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Abstract: In Ecuador, according to data from the Ministry of Energy, the internal combustion engine is
the largest consumer of fossil fuels. For this reason, it is important to identify and develop proposals
in the literature that enable the prediction of vehicle fuel consumption in both the laboratory and
on the road. To accomplish this, real driving emissions (RDEs) need to be contrasted against the
development of an algorithm that characterizes forces that oppose such proposals. From experimental
tests, fuel consumption information was collected through a flow meter connected to the fuel line
and the engine’s characteristic curves were obtained through a chassis dynamometer. Then, from
the parameter identification data (PID), the most important predictors were established through an
ANOVA analysis. For the acquired variables, a neural network was implemented that could predict
99% of the estimates and present a relative error lower than 5% compared to common methods.
Additionally, an algorithm was developed to calculate fuel consumption as a function of the gear,
inertial forces, rolling resistance, slope, and aerodynamic force.

Keywords: RDE; predictors; emission cycle; fuel consumption; algorithm

1. Introduction

According to data from the Coordinating Ministry of Strategic Sectors, the transporta-
tion sector in Latin America and the Caribbean in 2016 generated 36% of greenhouse gases.
In Ecuador, the transportation sector was the main consumer of fossil fuels [1]. To address
this situation, standards have been implemented such as the Euro 6 regulation that limits
emissions and fuel consumption [2]. Therefore, being able to estimate the fuel consumption
of light gasoline-powered vehicles is essential for reducing both energy consumption costs
and emissions [3]. In a previous work, Zhou et al. [4] described fuel consumption prediction
as a complex, non-linear process involving many parameters: distance traveled, weather
conditions (temperature, humidity, wind speed), specific vehicle characteristics, traffic
conditions and driving style. There are two techniques of prediction: one is by means of
models that involve equations that describe the physical and chemical processes of the
engine during the intake, compression, work and exhaust phases. The other are black box
models, which consider the vehicle as a whole for which an equation cannot be predicted
and the output is estimated from system inputs [4]. Currently, vehicle fuel consumption
can be quantified as an open research problem because of non-controllable variables such
as driving style and atmospheric conditions (e.g., pressure, altitude, and relative humidity).
Experimental laboratory measurements, road tests and automatic algorithms that can pre-
dict specific fuel consumption can be used to estimate this parameter. Information about
fuel consumption can be acquired in laboratories through vehicle instrumentation and
testing on a chassis dynamometer under controlled conditions, but this information differs
greatly from actual fuel consumption on the road. To solve this problem, measurements
were performed with the use of a portable emission measurement system (PEMS) that
recorded the concentration of emissions and fuel consumption was calculated by infer-
ring the pollutants emitted by the exhaust pipe [5]. It should be noted that a device that
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measures emissions in real-time is costly. For developing countries, the cost is simply
prohibitive, so many research centers opt for data logger devices that allow non-intrusive
data acquisition without adding mass to the vehicle through an on board diagnostics (OBD
II) port or by processing the parameter identification data (PID) signals to calculate fuel
consumption [6]. Authors such as Cabrera [7] used optimized dynamic programming and
real road data to achieve fuel consumption savings of 5.2% by taking into account the road
profile and travel time. In their work, Wang et al. [8] paid special attention to the reduction
of emissions and fuel consumption in high-altitude cities by means of an optimization
performed using support vector machines to modify engine characteristics to obtain similar
power parameters and significant reductions in emissions. Although total emissions may
decrease, Chen et al. [9] considered that real driving emissions (RDEs) underestimate
the importance of emissions generated by vehicles under cold-start conditions, so they
propose new measurement methodologies. It should be noted that fuel consumption is
directly related to the number of emissions produced. Qu et al. [10] measured hydrocarbon
(HC) emmissions—carbon monoxide (CO), and carbon dioxide (CO2)—and through a
carbon mass balance during the combustion and exhaust gas process to calculate the fuel
consumption. Andrade et al. [11], through the use of PID signals, proposed a machine
learning algorithm that estimates CO2 emissions from the calculated fuel consumption data
using variables acquired from the OBD II port. In a work developed in China, Zheng et al.
[12] calculated fuel consumption through the carbon balance method by finding several
discrepancies between the values reported during tests using RDEs and the country ap-
proval cycle by developing an algorithm that calculated the fuel flow showing a correlation
between 0.906 and 0.977 with the approval cycle. Authors such as Doulgeris et al. [13]
recognized the difficulty of predicting fuel consumption so they used experimental data to
adjust the accuracy of their model to achieve CO2 estimation errors of less than 5% using
RDE methodology.

