 97.26 96.60 96.11

Average 98.38 96.44 96.26 96.33 95.21

Epoch 3000

Coal 98.80 96.77 95.74 96.26 95.55

Wood 98.46 98.79 97.61 98.20 96.86

AR 98.12 95.88 97.60 96.74 95.42

MB 99.15 95.95 97.26 96.60 96.11

Average 98.63 96.85 97.05 96.95 95.99
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Figure 4. Average accuy outcome of SBFC-SFOHDL approach under varying epochs.

Figure 5 represents the average results of the SBFC-SFOHDL method in terms of
precn and recal . The results indicate that the SBFC-SFOHDL method achieves increasing
precn and recal values under all epochs. For example, with 500 epochs, the SBFC-SFOHDL
technique accomplishes an average precn and recal of 87.29% and 86.75%. Similarly, with
1500 epochs, the SBFC-SFOHDL method attains an average precn and recal of 93.66% and
93.03%. Concurrently, with 3000 epochs, the SBFC-SFOHDL technique attains an average
precn and recal of 96.85% and 97.05%.
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Figure 5. Average precn and recal outcome of SBFC-SFOHDL approach under varying epochs.

Figure 6 represents the average results of the SBFC-SFOHDL method in terms of
the Fscore and MCC. The results indicate that the SBFC-SFOHDL technique attains in-
creasing Fscore and MCC values under all epochs. For example, with 500 epochs, the
SBFC-SFOHDL technique attains an average Fscore and MCC of 86.80% and 83.02%. Simi-
larly, with 1500 epochs, the SBFC-SFOHDL method attains an average Fscore and MCC of
93.28% and 91.24%. Concurrently, with 3000 epochs, the SBFC-SFOHDL technique attains
an average Fscore and MCC of 96.95% and 95.99%.



Sustainability 2023, 15, 12523 12 of 17

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 18 
 

 

Figure 5. Average 𝑝𝑟𝑒𝑐𝑛 and 𝑟𝑒𝑐𝑎𝑙 outcome of SBFC-SFOHDL approach under varying 

epochs. 

Figure 6 represents the average results of the SBFC-SFOHDL method in terms of the 

𝐹𝑠𝑐𝑜𝑟𝑒 and MCC. The results indicate that the SBFC-SFOHDL technique attains increasing 

𝐹𝑠𝑐𝑜𝑟𝑒  and MCC values under all epochs. For example, with 500 epochs, the SBFC-

SFOHDL technique attains an average 𝐹𝑠𝑐𝑜𝑟𝑒 and MCC of 86.80% and 83.02%. Similarly, 

with 1500 epochs, the SBFC-SFOHDL method attains an average 𝐹𝑠𝑐𝑜𝑟𝑒  and MCC of 

93.28% and 91.24%. Concurrently, with 3000 epochs, the SBFC-SFOHDL technique attains 

an average 𝐹𝑠𝑐𝑜𝑟𝑒 and MCC of 96.95% and 95.99%. 

Figure 7 examines the 𝑎𝑐𝑐𝑢𝑦 of the SBFC-SFOHDL method in the training and vali-

dation method on the test database. The outcome demonstrated that the SBFC-SFOHDL 

methodology achieves enhancing 𝑎𝑐𝑐𝑢𝑦  values over higher epochs. Furthermore, the 

maximal validation 𝑎𝑐𝑐𝑢𝑦 over training 𝑎𝑐𝑐𝑢𝑦 displays that the SBFC-SFOHDL method 

is attained effectively on the test database. 

 
Figure 6. Average Fscore and MCC outcome of SBFC-SFOHDL approach under varying epochs.

Figure 7 examines the accuy of the SBFC-SFOHDL method in the training and vali-
dation method on the test database. The outcome demonstrated that the SBFC-SFOHDL
methodology achieves enhancing accuy values over higher epochs. Furthermore, the
maximal validation accuy over training accuy displays that the SBFC-SFOHDL method is
attained effectively on the test database.
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Figure 7. Accuracy curve of the SBFC-SFOHDL approach.

The loss examination of the SBFC-SFOHDL method at the time of training and val-
idation is demonstrated on the test database in Figure 8. The outcome indicates that the
SBFC-SFOHDL methodology attains nearby values of training and validation loss. The
SBFC-SFOHDL method acquired the values capably on the test database.
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Figure 8. Loss curve of the SBFC-SFOHDL system.