The objective of this research was to obtain a mathematical model that predicts the
fuel consumption of a vehicle in the city of Quito, Ecuador, considering the geographic
conditions of the city and the quality of the fuel. Additionally, this information served as
a reference for selecting a vehicle and understanding its actual fuel consumption. This
paper is organized as follows: The Section 2 presents how the data are acquired through
OBD II. After that, the most significant variables are selected to design an algorithm to
estimate fuel consumption. Section 3 introduces the model to calculate fuel consumption
through resistive forces and is compared with other methodologies found in the literature.
Section 4 contrasts the results with other works. Conclusions and future work are provided
in Section 5.

2. Materials and Methods

The research proposed for this project is of the explanatory scientific type, which
attempts to formulate laws that determine the behavior of a physical phenomenon from
the explanation of the causes that generate it [14]. The project describes the fuel consump-
tion process in a spark-ignition engine through the application of various methodological
strategies. It involves studying the acquired PID through the OBD II port of the engine,
including data such as manifold absolute pressure (MAP), engine speed (RPM), and in-
take air temperature (IAT). Subsequently, it identified the variables that had the highest
contribution to the process and adjusted the model with complementary variables such as
road slope and altitude. To identify the most important variables involved in fuel consump-
tion, a vehicle was selected. Signals were acquired from the OBD II port through a data
logger device, and then these signals were filtered and synchronized because of a delay
between the different measurement equipment. Then, with these variables, the physical
phenomenon was mathematically modeled to compare with the results of similar works.
Finally, fuel consumption was simulated following the RDE methodology. A structure of
the methodological process can be seen in Figure 1.
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Figure 1. Methodological scheme.

2.1. Experimental Setup

To initiate with the experimental phase, a sedan equipped with a 1.4 L engine dis-
placement was situated on a chassis dynamometer. This dynamometer was employed to
replicate speed and load conditions, simulating real-world road operation. As the vehi-
cle traversed various operational ranges, a data logger device was linked to the engine’s
OBD II port to capture vehicle PID. Meanwhile, the chassis dynamometer, a MAHA LP
model adhering to the ISO 17359:2018 standard, generated engine characteristic curves
encompassing torque and power [15]. A summary of the experimental setup used for the
development of this project is shown in Figure 2.

PC

Gas analyzer

flowmeter

 

OBD II 

Chassis dynamometer bench
Data 

dynamometer

Figure 2. Experimental setup.

2.2. Data Acquisition

After performing the experimental setup, the acquired information is post-processed
to obtain the engine characteristic curves as shown in Figure 3.

The specific consumption curve elucidated the quantity of the fuel mass needed to
procure a designated amount of energy. This pivotal parameter, in turn, enabled the
determination of fuel consumption in terms of liters per hour. As is discernible from
Figure 3b, the range of 2000 to 3000 rpm exhibited the most economical specific fuel
consumption. Additionally, it is noteworthy that the utmost peak in fuel injection volume
occurred at approximately 4000 rpm.
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Figure 3. Characteristic curves vehicle. (a) Power—torque; (b) fuel consumption.

Engine characteristic curves were acquired through meticulous experimentation on the
chassis dynamometer. Concurrently, the PID signals were recorded utilizing the Freematics
ONE+ data logger [16]. Table 1 shows the signals and the physical units that each variable
represents.

Table 1. Variables stored.

Variable Nomenclature Unit

Longitudinal Acceleration Acceleration m/s2

Vehicle speed VSS km/h
Engine coolant temperature ECT ◦C

Intake air temperature IAT ◦C
Manifold absolute pressure MAP KPa

Oxygen sensor O2 V
Engine speed RPM rpm

Throttle position sensor TPS %
Long-term fuel trim LTFT %
Short-term fuel trim STFT %

2.3. Exploratory Study

The objective of the current study was to construct a model that elucidates the intricate
interplay between the sensor-acquired variables; namely, vehicle speed (VSS), throttle
position (TPS), engine coolant temperature (ECT), oxygen sensor (O2), short-term fuel
trim (STFT), long-term fuel trim (LTFT), RPM, manifold absolute pressure (MAP), and
intake air temperature (IAT). Figure 4 exhibits scatter diagrams for each of the pertinent
variables, positioned along the horizontal axis. The vertical axis, on the other hand, portrays
the probability density, thereby enabling the discernment of the distinct distributions
inherent to the various variables. It is important to mention that STFT, LTFT and O2 were
disregarded from consideration because of the engine’s insignificant wear and the absence
of outstanding fluctuations in their values. Additionally, it is imperative to highlight
that fuel consumption data were recorded simultaneously with the power and torque
characteristic curves of the vehicle.

By applying a linear regression model that incorporated all the dependent variables
except for fuel adjustments, the process effectively explained 99.8% of the vehicle fuel
consumption, as evidenced by the highly favorable adjusted coefficient of determination
(R2). Moreover, as shown in Table 2, it is notable that RPM, TPS and MAP emerged as the
variables exhibiting the highest linear relationship with fuel consumption, substantiated by
their noticeable significance values.
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Figure 4. Scatter plot of variables.

Table 2. ANOVA analysis of all variables.

Estimate Std. Error t Value p Value (>|t|)

Intercept 202.960 22.372 9.072 <2 × 10−16

VSS 0.0004563 0.0159524 0.029 0.977
RPM 0.0039700 0.0004691 8.463 <2 × 10−16

TPS −0.0390718 0.0027167 −14.382 <2 × 10−16

MAP −0.2379535 0.0273602 −8.697 <2 × 10−16

IAT −0.0083322 0.0210253 −0.396 0.692
ECT −0.0068182 0.0088618 −0.769 0.442

The quantile–quantile plot (Q-Q plot) depicted in Figure 5a proves that the assessment
of data demonstrated a close alignment of the data points with the reference trend line,
indicating that the distribution can be reasonably approximated as normal. In contrast,
Figure 5b illustrates the relationship between predicted values and residuals. To this extent,
not only the absence of any characteristic equation is evident, but also the lack of a fan
or funnel-shape distribution is present. Consequently, the linearity of the data can be
visualized and the adherence to the homoscedasticity criterion may be validated.

Due to the large number of considered variables, it was advisable to streamline the
model by diminishing the number of factors that represented the underlying physical phe-
nomenon with a more adequate level of complexity. Through the application of Pearson’s
correlation coefficient, it became evident that certain variables like VSS, RPM and MAP
had a significant influence in this context.

Furthermore, Figure 6 shows the importance of the dependent variables concerning
the independent variable of consumption. Nevertheless, it is worthy to remark that pre-
dictors such as VSS and RPM exhibited a notable degree of correlation, which was further
corroborated by a variance inflation analysis as seen in Table 3, confirming the presence of
collinearity. Hence, the removal of one of the variables from the model had to be taken into
consideration to alleviate the issue.
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Figure 5. Normality and homoscedasticity tests. (a) Normal probability graph; (b) graph of residues
vs. predicted values.
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Figure 6. Correlation coefficient matrix.

Table 3. Variance inflation analysis.

VSS RPM TPS MAP IAT ECT

5592.149 5610.453 1.940 5.436 53.2546 20.424

Despite the noticeable result of the Pearson correlation coefficient regarding to vari-
ables like IAT and ECT, it is relevant to stress the fact that their significance within the
model was imperceptible. Therefore, it was pertinent to reduce the number of variables
to the three representing the utmost importance for the model. This reduction yielded a
model wherein all the remaining variables displayed significance, effectively explaining
98.8% of the gathered information as exemplified in Table 4.
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Table 4. ANOVA for reduced model.