A brief precision–recall (PR) analysis of the SBFC-SFOHDL system is exposed on the
test dataset in Figure 9. The outcome indicates that the SBFC-SFOHDL methodology pro-
duced superior values of PR. In addition, it is noticeable that the SBFC-SFOHDL technique
could achieve greater PR values in four classes.
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Figure 9. PR curve of the SBFC-SFOHDL approach.

In Figure 10, an ROC examination of the SBFC-SFOHDL technique is shown on the
test dataset. The outcome defined that the SBFC-SFOHDL system resulted in better ROC
values. Moreover, the SBFC-SFOHDL technique can encompass enhanced ROC values on
four class labels.
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A detailed comparative study of the SBFC-SFOHDL approach is stated in Table 2 [16].
Figure 11 represents the results of the SBFC-SFOHDL technique with recent models in
terms of precn and recal . Based on precn, the SBFC-SFOHDL technique gains an increasing
value of 96.85% while the SVM, KNN, flat classifier, HC and IEVB-SFC models obtain a
decreasing precn of 89.61%, 91.90%, 90.49%, 91.33% and 94.71%, correspondingly.

Table 2. Comparative outcome of SBFC-SFOHDL approach with other recent methodologies.

Methods Precn Recal Accuy FScore

SBFC-SFOHDL 96.85 97.05 98.63 96.95

SVM 89.61 85.45 94.54 86.88

KNN 91.90 86.59 95.48 88.84

Flat Classifier 90.49 84.22 94.02 86.80

Hierarchical Classifier 91.33 90.37 95.24 90.97

IEVB-SFC 94.71 92.56 96.63 93.44
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Meanwhile, based on recal , the SBFC-SFOHDL system obtains a maximal value of
97.05% but the SVM, KNN, flat classifier, HC and IEVB-SFC models obtain a decreasing
recal of 85.45%, 86.59%, 84.22%, 90.37% and 92.56%, correspondingly.

Figure 12 represents the results of the SBFC-SFOHDL method with recent models in
terms of accuy and Fscore. Based on accuy, the SBFC-SFOHDL technique gains an increasing
value of 98.63% while the SVM, KNN, flat classifier, HC and IEVB-SFC models attain a de-
creasing accuy of 94.54%, 95.48%, 94.02%, 95.24% and 96.63%, correspondingly. Meanwhile,
based on the Fscore, the SBFC-SFOHDL method gains an increasing value of 96.95% while
the SVM, KNN, flat classifier, HC and IEVB-SFC techniques attain a decreasing Fscore of
86.88, 88.84%, 86.80%, 90.97% and 93.44%, correspondingly. Therefore, the SBFC-SFOHDL
technique gains maximum performance on solid fuel classification.
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In summary, the SBFC-SFOHDL technique exhibits better performance with a maxi-
mum accuy of 98.63%, precn of 96.85%, recal of 96.85% and Fscore of 96.95%. The enhanced
performance of the proposed model is due to the incorporation of the SFO-based hyper-
parameter tuning. Hyperparameters are settings that are not learned during training but
must be set prior to training. They can have a significant impact on the performance of the
model, and selecting the optimal values can lead to better accuracy. With SFO-optimizer-
based hyperparameter tuning, the SBFC-SFOHDL model can achieve even better results by
focusing on the most relevant features and selecting the optimal settings for the algorithm.
These results ensure the improved performance of the SBFC-SFOHDL technique over other
existing techniques.

5. Conclusions

In this study, we concentrated on the improvement of the SBFC-SFOHDL model in
the IoT platform. The main purpose of the proposed SBFC-SFOHDL algorithm lies in
the proficient detection and classification of solid biofuels from agricultural residues in
the IoT platform. To achieve this, the SBFC-SFOHDL algorithm includes IoT-based data
collection, data preprocessing, MSA-CBLSTM-based solid fuel classification and SFO-based
hyperparameter tuning. The design of the SFO technique helps with the optimum choice
of hyperparameter values, which in turn improves the classification accuracy of the MSA-
CBLSTM approach. The simulation results of the SBFC-SFOHDL technique are tested and
the results are examined under different measures. Extensive comparison studies reported
the greater performance of the SBFC-SFOHDL method over recent DL approaches with
a maximum accuy of 98.63%, precn of 96.85%, recal of 96.85% and Fscore of 96.95%. In the
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future, feature fusion-based DL approaches can be designed to enhance the solid biofuel
classification performance.
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