Estimate Std. Error t Value p Value (>|t|)

Intercept 190.688 16.913 11.27 <2 × 10−16

RPM 0.0039817 0.0000118 337.41 <2 × 10−16

TPS −0.0385491 0.0024030 −16.04 <2 × 10−16

MAP −0.2362665 0.0232931 −10.14 <2 × 10−16

2.4. Experimental Route Planning

A route was charted through the urban expanse of the city of Quito, located in Ecuador.
This choice of city was considered due to the data provided by the Global Traffic Scorecard,
which designates Quito as the fifth most congested urban center in South America [17].
To comprehensively evaluate the chosen route, the RDE cycle was employed, encompass-
ing diverse driving scenarios, namely, city, rural and highway navigation, which is also
elucidated in Figure 7.
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Figure 7. Proposed route under the real emissions cycle.

To ensure the validity of route, it is essential that it adheres to the constraints estab-
lished by the Euro 6 standard. The mentioned constraints comprise various aspects, such as
the speed of circulation in each section, stopping times and distances to be covered. Table 5
offers a clear view of what has been stated [18,19]. Figure 8 provides a visual representation
of the speed for each section plotted against the accumulated distance. Notably, it is imper-
ative to acknowledge that parameters such as highway speed presented a certain degree
of inconvenience in their achievement due to legal regulations, which prohibit exceeding
speeds of 90 km/h in the Ecuadorian territory. The experimental environmental conditions
during the tests reported a consistent temperature of 18 ◦C and an atmospheric pressure
of 70 kPa without the presence of rain or intense winds. The testing procedures took
place at an initial altitude of 2900 m above sea level, thereby exhibiting similarities to the
conditions elucidated in [20]. Throughout the testing, certain measures were undertaken.
These included deactivating the vehicle’s air conditioning system and ensuring the closure
of all vehicle windows.
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Table 5. RDE cycle specifications.

Parameter Urban Rural Highway Unit

Speed Limit <60 60 . . . 90 >90 km/h
Average speed 19.42 (15 . . . 30) 68.43 (60 . . . 90) 73.18 (>90) km/h

Minimum distance 17.52 (>16) 21.02 (>16) 20.55 (>16) %
Percentage of distance 29.65 (28 . . . 43) 35.57 (23 . . . 43) 34.74 (23 . . . 43) %

Stopping Time 28.34 (>10) - - %
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Figure 8. Verification of speeds during the RDE cycle.

2.5. Model Problem

The fuel consumption can be determined through an analysis of the vehicle’s longi-
tudinal dynamics, employing Newton’s second law. The behavior of fuel consumption is
succinctly described by Equation (1), in which mv represents the mass vehicle, a signifies
acceleration and γ denotes the coefficient pertaining to rotating mass [21,22].

∑ F = γ(mv · a) (1)

γ(mv · a) = Fv − Fd − Fr − Fp (2)

Equation (2) delineates the constituent forces influencing the vehicle’s motion. Specifi-
cally, Fv represents the force required for the vehicle’s forward movement, Fd embodies the
aerodynamic force of the vehicle, Fr encompasses the forces produced by rolling resistance
and Fp accounts for the force required to ascend slopes [23].

Fv = γ(m · a) + S · cx · ρair ·
V2

2
+ fr · mv · g · cos(θ) + mv · sin(θ) (3)

From Equation (3) it is necessary to determine some vehicle parameters such as the
vehicle mass found by measurement as shown in Figure 9a. The air density ρ is calculated
from the relationship between the standard air and the one found in the city of Quito, using
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readings from the MAP sensor located in the intake manifold. Parameter S represents
the sectional area of the vehicle, cx coefficient of drag, fr coefficient of rolling resistance,
V velocity, g gravitational force and θ slope angle.

(a)

area = 1.83 m2

perimeter  = 6.33 m

(b)

Figure 9. Vehicle features. (a) Vehicle mass; (b) vehicle frontal area.

By using the Equation (4), it is possible to determine the rolling resistance coefficient
that determines the relationship between the type of surface on which the tire travels,
inflation pressure and vehicle speed, these values can be obtained empirically for this case
we use a f = 0.015, and f0 = 0.01, common values in the literature [1], while the speed is
expressed in km/h.

fr = f + f0

(
V

100

)2.5
(4)

Parameters such as the frontal area of the vehicle are calculated by drawing the cross-
section in a computer-aided design program as shown in Figure 9b, the dimensions are
acquired from the vehicle manufacturer’s website [24].

Inertial forces are dependent on the variation of acceleration, and this parameter is
calculated as the rate of change of velocity with respect to time a = dv

dt . To find the road
angle (θ), the data logger device has incorporated a Global Positioning System (GPS) that
records latitude, longitude, and variation of altitude every 0.1 s. Figure 10 shows the
estimated angle of the roadway described by the vehicle along the route, which is inferred
with Equation (5) [25].

sin(θ) =
∆high

∆space
(5)

Distance [m]

R
o
a
d
 a

n
g
le

 [
°

]

Figure 10. Road angle.
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Once all the forces necessary for the vehicle to move forward have been found, this
value is multiplied by the speed in order to find the wheel power required for each instant
as shown in Equation (6), but the engine power is related to the selected gear and its
efficiency [26].

Pengine =
Pwheel
ηgear

(6)

Transmission efficiency can be obtained from geometric ratios by which gearboxes are
designed, for a 185/65R15 88H tire the geometric radius of the tire can be found by the
Equation (7), where An represents tire width, Pa is the height of the tire sidewall and dc is
the wheel diameter in inches.

rg =
2 · An · Pa + 25.4 · dc

2
(7)

Being i, the longitudinal slip ratio of the tire, the effective radius of the tire can be
found as shown in Equation (8).

re = rg(1 − i) (8)

Using the relationship r = VSS/RPM, the number of groups is determined by a
k-means algorithm that identifies each vehicle speed step (see Figure 11) [27]. The trans-
mission system is manual and does not have a sensor that identifies the selected gear,
so to classify this process a decision tree learning technique is used to classify the gear.
To generate the database that classifies the gear, the vehicle is driven for 200 km, where all
gears were used under different engine speeds. As it can be seen in Figure 12 the match rate
is high because it is a deterministic model that classifies very well for this specific vehicle,
but it would not be able to generalize for others. For the model structure, 70% of the data
were used for training, 15% for testing, and the remaining 15% for validation, resulting in a
model with a 99.9% success rate.
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Figure 11. Vehicle speed steps.
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Figure 12. Confusion matrix.

From Equation (9), we can find the ratio of the differential group. With R5 = VSS
RPM

being the direct gear ratio, the efficiency of each gear can be identified as shown in
Equation (10). Rj represents the gear ratio for each gear and γj the rotating mass ratio
of each gear, furthermore jmax represents the value of the highest gear [1].

Rc =
3.6π

30R5
re (9)

ηj =
Rj

Rj − 1
jmax

(10)

3. Results
3.1. Linear Model

In this section, the fuel consumption is modeled from the use of the most significant
predictors being the RPM, TPS and MAP sensor located in the intake manifold. From
a linear regression with an adjusted quadratic coefficient of R2 = 0.98 the following
Equation (11) is obtained. Figure 13 shows the behavior of fuel consumption with respect
to the distance traveled in the test.

0.0039817 · RPM − 0.0385491 · TPS − 0.2362665 · PMAP (11)
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3.2. Resistive Forces Model

After post-processing the information of each of the variables, it can be observed
that from all the calculated forces, the one that generates the greatest opposition to the
vehicle’s progress is the slope resistance due to the topology of the city of Quito–Ecuador,
followed by the inertial forces produced by the mass of the vehicle in acceleration and
deceleration at a certain rate of change. The aerodynamic drag as seen in Figure 14 is
completely dependent on the speed while the rolling resistance depends on the same factor,
but to a lesser degree [28].

Distance [m]

F
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e

 [
N

]

Rolling resistance

Road slope

Drag resistance

Inertia resistances

Total vehicle resistances

Figure 14. Forces linked to vehicle travel.
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Once all the forces opposing the vehicle progress have been obtained, the instantaneous
power is calculated by multiplying the resulting force by the speed. It should be noted that
the power obtained is the power at the wheel, but fuel consumption is linked to engine
power, so Equation (12) is used, where ηj represents the efficiency of the gear (see Table 6).
The linear relationship between fuel consumption and engine can be seen in Equation (12)
and Figure 15 [29].

Pengine =
Prueda

ηj
(12)

Table 6. Characteristic values of vehicle gears and inertia masses.

j 1 2 3 4 5 6

Rj 4.3014 2.3969 1.5779 1.2218 1 0.8418
γj 1.08 1.0544 1.0462 1.0437 1.0425 1.0418
ηj 0.8031 0.8056 0.8085 0.8111 0.8136 0.8162
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Figure 15. Fuel consumption according to gears.

Once the consumption data for each of the gears are obtained, they are associated with
their respective engine power. For ease of visualization, the distance is represented on the
horizontal axis, while the consumption in liters per hour for each instant is displayed on
the vertical axis (see Figure 16).

3.3. Neural Network

Based on the most significant predictors of the model: MAP, TPS, and RPM were
determined by employing an experimental test developed on the chassis dynamometer,
and a neural network is trained to predict fuel consumption. As it is known, these models
very efficiently predict the responses, but they do not allow us to determine intermediate
processes as is the case of the analytical functions [30]. In Figure 17a, it can be seen that the
validation error is below the training and the test, so the model is able to predict different
operating cycles. As can be seen in Figure 17b, the model fit trained by neural networks is
able to predict 99.5% of the times correctly.



Sustainability 2023, 15, 12474 14 of 20

0 1 2 3 4 5 6 7

Distance [m] 104

0

5

10

15

F
u
e
l 
c
o
n
s
u
m

p
ti
o
n
 [
l/
h
]

Figure 16. Fuel consumption through resistive forces.
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Figure 17. Neural network. (a) Training, validation, test and full fit charts; (b) neural network validation.

4. Discussion

In this work, different methodologies are developed and an algorithm is proposed that
calculates the fuel consumption through the dynamic forces of the automobile that interact
from the road wheel contact following the kinematic chain to reach the engine. As shown
in the methodological chapter, several authors calculate the fuel consumption from the
absolute pressure found in the intake manifold because the vehicle manufacturer’s OBD II
standard does not provide a fuel PID [6,11]. Bishop et al. [31], reported differences from
−1.3 to 1.7% of values calculated of fuel consumption with respect to the observed when
the vehicle is tested under a US06 driving cycle in their study.

As depicted in Figure 18, a significant disparity is evident in the results obtained
using the linear regression algorithm when compared to other approaches. This variance
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can be attributed to variations in parameters, such as the rolling resistance coefficient,
which exists between the rollers of the chassis dynamometer and the road surface of the
tracks. Furthermore, it is worth noting that the test conditions involved zero aerodynamic
resistance and no slopes throughout the testing process [32]. To contrast the data and verify
that the calculations developed from the MAP sensor are not erroneous, a commercial
application used for smartphones allows the connection to the OBD II port of the vehicle
and stores the information in a plain text format [33]. Post processing the information, it is
visualized that the curves of the smartphone application with respect to those obtained by
MAP sensor in the intake manifold are similar, but far from the linear regression process.
Neural networks predict the study phenomenon very well as reported in the study made
by Abukhalil et al. [34], where the RMSE is 2.436 between the proposed method with
respect to measured values. In this work, the training neural network predicts effective
fuel consumption with a relative error of less than 5%, but it is not possible to know the
intermediate stages of the process.
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n
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h

]

Fuel - PID

App

Linear regression

Neural network

Figure 18. Consumption reported by various methods.

In Figure 19, a clear distinction is observed in the graphs obtained from the algorithm
compared to the fuel estimation derived through the reading of the PID. This research pro-
poses a novel approach to calculate fuel consumption, taking into account various resistive
forces acting on the vehicle. Parameters like rolling resistance coefficient, aerodynamic
drag, slope, and inertial masses are carefully considered in this calculation. Moreover, the
vehicle shape parameters are inferred from its cross-section and drag coefficient. To en-
hance accuracy, atmospheric conditions, such as air temperature and pressure, are extracted
from the IAT and MAP sensor, respectively. The model employed in this study is of a
deterministic nature, facilitating adaptability for different vehicle types. Consequently,
parameters like vehicle shape can be modified through adjustments to the cross-section
and drag coefficient to suit various vehicle configurations.
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Figure 19. Comparison of the calculation algorithm with respect to the Fuel PID estimation.

In Figure 20 it can be verified that the algorithm presents a moderate correlation with
a fit of R2 = 0.7 in rural urban and highway driving.

Fuel - PID estimation [l/h]

F
u

e
l 
c
o

n
s
u

m
p

ti
o

n
 a

lg
o

ri
th

m
 [

l/
h

]

 

Linear: R2 = 0.6872

Figure 20. Correlation algorithm—MAP.
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In studies such as the one shown in [12], they calculate fuel consumption from a
carbon balance, the method consists of collecting information on each of the pollutants
(CO, HC, among others) at the exhaust outlet by means of a PEMS to later convert these
emissions into fuel consumption. The method is very close to the data obtained by OBD
II, finding differences of 0.55 ± 0.12 L/s in certain measurement bins and 3.79 ± 0.69 L/s.
Comparing the estimates found in Table 7, it can be seen that the methods proposed in this
study are within 5% of the expected value and the consumption calculated via OBD II using
the MAP sensor is a good reference indicator. To find the differences between each method,
the relative error is used, as shown in Figure 21 the relative error is within 2% in most of
the route except in certain sections where it reaches 5%. According to studies carried out
by [35] a VT-Micro Model is proposed, with respect to experimental data reporting values
around the threshold of 5% [36].

Table 7. Estimates of fuel consumption on a real emissions cycle.

Method Total Consumption (Liters) Relative Error

Fuel—PID 5.2845 -
Linear Adjustment 2.9556 44.1%

Commercial Application 4.8122 8.9%
Algorithm 5.0100 5.2%

Neural Network 5.5772 5.5%

Time [s]
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 e
rr
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]

Figure 21. Relative error of the algorithm with respect to fuel–PID estimation.

5. Conclusions

In this work, several methodologies were developed to evaluate the most influential
predictors in fuel consumption generation. A linear regression model was used to predict the
most significant variables with a 95% confidence interval. The results showed that MAP, TPS,
and RPM are important factors for estimating fuel consumption. However, parameters such
as VSS are also important, but they exhibit collinearity with RPM due to their dependence.

The model generated from the most significant prognosticators can predict 99.8% of the
values according to ANOVA. However, when the model is tested under a RDE cycle, it shows
variations of about 44.1%. This discrepancy can be attributed to the data being obtained from
experimental measurements on a chassis dynamometer under laboratory conditions, without
considering differences in rolling resistance and drag resistance on an actual roadway.

Neural networks predict fuel consumption efficiently and with only three predictors.
The model in this study reports relative errors lower than 5% in a RDE cycle. Unfortunately,
this type of techniques does not allow to show intermediate explanations of the process, so in
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this study analytical techniques that describe each of the processes and dependent variables
were used.

The algorithm developed for analyzing vehicle resistive forces enables us to identify
the most significant factors affecting the process of fuel consumption. In this scenario, slope
resistance emerges as the most influential force, followed by inertial masses. When the
vehicle is tested under a RDE cycle, the algorithm reported a fuel consumption of 5.57 L,
while the PID estimations yielded 5.28 L. The method demonstrates an average error of
1.41%, with a maximum value of 5.09%.

In future works, it is recommended to continue the study by incorporating a piezo-
electric flow-meter, which would enhance the efficiency of the models described above.
Additionally, parameters such as rolling coefficient and aerodynamic resistance can be
refined through coast-down tests, enabling the development of scalable models applicable
to a wider range of vehicles.
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Abbreviations
The following abbreviations are used in this manuscript:

ANOVA Analysis of Variance
PID Parameter identification data
RDE Real driving emissions
TPS Throttle Position Sensor
VSS Vehicle speed
ECT Engine coolant temperature
IAT Air intake temperature
MAP Manifold absolute pressure
O2 Oxygen sensor
OBD On Board Diagnostics
RPM Engine speed
TPS Throttle position sensor
LTFT Long-term fuel trim
STFT Short-term fuel trim
Q-Q plot Quantile-quantile plot
INRIX Global Traffic Scorecard
GPS Global Positioning System
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